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Abstract Climate change impact must be taken into account in any water resources planning
management studies, because it does not allow future occurrences to be repeated as a replicate of
the past. The stationarity is no longer valid, because the climate change plays significant role on
ascending or descending trend components in any hydro-meteorological events such as temper-
ature, precipitation, evaporation, runoff and discharge. The identification of trends can be
represented by well-known methodologies, such as the Mann-Kendall and sequential Mann-
Kendall. These methodologies require restrictive assumptions such as data length, serial inde-
pendence and Gaussian (normal) probability distribution function (PDF). On the other hand,
Innovative trend analysis (ITA) method proposed by Şen is helpful to identify even visually with
direct interpretations without restrictive assumptions. The PDF or cumulative distribution func-
tion (CDF) is effective tool for risk level determination but it cannot tell anything about the trend
in a given hydro-meteorological data. The PDF (CDF) does not yield any clue about the trend
possibility, and hence, it’s alone use in any water resources structure designmay lead to erroneous
planning studies. In this study, nonstationary nature of a given monthly hydro-meteorological
data is examined by trend determination procedures. For the application, monthly averages of
maximum daily temperatures are used on Oxford station, UK. It is observed that the temperature
values of each month have a positive trend and the nonstationary empirical cumulative frequency
curves on first half group match better all data group than the stationary state.

Keywords Climate change . Trend analysis . Innovative trend analysis . Frequency analysis

1 Introduction

The risk analysis using to extreme value determination is achieved by the probability or
cumulative distribution functions (PDF or CDF) in cases of stationary hydro-meteorological
records. Extreme values help to design water resources systems properly, and also for their
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optimal management studies. Due to especially climate change impact, hydro-meteorological
variables show increasing or decreasing trends, which render them into a nonstationary
structure. For this objective, trend analyses are achieved mostly by the Mann-Kendall,
Sperman’s Rho and sequential Mann-Kendall with Sen’s slope estimator trend tests (Kendall
1975; Mann 1945; Obeysekera and Salas 2016; Sen 1968; Spearman 1904). Each one of these
methods is based on assumptions such as enough data length, serial independence, normal
(Gaussian) PDF. On the other hand, Sen (2017) proposed a new trend determination approach
without any assumption, namely, innovative trend analysis (ITA) method. It is originated from
that a time series (parent time series) is considered as two half in ITA and this enables to
researchers a comparison of second half of parent time series according to its first half unlike
traditional methods. The traditional methods treat a time series as whole and there is no
comparison between the first half and second. To find the comparison, they need an
assumption which the time series or errors fit normal distribution. The normal distribution is
universal set of the time series and the comparison is made with it. Also the normal distribution
requires enough data length and serial independence assumptions. There are ITA
implementation studies by different researchers showing that the method is efficient. Sonali
and Kumar (2013) applied ITA on monthly, seasonal and annual maximum and minimum
temperatures over all regions in India and explained that ITA outcomes match other trend test
results such as Mann-Kendall, Sen’s slope, Spearman’s Rho and their derivatives. Elouissi
et al. (2016) investigated Macta watershed monthly precipitation records to identify climato-
logically tendencies using ITA and expressed that ITA provides qualitative interpretations.
Güçlü et al. (2016) used ITA and the trend possibilities of precipitation records of the Florya
station in Istanbul were searched and then quantified using intensity-duration-frequency
curves. Oztopal and Sen (2017) applied ITA for determining trends in seven different sub-
climatological region of Turkey and mentioned that ITA enables partial trend determination in
low, medium and high data ranges unlike monotonic trend. On the other hand, Salas and
Obeysekera (2014); Bayazit (2015) and Obeysekera and Salas (2016) discussed nonstationary
analysis usage so as to include trends in data analysis with PDF and CDF. As human
intervention and anthropogenic climate change influences are becoming evident, nonstationary
statistics would be better to represent the stochastic properties of the hydro-meteorological
records (Rehan and Hall 2014). The nonstationary analysis is based on time varying proba-
bilities that cannot be accounted by stationary processes. Lins and Cohn (2011) accepted the
nonstationarity as a characteristic of the natural world.

The main purpose of this paper is to show the difference between the stationary and
nonstationary behaviour of the hydro-meteorological data records. Stationarity works are
rather old fashion methodologies and in the future the nonstationarity of the records must be
taken into consideration through trend analyses.

