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Abstract Accurate rainfall prediction is a challenging task. It is especially challenging in
Australia where the climate is highly variable. Australia’s climatic zones range from high
rainfall tropical regions in the north to the driest desert region in the interior. The perfor-
mance of prediction models may vary depending on climatic conditions. It is, therefore,
important to assess and compare the performance of these models in different climatic
zones. This paper examines the performance of data driven models such as the support vec-
tor machines for regression, the multiple linear regression, the k-nearest neighbors and the
artificial neural networks for monthly rainfall prediction in Australia depending on climatic
conditions. Rainfall data with five meteorological variables over the period of 1970–2014
from 24 geographically diverse weather stations are used for this purpose. The prediction
performance of each model was evaluated by comparing observed and predicted rainfall
using various measures for prediction accuracy.

Keywords Rainfall prediction · Prediction models · Regression analysis · Prediction
performance

1 Introduction

Rainfall is the most important hydro-climate variable because of its significance for sustain-
able water management (Chowdhury and Beecham 2013). The accurate prediction of water
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availability is immensely beneficial for making management decisions and can assist with
the sustainable operation of water resource systems.

Rainfall prediction is a challenging task because of the dynamic nature of climate phe-
nomena and random fluctuations involved in the physical process. Such a prediction is
particularly challenging in Australia where in a long-term analysis the rate of change in the
frequency and intensity of rainfall extremes can often be greater than the rate of change for
average rainfall (Garnaut 2008).

Rainfall prediction models can be classified into two categories: physical and data driven
models. Physical models use the physical laws to model the relevant processes that con-
tribute to rainfall process. Data driven models use historical data to make predictions. The
most frequently applied models are Multiple Linear Regression (MLR) (Chattopadhyay
et al. 2010; Mekanik et al. 2013), Artificial Neural Networks (ANNs) (Abbot and Marohasy
2012, 2014; Chattopadhyay et al. 2010; Mekanik et al. 2013), and k-Nearest-Neighbours
(k-NN). Studies have shown that data driven models, in general, give better results than the
physical models (Abbot and Marohasy 2012, 2014).

Rainfall predictions are made for some time periods which include weekly, monthly and
seasonal predictions. In rainfall prediction, the month is used to define the start, duration and
end of the rainy season. Moreover, monthly rainfall data provide more accurate an intra-year
rainfall distribution than seasonal rainfall data (Omotosho et al. 2000). Such information
may help to significantly improve decisions with regard to irrigation needs and their tim-
ings and also decisions on water conservation strategies for dams and on operation of water
infrastructure (Omotosho et al. 2000; Sharma et al. 2013). Accurate prediction of stream-
flow a month ahead is essential information to help water resource managers for efficient
planning (Wang et al. 2011).

Australia’s climate is highly variable having high rainfall tropical regions in the north and
the driest desert region in the interior. The performance of prediction models alter depending
on climatic zones. Therefore, comparative assessment of models depending on meteorolog-
ical variables and climatic conditions is important. Such a comparison may help a decision
maker to choose appropriate models depending on input variables and climatic zones. There
are several papers on the comparison of rainfall prediction models (see, for example, Abbot
and Marohasy 2012; Aksoy and Dahamsheh 2009; Mekanik et al. 2013). To the best of our
knowledge the comparison of models depending on meteorological variables and climatic
zones has not been studied.

The aim of this paper is a comparative assessment of the performance of various data-
driven prediction models depending on meteorological variables and climatic conditions.
These models include linear SVMReg, SVMReg with RBF kernel, MLR, k-NN and ANNs
with one hidden and without hidden layer. Rainfall data with five meteorological variables
(maximum and minimum temperatures, evaporation, vapour pressure and solar radiation)
over the period of 1970 – 2014 from 24 geographically diverse weather stations across Aus-
tralia are used for evaluation of models. Prediction performance of models was evaluated by
comparing observed and predicted rainfall using performance measures Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE) and Coefficient of Efficiency (CE).

