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Abstract This paper described manage sewer in-line storage control for the city of Drammen,
Norway. The purpose of the control is to use the free space of the pipes to reduce overflow at
the wastewater treatment plant (WWTP). This study combined the powerful sides of the
hydraulic model and neural networks. A detailed hydraulic model was developed to identify
which part of the sewer system have more free space. Subsequently, the effectiveness of the
proposed control solution was tested. Simulation results showed that intentionally control
sewer with free space could significantly reduce overflow at the WWTP. At last, in order to
enhance better decision making and give enough response time for the proposed control
solution, Recurrent Neural Network (RNN) was employed to forecast flow. Three RNN
architectures, namely Elman, NARX (nonlinear autoregressive network with exogenous
inputs) and a novel architecture of neural networks, LSTM (Long Short-Term Memory), were
compared. The LSTM exhibits the superior capability for time series prediction.
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1 Introduction

Most people agree that climate change has caused, and will cause, more intensive and often extreme
weather. In this context, in order to reduce overflow at the WWTP, the sewer system needs increased
capacity, either by physical expansions or by investing in separate sewers. This will require a huge
amount of investments. Taking Norway as an example, the estimated value of sewer networks and
WWTPs in Norway is around 500 billion Norwegian Kroner (NOK). At least 150 billion NOK
investment by 2030 will be required to maintain nowadays service level (Odegérd et al. 2013).
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During heavy rainfall events, parts of the sewer system will experience overload but other
parts may only partially filled. As an alternative solution, there is a potential in utilizing left
over capacities in the sewer system to reduce the hydraulic load of the WWTP. Maximum
sewer’s spatially distributed in-line storage capacity is a cost-effective method of reducing the
overflow at the WWTP compare to capital construction (Darsono and Labadie 2007). Properly
manage the sewer system over time and space could aggregate in-line storage capacity in a
sewer system, reduce pollution from untreated WWTP overflows. In addition, incorporation of
in-line storage control into plans for constructing additional storm control facilities such as
detention basin may reduce size and investment of these facilities (Darsono and Labadie
2007). This approach could efficiently reduce infrastructure investments, but require adequate
software and modeling capabilities. (Grum et al. 2011; Garofalo et al. 2017).

The successfulness of sewer in-line storage control relies on high-quality informa-
tion about the sewer system. There are two critical tasks in the present study. First,
we should identify which part of the sewer system is suitable for control, i.e. have
free space during rainfalls. Second, successful sewer system control requires not only the
current but also the future flow information (Liu et al. 2016; Chen et al. 2014; Duchesne et al.
2001). So that we need to forecast flow in the sewer system to enhance sewer in-line control
structure operations in real time.

With complete knowledge of sewer system and rainfall pattern, the hydraulic model is
suitable for task 1. Hydraulic models are the most common tools in most of the studies about
sewer system (Autixier et al. 2014; Lucas and Sample 2015; Seggelke et al. 2005). Simulation
results from hydraulic models can supply insight into their functioning and show the effects of
different control strategies after a rainfall event (Chiang et al. 2010). However, hydraulic
models require detailed information of the sewer system, manually operation, a large number
of parameters and longer computational time. Although hydraulic models provide a solid
understanding of the hydraulic behavior, their features make these models limited adequate for
application in task 2 (El-Din and Smith 2002).

To overcome the limitations of the hydraulic model, enabling control system make quick
and intelligent decisions, machine learning is among the top methods. Alam et al. (2016)
examined the efficiency of eight mainstream machine learning algorithms for the Internet of
Things (IoT) data. Includes Support Vector Machine (SVM), K-Nearest Neighbors (KNN),
Linear Discriminant Analysis (LDA), and the deep learning artificial neural networks
(DLANNS). The preliminary results on three real IoT datasets showed that ANNs and
DLANN:S could provide highly accurate predictions.

Two of the hottest topics in the deep learning field are improving computer visioning using
convolution neural networks (CNN) and modeling sequential data using the recurrent neural
network (RNN). Flow time series is a kind of typical sequential data. Traditional time
series prediction mainly relies on memoryless models. Such as the autoregressive
model, which predict the next step in a time series from a fixed number of previous
steps. Facilitate time delay units through feedback connections, RNNs can be trained
to learn sequential or time-varying patterns (Chang et al. 2014a, b). In the context of
giving a precise and timely prediction of flow in the sewer system, the RNN is
particularly suitable for task 2.