2 Methodology

Knowledges on the temporal variation of hydrological characteristics and parameters gives one
the opportunity to build a nonstationarity model, where the available information allows one to
reduce the bias of the predictions (Montanari and Koutsoyiannis 2014). Herein, Innovative
trend analysis (ITA) method is used to calculate the nonstationary changes in hydro-
meteorological variables over time. The parent time series in hydro-meteorological record is
divided into two halves and then the each half is sorted into ascending order for the
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implementation of the ITA as explained by Sen (2017). The first half is plotted on the
horizontal and the second on vertical axis and the result is the scatter of points. Furthermore,
the first half of parent time series must be plotted on the horizontal axis because the second half
occurs after the first half changes with time. If the scatter of points remains wholly or partially
above (below) the 1:1 (45°) straight-line then there is an increasing (decreasing) trend
component in the hydro-meteorological record structure (Fig. 1a). As known, if a value on
horizontal axis smaller (bigger) than a vertical value then a scatter point occurs below (above)
the 45° straight-line on Cartesian coordinate system (see Fig. 1). If they are equals then the
scatter point occurs over the 45° straight-line and there is no trend. In case of an increasing
(decreasing) tendency on trend there is a steady increasing (decreasing) trend on data group
(Fig. 1b).

Figure 2 shows the application of ITA based on a hypothetical data which it contains a
certain trend quantity and no measurement error to test the method’s efficient. To find the trend
amount, first and second halves averages (μf, μs) are calculated (Fig. 2a) and the trend slope, a,
is calculated by dividing the arithmetic averages difference by the half-length (n/2) of the data.
Figure 2b shows the trend slope (a) and intersection point (b). All these calculations are
performed using the following set of equations. In here, xi (yi) is the first (second) half group
value and ti is time which is ith number. More detailed information about ITA is provided by
Sen (2017).

μ f ¼
1

n=2ð Þ ∑
n=2
i¼1xi ð1Þ

μs ¼
1

n=2ð Þ ∑
n=2
i¼1yi ð2Þ

a ¼
2* μs−μ f

� �
n

ð3Þ

Fig. 1 a Monotonic trend. b Changing trend
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yi ¼ bþ a*ti ð4Þ
b ¼ μs−a*�t ð5Þ

Frequency is the occurrence probability of an event within a certain variable range. Let the first
half data in order x1 < x2 < .... < xn/2 with the average,μf, and standard deviation,σf (Eqs. 1 and 6).
Using Eq. (7), empirical cumulative distribution function in a stationary state (ECDF_S), F(xi,s),
is simply obtained without regarded any trend and/or shift (jump, sudden change). An empirical
equation is proposed in Eq. (8), where α, the trend in percent, a, the trend and μf, the mean of first
half series (Eqs. 1 and 3). The trend existence in the data set implies nonstationary state. If the
trend has a positive (negative) trend then with respect to the first half, the second half will have
higher (smaller) extreme values. Thus a similar probability gives larger (smaller) a data value in
the positive (negative) trend or the same data gives smaller (larger) a probability value. In order to
import the effect of trend into the ECDF_S, these frequency values must be multiplied by (1 +α)
and (1-α) as in Eq. (9) for positive and negative trend components, respectively. The equation
gives an empirical cumulative frequency distribution in nonstationary state (ECDF_NS). In case
of 1 ±α = 1, stationary case is valid without any trend component in the time series.

σ f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n=2
∑n=2

i¼1 μx−xið Þ2
s

ð6Þ

F xi; sð Þ ¼ 2i
n

ð7Þ

α ¼ a
μ f

ð8Þ

F xi; nsð Þ ¼ 1þ αð Þ 2i
n

ð9Þ

Fig. 2 Random stochastic processes (a) ITA graph (b) Time series graph
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3 Study Area and Application

The methodology presented in the previous section is applied in the Oxford City, UK (Fig. 3).
Monthly averages of daily maximum temperatures between 1853 and 2016 years are taken
into consideration for implementing ITA and investigation of nonstationarity. A total of 164 ×
12 = 1968 monthly temperature values are used and the coldest month is January (6.76 °C) and
the warmest July (21.81 °C). The statistical information of the data is given in Table 1.

Average of the each half is calculated with Eqs. (1) and (2) which gave μf = 6.54 C and
μs = 6.98 C for January and the same procedure is repeated for the other months. As an
example, in January trend slope is calculated as a = 2×(6.98–6.54)/(2016–1853 + 1) =
0.0054 °C/year and trend in percent as α = a/μf = 0.0054/6.54 = 8.205 × 10−4 per year or
8.205 × 10−4 × 82 = 0.067 = 6.7% per period. The trend slope ranges from 0.002 °C/year in
February to 0.013 °C/year in November. However, the trend in percent changes from 0.04 in
August to 0.12 in November. The biggest trend is in November and the lowest trend takes
place in February and August considered both indicators. It is observed that there is a bigger