The earliest research on RNN took place in the 1980s. The Hopfield networks introduced
by Hopfield in 1982 (Hopfield 1982) initialized the concept of RNN. Jordan in 1997
introduced one of the earliest architecture for supervised learning on sequences (Jordan
1997). The Jordan RNN is a feedforward network with a hidden layer equipped with special
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units. Output values feed these values to the hidden nodes at the following time step, according
to the state of the special units. If the output values are actions, the special units allow the
network to remember actions taken at previous time steps (Lipton et al. 2015). The Elman
RNN (Elman 1990.) was introduced in 1990, which takes the state of the hidden node at the
previous time step as input for the current time step. This architecture is equivalent to a simple
RNN in which each hidden node has a single self-connected recurrent edge.

More and more modern RNN architectures were proposed since the late 1990s. Based on
the Hopfield networks and Restricted Boltzmann Machine, Hinton et al. (Hinton et al. 2006)
showed how a many-layered neural network, namely deep belief nets, could be pre-trained one
layer at a time. This led to one of the first effective deep learning algorithms. Because of
Hinton’s achievement, the term “deep learning” begins to gain popularity. Another typical
modern RNN architecture is the nonlinear autoregressive exogenous model (NARX)
(Siegelmann et al. 1997). In water resource field, typical applications of NARX include
monthly groundwater levels prediction (Chang et al. 2016), flood inundation nowcast
(Chang et al. 2014a, b), water quality modeling (Chang et al. 2015), groundwater arsenic
concentrations forecast (Chang et al. 2013) and water level prediction for pump stations
(Chang et al. 2014a, b).

One of the most successful RNN architecture is the Long Short-Term Memory (LSTM)
(Hochreiter and Schmidhuber 1997). This architecture replaced ordinary hidden layer node
with a memory cell. The memory cell could store, write, or read data, via gates that open and
close, just like data in a computer’s memory. Using LSTM, Ma et al. (2015) developed an
intelligent transportation system. This study shows that LSTM is able to capture nonlinear time
series dynamic in an effective manner, compare to memoryless models and traditional RNNG.
Recently, a few studies have explored the application of LSTM in the water resource related
fields. Remesan and Mathew (2014) introduced LSTM as a machine learning and artificial
intelligence based approach for hydrological time series modeling. Xingjian et al. (2015) built
a precipitation nowcasting model. Experiments show that LSTM network captures spatiotem-
poral correlations better and consistently outperforms other models for precipitation
nowcasting. Zaytar and Amrani (2016) used LSTM with previous 24 h’ values as input, to
forecast weather data in the next 24 and 72 h.

Consider the advantages and disadvantages of hydraulic models and machine learning
algorithms, a trend of nowadays research is combining the powerful side of hydraulic models
and machine learning algorithms. Use storm water management model (SWMM, Rossman
2010) and Jordan neural network, Darsono and Labadie (2007) studied the real-time regulation
of combined sewer overflows. Based on synthetic data generated from SWMM based on the
data from nearby gauging stations, Chiang et al. (2010) trained a NARX network and built a
relationship between rainfalls and water level patterns of an ungauged sewerage system. Yu
et al. (2013) studied sewer system in Tokyo use both hydraulic model and machine learning.
Hydraulic model is first used to simulate the sewer pipe. Then clustering analysis was applied
to simulated data for categorizing rainfalls and CSOs.

Summarize above literature reviews, its possible to conclude that hydraulic model could
supply critical information about which part of the sewer still have left over capacity, but it is
too slow to make the real-time response. On the contrast, although the machine learning
algorithms such as RNNs provide real-time forecasting, it cannot give us an insight of the
sewer system. Besides, to the best of our knowledge, there are rare applications of LSTM in
the water recourse related domain, as state of the art RNN architecture, the effectiveness of
LSTM need to be investigated.
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In the present study, we first using the hydraulic model to identify relatively dry pipes
(control target), and test the proposed in-line control strategy. Then use RNNs realize flow
prediction for the target pipe. The remainder of this paper is organized as follows: a general
description about study area, hydraulic model and three RNN algorithms, namely Elman,
NARX (nonlinear autoregressive network with exogenous inputs) and LSTM (Long Short-
Term Memory), is provided in the first section. Then simulation based on the hydraulic model
for different return periods and control scenarios were presented in section two. In the third
section, the prediction efficiency of the three RNN algorithms was compared. Conclusion and
future envision were discussed at the end of this paper.

2 Method and Data
2.1 Case Study Area

Based on the concept of sewer in-line storage control, the Drammen government initialized the
Regnbyge 3 M project. The ultimate goal of this project is integrate intelligent monitoring,
modeling and control solutions, manage sewer system and WWTP in a holistic way, thus
reducing overflow at the WWTP during extreme rainfall through efficiently utilizing the in-
line storage capacities of the sewer system.

Figure 1 is an overview of the case study area, Drammen, Norway (59.44 N, 10.12 E). This
city locates in the southeast of Norway. It is the largest city and the capital of the county of
Buskerud with more than 150,000 inhabitants. In Drammen, the traditional city center
distributed along the Drammen Fjord, important infrastructures, such as train station, shopping
center and stadium are located at the southern bank of the fjord. The Drammen sewer system is

0 0.75 i3 3 Kilometers
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0 OpenStreeiMap (and) contributors, CC-BY-SA

Fig. 1 Overview of Drammen city, Norway
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a gravity system. Most of the sewer system in the central area are combined sewer. The
southwest part of Drammen is the major residential areas, mostly use separate sewer.

The drainage area for the Drammen sewer system is around 15 Km?, the total length of the
sewer is approximately 500 km. The Solumstrand WWTP is the major WWTP in Drammen,
with the designed treatment capacity of 130,000 PE (population equivalents). Overflow is the
main problem today for Solumstrand WWTP. Physical expansion or construct separate sewer
for the current network will take a long time and a lot of money.

2.2 Monitoring of the Sewer System

The sewer system in Drammen follows a tree structure, in which a series of sub-catchments
converges into trunk conduits. At the end of the sewer system, all the trunk conduits link to one
final collector pipe, deliver the wastewater to the WWTP. The outlet pipes, which connect sub-
catchments to main collector sewer, and the collector sewer is the main large pipes in
Drammen sewer system. Figure 2 displayed large pipes of the Drammen sewer system marked
by dark yellow color (Table 1).

As the first step of the Regnbyge 3 M project, in order to collect data for further
analysis and design the control strategy, flow sensors and water level sensors (NIVUS
GmbH; Germany) were installed inside the main large pipes, and the locations of
these sensors were marked with a brown point in Fig. 2. The flow was calculated
based on water level, velocity and sharp of the pipes. The rain gauge was used to
record the rainfall data.

2.3 Hydraulic Model

In order to identify the spatially distributed free space, a full detailed hydraulic model for the
Drammen sewer system was developed (Fig. 3). This sewer hydraulic model was developed
using Rosie. Rosie is an ArcGIS additional application based on MOUSE DHI (DHI group
2014) for planning, sizing and modeling of water distribution and sewerage systems, devel-
oped by Rosim AS, Norway. The direct response from the rainfall is calculated by the time—
area (T-A) curve method (runoff model A). The runoff generated gradually from the previous
hydrological processes accumulated as interflow and base flow is calculated by Rainfall
Dependent Infiltration Module (RDII) model. The hydraulic dynamic pipe flow computation
is based on an implicit finite difference method of Saint Venant continuity and momentum
equations.

2.4 Model Calibration

In this paper, hydraulic model and RNNs performance were evaluated by the coeffi-
cient of determination (R?) and Nash-Sutcliffe Efficiency (NSE). NSE is a parameter
that determines the relative importance of residual variance (noise) compared to the
variance in the measured data (information). The NSE is calculated by the following
equation:

n obs_yrsim\)2
NSE:I[ZH(Y,- i) }

2;1:1 (Y;_)bs_ ymean ) 2
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0 1 2 4 Kilometers

Fig. 2 Large pipes and monitoring sites of the Drammen sewer system
Where:

Y% the i-th observed data.

Y3 the i-th simulated data.