Fig. 3 The location of Oxford, UK

Table 1 A statistical summary of the monthly mean values of daily maximum temperatures(°C) for Oxford

Months Measured years Minimum Mean Maximum Std. Dev. Skew

January 1853–2016 −0.20 6.76 10.40 2.00 −0.58
February 1853–2016 −0.20 7.45 11.50 2.23 −0.79
March 1853–2016 6.00 10.00 15.50 1.86 0.09
April 1853–2016 9.50 13.22 19.40 1.62 0.62
May 1853–2016 12.90 16.73 20.40 1.48 0.00
June 1853–2016 15.90 19.92 24.40 1.57 −0.05
July 1853–2016 17.50 21.81 27.10 1.95 0.34
August 1853–2016 17.10 21.27 26.40 1.73 0.40
September 1853–2016 15.20 18.55 23.20 1.54 0.39
October 1853–2016 11.00 14.19 18.90 1.37 0.23
November 1853–2016 6.10 9.70 13.50 1.44 −0.05
December 1853–2016 0.20 7.35 13.40 1.92 −0.52
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change in daily maximum temperatures in March, August, September, October and November
compared to the minimum changes in February and May months (Fig. 4). Trends in winter are
small amounts despite large percentages due to small temperatures. These different tempera-
ture trends can cause seasonal shifts in the future. The reason of different trends amounts
among months may be local concentration differences of greenhouse gases such as water
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Fig. 4 Trend in monthly averages of daily maximum temperatures (°C)
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vapor, C2O, N2O, NO and CH4 among months. These greenhouse gases restrain reflection of
shortwave solar radiation from the earth surface to the atmosphere (Toprak 2016). That is, the
concentration differences may cause different trends on the temperatures among months.

The ECDF_NS is obtained for January as F(xi, ns) = (1–0.067)xF(xi, s) is used according to
Eq. (9). These processes are repeated for other months and ECDFs are plotted for Oxford daily
maximum temperatures (see Fig. 5). Horizontal axis represents maximum temperatures and

Fig. 5 Empirical cumulative distribution functions for monthly averages of maximum daily temperatures on Oxford
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vertical axis shows ECDF_S, ECDF_NS and ECDF_A values (F(xi,s) and F(xi,ns)). In here,
green, blue and red line represents first half data in stationary state, first half data in
nonstationary state and all data in stationary state. It is seen that ECDF_S values are different
than empirical cumulative distribution function values in all data state (ECDF_A) and this
difference is bigger on March, August, September, October and November months
than the other months. This difference is smaller between ECDF_NS and ECDF_A
according to ECDF_S and ECDF_A. The minimum changes among ECDF_S and
ECDF_A are seen in January, February and June months. Root mean square error
(RMSE) method is used for testing the method’s accuracy (Eq. 10). In here, obs and
calc represents observed and calculated value, and n is data length. RMSE between
ECDF_NS and ECDF_A ranges from 0.02 to 0.091 whereas ECDF_S and ECDF_A
from 0.027 to 0.13. The nonstationary approach makes it possible to reduce errors
among 14.1% and 53.1% (Table 2).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1 obs ið Þ−calc ið Þð Þ2
n

s
ð10Þ

4 Conclusions

The main purpose of this paper is to use the innovative trend analysis (ITA) method and
propose an update of the stationary frequency calculations by inclusion of the trend, and hence,
nonstationary character of hydro-meteorological records. Oxford City, UK, monthly mean of
daily maximum temperatures are used for testing cumulative nonstationary frequency analysis.
The method is applied to monthly averages of daily maximum temperature values in Oxford,
but can be used for other data and study areas. The nonstationary state is considered for
frequency analysis using trend in percent. The trend obtained with ITA is added to empirical
cumulative distribution function values in stationary state (ECDF_S) which are used for
comparison of stationary and nonstationary states. Nonstationary empirical cumulative distri-
bution frequency values (ECDF_NS) in first half data fits better to empirical cumulative
distribution frequency in all data (ECDF_A) according to ECDF_S. Among ECDF_S and
ECDF_A values, the difference is small, in where the trends have small values. This state
shows that trend quantity lead to nonstationarity. Difference between ECDF_NS and ECDF_A
is smaller than ECDF_S and ECDF_A values. The RMSE results support these findings and
give smaller error amounts in the nonstationary state according to stationary state. It is
concluded that nonstationary state gives more realistic results than stationary state. Nonsta-
tionary analysis enables qualitative forecasting of the future and thus, long-term planned
hydraulic structures can be planned efficiently and resources are used more efficiently. Also,
ITA can be useful for policy makers for determining risky areas with regard to flooding,
drought, air temperature, sea level etc.
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