Y™ mean value of observed data.
n number of observed data

NSE varies from -co to 1, NSE = 1 indicates a perfect correlation between simulated and observed
data, values between 0.0 and 1.0 is generally acceptable. In the present research, the criteria for
successful calibration and validation of the hydraulic model is both NSE and R? should over 0.5.
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Table 1 Name of monitoring sites -
Name of monitoring sites

1 Borresen skole

2 Vinjesgate

3 Klopptjernbekken
4 Lokkebergparken
5 Brakeroya

6 Tomineborgdalen
7 stromsg@ torg

8 Torgeir vraas plass
9 Flisebekken

10 Dr.Hansteensgt

11 Austad

12 Colletts gate

13 Vintergata

14 Gaasevadet

15 Kobbervikdalen gangsti
16 Konnerud

17 Skomakergata

2.5 Recurrent Neural Networks
2.5.1 Elman Neural Network

The Elman Neural Network (Elman 1990.) is an RNN with internal time-delay
feedback connections in the hidden layer. It is a three layer (input layer, hidden layer
and output layer) neural network. The input neurons are connected to the hidden
neurons, and hidden neurons link to the output layer. In the hidden layer, a time-delay

0 1 2 4 Kilometers
L 1 1 1 | 1 1 L J

Fig. 3 Hydraulic model for the Drammen sewer system
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unit is implemented, which stores the information of the previous set of hidden unit
activations, and feeds back into the network as an additional input to all hidden
neurons at the next time-step (Ishak et al. 2003). This enables the network inherent
memory.

Training Elman neural network can be especially challenging due to the difficulty
of learning long-range dependencies. Parameters from input neurons to hidden neu-
rons, from hidden neurons to output neurons and between hidden neurons called
weights. When training the Elman neural network, the ultimate goal is to calculate
the gradients of the error corresponding to weights. Gradients sum up at each time
step for one training example. To calculate these gradients we use the chain rule of
differentiation. The problems of vanishing and exploding gradients occur when back-
propagating errors across many time steps. Modern dynamic RNN architectures
combat vanishing and exploding gradients had been proposed in recent years
(Lipton et al. 2015; Gers 2001; Gers et al. 2000).

2.5.2 NARX

The NARX network is a kind of typical dynamic RNN. The N step ahead NARX can be
represented by the following equation:

output(t—1), output (t=2), ..., output(t + 1—q);

ourput(t +1) = f input(-—k), input (-—k—1), ..., input (i—k—p + 1)

Where input (t) and output(t) is the input and output value at the time step t respectively, the
parameters p and q are the time delay lag, p>1 and q>1, p<q. The process dead-time
parameter k (k=0) is a delay term (Menezes and Barreto 2008). f [] is the nonlinear function.
Inputs from output (t-1) to output (t+ 1-q) function as an autoregressive model, input (t-k) to
input (t-k-p + 1) plays the role of an exogenous variable.

There are two types of NARX training methods, the Series Parallel (SP) training method
and the Parallel (P) method. The SP method can be mathematically represented by the
following equation:

actual(t), actual(t—1), ..., actual(t + 1—q);
ouput(t +1) = f input(t*l(c)), input(t(*k*i)7 ...,input%t*k*p(i2 1)

In the SP method, regressor of the output in the input layer only use the actual value.
When performance multi-step ahead predictions, the actual(t), actual(t-1), ..., actual(t + 1-
q) values are the future value that cannot acquire at the current time step. If the calculated
outputs are feedback to the network’s input layer as output’s regressor, we can this mode as
P method:

act;.a\l(t), actu;lzt—l), e aclual(t.:— 1—q);

output(t + 1) =
putl V=7 input(t=k), input(t—k=1), ..., input(t—k—p + 1)

Where the symbol (A) is used to denote estimated values.
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2.5.3 LSTM

The Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber 1997) make the RNN
out of little modules that are designed to remember values for a long time. It is the most
successful RNN architectures for sequence learning. The LSTM consist of input layer,
recurrent hidden layer and output layer. Different from other RNNs, the LSTM embedded
with a memory cell using logistic and linear units with multiplicative interactions. Information
gets into, stays in the cell or read from the cell if the corresponding “write”, “keep” and “read”
gate is on. So that the LSTM is able to learn the time series with long time spans (Ma et al.
2015). With these memory cells, networks are also able to overcome vanishing and exploding
gradients problems encountered by earlier recurrent networks.

The principal of the memory cell in LSTM can be mathematically represented by the
following equations:

Input gate:
iy = 0g(Winx, + Uphyy + Ve, + b;)

Forget gate:

fi= Ug(Wf*x[ +Uspschiy +Vite + bf)
Output gate:

01 = 0g(Wosx; + Ughyy 4+ Vo'er1 + by)
Cell state:

¢ =frcm +ilto.(Wesx, + Uesh—y + b,)
Output vector:

ht = Otogh (Ct)

Where x, is the input vector. W, U, V and b are parameters for weights and bias.  represents
the scalar product of two vectors, o(.) is the logistics sigmoid function.

2.5.4 Model Implementation

In this paper, the EIman and NARX were implemented using the Neural Network Toolbox of
Matlab, R2016a. To modify the neural network training, the script generated by the Neural
Network Toolbox was exported and customized using command line function. The LSTM was
implemented using Keras. Keras is a high-level deep learning library supports recurrent networks.
It is written in Python and running on top of either TensorFlow or Theano. TensorFlow backend is
employed in this paper. TensorFlow is an open-source software for deep learning, released by
Google in 2015. In this study, the Keras LSTM code was adopted after several open source codes.
Interesting readers can find the major part of the code in Brownlee (2017) and Schmidt (2016).
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The development environment for LSTM was set up using Docker Toolbox. With Docker,
developers can download an image file that contains required packages and tools. The image file
used in this study was pulled from docker hub: https:/hub.docker.com/r/cannin/jupyter-keras-
tensorflow-tools/. The source repository for this docker hub can be found in: https://github.
com/windj007/docker-jupyter-keras-tools. After set up the development environment in Windows
system, the Keras LSTM code was further modified in Jupyter notebooks (formerly IPython).

3 Results and Discussion
3.1 Model Calibration

Figure 4 and Table 2 is the calibration results from four of the monitoring sites. The observed
data were retrieved from the regnbyge.no platform. The calibration results listed in Fig. 4
includes sites from north part, downtown and south part of Drammen, covers both dry weather
season and wet weather season. The simulated curve in Fig. 4 fitting measured value very well,
the NSE and R? in Table 2 also indicate a good calibration result. The calibrated model was
then used as the baseline in the following scenario analyses.

3.2 Scenario Simulation

In order to find spatially distributed free space of the sewer system, the performance of sewer system
was evaluated under rainfall events with different return periods. The rainfall scenarios were designed
according to standard Intensity-Duration-Frequency (IDF) curve. Five scenarios under nowadays
climate situation with a return period of 2, 5, 10, 20 and 50 years, and three scenarios consider the
climate change effect, with intensity 1.5 times heavier than 2, 20 and 50 years return periods, named
2-plus, 20-plus and 50-plus scenarios, were simulated. Duration of all the rainfall events is 12 h.

Austad Borresen skole
0.10 0.14
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0.10

)

008

0.06

Flow (m
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=\ 0.02

b Ny
0.00 0.00 ¥
30.04.2014 05.05.2014 10.05.2014 15.05.2014 03.002014  13.002014 23092014 03102014  13.102014 23102014
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—Simulated = Observed —Simulated = Observed
Kobbervikdalen-gangesti Torgeirs-vraaplass
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Fig. 4 Model calibration
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Table 2 Model calibration result.

Measurement point: NSE R?

Austad 0.54 0.91
Bearresen skole 0.68 0.71
Kobbervikdalen-gangsti 0.80 0.85
Torgeir Vraa Plass 0.51 0.67

The distribution characteristics of the maximum filling degree during rainfall events under the
different return periods were displayed in Fig. 5. From left up corner to right bottom corner of
Fig. 5 are 2, 5, 10, 20, 50, 2-plus, 20-plus and 50-plus scenarios. As we can see from Fig. 5,
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Pipe: Filling degree(%)
FillingDegree
—0-25%
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o om 15 3 Kiomoters
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e

Fig. 5 Simulated filling degree under different return periods
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increases in the rainfall return period corresponded to increases in the higher filling degree areas.
Under 2 year and 5 year return periods, the pipes that distributed along the Drammen fjord was
firstly influenced. With increased rainfall return period, under 10 year, 20 year and 50 year
scenarios, pipes in the city center of Drammen reached maximum capacity. With extreme rainfall
events (2-plus, 20-plus and 50-plus scenarios), we can observe that most parts of the Drammen
sewer system were inundated, but still some part of the sewer have the left-over capacity.

Figure 6 is the Digital Elevation Map (DEM) of Drammen. The scenario simulation
revealed the spatial variability of sewer system performance. It indicated that for some part
of the sewer system, especially the traditional city center of Drammen, due to its lower
elevation and combined sewer system, the flooding risk is very high even for lower return
period. Nevertheless, for the southern part of Drammen with higher elevation and relatively
new separate sewer system. Even under extreme rainfall events, it still has left over capacity.
The sewer in-line control measures could be implemented in these parts of the sewer system.

Based on the scenarios simulations, two large pipes, namely the Konnerud tunnel and the
Kobbervikdalen-gangsti tunnel, were selected as the control target. Figure 7 shows the location
of the two pipes.

3.3 In-line Storage Control

As a common strategy, regulate the left over capacities of the sewer usually achieved by install
control measures inside main pipes to the WWTP. The Solumstrand tunnel is the tunnel
leading wastewater from large parts of Drammen finally to the Solumstrand WWTP. Currently,
eight pumps and an overflow structure, which are located in the pipe immediately after the
tunnel, are controlling the flow to the Solumstrand WWTP (Martinez 2016). The pumps were

4 Kilometers

Fig. 6 DEM of Drammen
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Fig. 7 Locations of Konnerud and Kobbervikdalen-gangsti tunnel

programmed to pump wastewater at different start-stop flow rates, through closing or
opening the pumps, maximum flow to the WWTP while keeping the level below the
plant bypass.

Similar to the controllable devices function in the RTC module of MOUSE DHI (DHI group
2014), the Rosie software have a “regulator” function to define user specify functional relations
for control purpose. To test the effectiveness of the proposed in-line storage control, flow
regulators were implemented in the hydraulic model for the Konnerud tunnel use the “regulator”
function (Martinez 2016). The Konnerud tunnel has been confirmed have left over capacity from
the scenario analysis. The regulators use a Q (flow)-H (head) relation to define the control logic.
The purpose of control is, accumulate or release wastewater according to the free space of the
large pipe, maximum its capacity but avoid overflow, thus retarding wastewater flow to the
WWTP.

In order to compare the effects of without control, control only the Solumstrand tunnel
(named scenario 1 hereafter), and control both the Solumstrand tunnel and Konnerud tunnel
(named scenario 2 hereafter). Different control measures were simulated under current climate
scenario with 2, 20 and 50 years return periods, and three rainfall events represent climate
change scenario (2-plus, 20-plus and 50-plus scenarios).

Figure 8 shows the amount of overflow at the Solumstrand WWTP under different control
scenarios and rainfall events. It shows that for the 2 year return period scenario, control the
Solumstrand tunnel could reduce the overflow by up to 82%. However, with stronger rainfalls,
only a small reduction was observed for scenario 1. This suggests that the Solumstrand tunnel
alone cannot deal with heavier rainfalls. In scenario 2, we can see a dramatical reduction of
overflow for all the return periods except the 2-year scenario, it’s because the flow rate under
2-year return period simulation did not trigger the control action in Konnerud tunnel. For the
rest of return periods, especially for extreme heavy rainfalls, scenario 2 led to an apparent
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Fig. 8 Overflow at the Solumstrand WWTP under different control scenarios and return periods

reduction of overflow at the WWTP. Control rules also developed for Kobbervikdalen-gangsti
tunnel with a similar procedure (Table 3).

3.4 RNNs

In the above parts of this paper, through simulations using a full detailed hydraulic model, we
concluded two large pipes with left over capacity as potential control targets, which are
Konnerud tunnel and Kobbervikdalen-gangsti tunnel. Then we concluded that the current
implemented control strategy is insufficient to deal with extreme rainfall, but when further
control the tunnel with left over capacity, we found that the overflow at the WWTP efficiently
reduced. It testified the efficiency of the proposed in-line storage control strategy.

Unlike standard rainfall with designed return periods, the flow in the sewer in reality are
varied in time following a stochastic dynamic pattern. To achieve successful in-line storage
control, the control structures should accumulate or release wastewater timely. Such kind of
timely control dependent on not only the present flow but also future flow. For example, if the
sewer already full but the flow is coming, the control structures should discharge wastewater to
downstream to prevent overflow. If the sewer still has left over capacity, operators can

Table 3 Overflow at the Solumstrand WWTP under different control scenarios and return periods

Without control Scenario 1 Scenario 2
Current climate 2 year 3586 642 642
20 year 8713 5441 2285
50 year 10,544 7793 2566
Climate change scenario 2-plus 11,751 8687 2720
20-plus 17,896 17,132 9938
50-plus 20,911 19,736 9888
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confidently let the control structure accumulate wastewater. Detect suddenly change of flow is
also important to keep safety operation. It is essential to construct a model that can forecast the
flow. The forecasting model should be able to anticipate the future flow, enhance decision-
making and give enough response time for control structures’ operation.

In this context, the hydraulic models that require detailed knowledge of the drainage area, a
large number of parameters and time consuming manually simulation, are inadequate for
application in real time. In order to design an algorithm for real-time control, RNN were
employed in this section. In this part of the paper, the performance of three types of RNN,
namely Elman, NARX and LSTM, were compared. The objective of proposed RNNs is to
predict the flow of a sewage stream 30 min ahead based on data measurements over the past
30 min.

In this study, the flow data and rainfall data for the RNNs were retrieved from the
regnbyge.no platform. For the flow data of Konnerud tunnel and Kobbervikdalen-gangsti
tunnel, the period with strongest flow fluctuation was used as training data for the neural
networks. The most effective rain gauge was selected using XCORR (cross-
correlation) function in Matlab (Mounce et al. 2014). The recorded flow and rainfall
data have a 5 min interval. For the flow data from the Konnerud tunnel, there are a
number of 9618 records with 98 missing or invalid data. For the Kobbervikdalen-
gangsti tunnel, the data size and missing or invalid data are 9792 and 112 respec-
tively. Missing and erroneous records were remedied using temporally adjacent re-
cords. Table 4 shows general statistics of the training datasets. Data were normalized
to the range of 0-to-1 before training.

The Elman and NARX neural networks were implemented in the Neural Network Toolbox
of Matlab. The Neural Network Toolbox divide the datasets into three subsets, training set,
validation set and test set. For the Elman and NARX, 70%, 15% and 15% datasets were used
as training set, validation set and testing set respectively. The LSTM was implemented in
Keras, Keras has two modes for the datasets (Keras Documentation 2015): training and testing.
20% of the data was selected as the test and 80% to train. The difference between training and
testing is regularization mechanisms, which is used as penalize to prevent overfitting, are
turned off during the testing.

The training of RNNs was implemented through trial-and-error procedures. Different RNN
architectures, i.e. number of hidden layers and hidden neurons in each layer, were tested. The
suitable architecture for Elman and NARX was selected according to the performance of the
validation set. Due to Keras only have training and testing mode, the optimal architecture for
LSTM was chosen based on testing mode performance. The optimal structure of Elman has
one hidden layer with ten hidden neurons. The selected NARX have one hidden layer with five
neurons. The architecture of LSTM used to have two hidden layers with four LSTM cells in
each layer. For regularization in an effort to limit overfitting and improve the model’s

Table 4 General statistics of the training datasets

Tunnel name Time span Number  Max value  Mean value  Standard
of data (m%/s) (m*/s) deviation (m%/s)
Konnerud 28 March 2014-30 9618 0.36 0.096 0.086
April 2014
Kobbervikdalen-gangsti 16 October 2014-18 9792 0.22 0.064 0.032
November 2014
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generalization. Large weights were penalized using L2 weight penalty method. The L2 weight
penalty method adding an extra squared term to the cost function to constrain the weights. It
could keep the weights small unless they have big error derivatives. Use L2 weight penalty
method on the recurrent weights can help with exploding gradients.

There are many variations of training algorithm available in Matlab. These algorithms
adjust the weights according to the derivation of the objective function, to reduce error. This
procedure also called back propagation. Back propagation propagates the error between
predicted and observed value backward to the hidden layer, then to the weights. In Matlab,
the default algorithm for training is the Levenberg—Marquardt algorithm (‘trainlm’), it is the
most commonly used training algorithm. In this study, different training algorithms were
tested. The default Levenberg—Marquardt algorithm was selected for the training of Elman.
The ‘traincgb’ as the best suited training algorithm was selected for NARX model.

In this work, the Stochastic Gradient Descent (SGD) with the best tradeoff between model
performance and training speed was selected as optimization algorithm for the LSTM network.
The SGD updates weights use the gradient on the first half dataset, then get the gradient for the
new weights on the second half.

Parameters such as learning rate and momentum were tuned to further improve network
performance. Learning rate controls how much to update the weight. The momentum, as the
physical meaning of momentum, controls how much to let the previous update influence the
current weight update. In Matlab and Keras, these fine tunings were done by “net.trainParam”
and “keras.optimizers” function respectively.

Summarized results of the trained RNNs were presented in Table 5. For both Konnerud and
Kobbervikdalen-gangsti tunnel, its possible to see that the three models perform comparatively
well in the training stages. While in the testing stages, LSTM NN outperforms other models in
terms of NSE. On the other hand, NARX neural network performs the second best in terms of
NSE, and have the highest R? value for the Konnerud datasets. As modern dynamic RNNS,
both NARX and LSTM got performance far beyond traditional RNN (Elman).

To illustrate the performance of different neural networks in a clearer way, for the Konnerud
and the Kobbervikdalen-gangsti datasets, hydrographs of the observed and predicted flow
corresponding to a complete rainfall event in the training stage is displayed in Fig. 9. To keep
the drawing style in a uniform way, all the visualization was done in Matlab.

As we can see from Fig. 9. Elman has a tendency of overestimating low flow and
underestimating peak flow. The memory of Elman rely on hidden neurons with predetermined
time lags, it suffers from several issues due to the insufficient learning capability of past events,
and thus may not be a suitable model for flow prediction. NARX outperform Elman since

Table 5 RNN results

Model stage Model type Konnerud Kobbervikdalen-gangsti
R’ NSE R? NSE
Training Elman 0.88 0.81 091 0.84
NARX 0.92 0.89 0.90 0.88
LSTM 0.94 0.91 0.95 0.87
Testing Elman 0.67 0.54 0.71 0.60
NARX 0.81 0.63 0.76 0.68
LSTM 0.77 0.66 0.79 0.72
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Fig. 9 RNN hydrograph

NARX can incorporate both its previous inputs and exogenous outputs. With the feedbacks of
imperfect outputs, the NARX network can effectively make accuracy and reliability forecasts,
while comparing to LSTM, the NARX seem have a time-lag phenomenon for the peak flow
event. Enhance by the memory cells in the hidden layer. The LSTM can much effectively
discover the long-term dependencies. As we can see in the hydrography, LSTM can better
capture flow dynamic change of the flow, and mitigate the time-lag problem.

4 Conclusion

Combine the powerful side of both hydraulic model and RNN, an optimal in-line storage
control strategy was designed for the city of Drammen, Norway. Several conclusions and
perspectives of this study were summarized.

4.1 Hydraulic Model

In order to identify which part of the sewer system have left over capacity, and test the
efficiency of proposed in-line storage control strategy, a full detailed hydraulic model was

@ Springer



2096 D. Zhang et al.

developed. The hydraulic model could give a clear insight into the sewer system. Through
simulation based on rainfalls with various return periods, we found that the response behavior
of sewer system is different with respect to location. Two large pipes from the sewer system,
namely the Konnerud tunnel and Kobbervikdalen-gangsti tunnel, have higher free space even
under extreme rainfall events. Subsequently, overflows at the WWTP under different control
scenarios were compared. Simulated results showed that the current implemented control
measures is insufficient to deal with overflow, when additionally control large pipes with in-
line storage capacity, the overflow reduced dramatically. It testified the effectiveness of the
proposed in-line storage control solution.

4.2 Recurrent Neural Network

In control system, the data collected by the sensors need to be analyzed to understand complex
processes. For the present study, it is essential to establish a model that could forecast future
flow, thus enabling better decision making. However, the computationally expensive hydraulic
model is inadequate for the real-time forecast purpose. The recurrent neural networks were
employed to undertake the real-time forecast task. The performance of three types of neural
networks (Elman, NARX and LSTM) were compared. As state of the art technology, the LSTM
got the best performance. Another dynamic neural network, NARX, also showed satisfying
results. Moreover, the black box features of RNN makes it ideal for real-time forecast purpose.

4.3 Perspective

With deep learning gaining more and more attention in recent years, advanced artificial
intelligence techniques such as the LSTM have shown their power. Nevertheless, the com-
plexity of LSTM limited its application. Currently, most of the deep learning libraries are not
Windows-friendly. The implementation and training of LSTM also require advanced mathe-
matical knowledge and strong programming skill. On the contrast, with an easy to use Matlab
toolbox, the NARX seems more suitable for practical engineering. However, we should notice
that deep learning techniques such as LSTM are nowadays mainstream of artificial intelli-
gence. Studies about the improvement of LSTM, e.g. the Gated Recurrent Unit (GRU) (Cho
et al. 2014), will accelerate its spreading. We also expect user-friendly software or toolbox,
which could easier programming work. Actually, in studies about time series prediction for
traffic control, we can observe an inflection point that popular technologies are migrating from
traditional RNNs to LSTM. Studies about adapt deep learning into water resource related fields
is an interesting research direction in the future.
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