There are several aspects that distinguish this paper from other papers on the comparison
of rainfall prediction models. First, in this paper we consider most well-known prediction
models whereas other papers consider only very few of them. Second, we use most impor-
tant meteorological variables as input variables which have not been considered together
as input variables to compare rainfall prediction models. Third, the performance of predic-
tion models is compared using data from weather stations distributed over all Australia and
located in different climatic zones.
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2 Models and Methods

2.1 Support Vector Machines for Regression

Consider the training data X = {(x1, y1), (x
2, y2), . . . , (x

k, yk)} ⊂ Rn × R, where xi is
an input vector and yi ∈ R is a corresponding output, i = 1, . . . , k, k is the number of
observations in the training set. Given an ε > 0, the aim of SVMReg is to find a function
f (x) that has at most ε deviation from the targets yi for all the training data. In the linear
SVMReg, the regression function f is written as: f (x) = wT x + b, where w ∈ Rn is
the weight vector, b ∈ R and T stands for transpose of a vector. w and b are estimated
by solving the following minimization problem (Collobert and Bengio 2001; Müller et al.
1997; Smola and Schölkopf 2004):

⎧
⎪⎪⎨

⎪⎪⎩

minimize R = 1
2wT w + C

∑k
i=1(ξi + ξ∗

i ),

subject to yi − [wT xi + b] ≤ ε + ξi,

[wT xi + b] − yi ≤ ε + ξ∗
i ,

ξi , ξ
∗
i ≥ 0.

(1)

Here C > 0 is a penalty parameter which determines the trade-off between the flatness of
f and the amount up to which deviations larger than ε are tolerated. ξi and ξ∗

i are slack
variables introduced to deal with infeasibility. The linear SVMReg model is extended to the
non-linear SVMReg model using kernel functions, for example, the radial basis function
(RBF) (see Collobert and Bengio 2001; Müller et al. 1997; Smola and Schölkopf 2004, for
details). There have been several applications of the SVMReg model for rainfall prediction,
see, for example, Feng et al. (2015), Kisi and Cimen (2012), Lin et al. (2009), Mercer et al.
(2013), and Nayak and Ghosh (2013).

2.2 Multiple Linear Regression

MLR is an extension of a simple linear regression method, where two or more independent
variables are used to predict one dependent variable through the least squares method. A
general form of the MLR model can be presented as: y = β0 + β1x1 + . . . + βpxp + ε,

where y is the dependent variable, x1, . . . , xp are independent variables, β0 is y-intercept,
β1, . . . , βp are regression coefficients of the corresponding independent variables and ε is
the noise in the data. MLR models have been used for rainfall prediction in Aksoy and
Dahamsheh (2009), Ramirez et al. (2005), and Shukla et al. (2011).

2.3 k-Nearest Neighbours Method

The k-NN method is a non parametric statistical pattern recognition procedure, extended to
time series prediction in Yakowitz and Karlsson (1987) (see, also Al-Qahtani and Crone 2013).

Next, we briefly describe k-NN for univariate time series. Consider a finite time series
u(t), t = 1, 2, . . . , m without input variables. In the first step, series is transformed into
equal length d-dimensional feature vectors: ud(t) = (u(t), u(t − 1), . . . , u(t − (d − 1))).
Here d < m is a predetermined integer called embedding dimension and t ≥ d. In next step
either a set of m − d overlapping vectors with t = (d, d + 1, . . . , m − d) or a set of m/d

non-overlapping vectors with t = (d, 2d, . . . , m − d) is defined. These vectors are called
d-histories.

In the third step either the distance or correlation between the last observed vector
ud(m) = (u(m), u(m − 1), . . . , u(m − (d − 1))) and all d-histories is computed. Here any
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distance function can be used, however in k-NN predominantly the Euclidean distance is
used. In the fourth step the calculated distances are ranked and k vectors having lowest
distance from the target feature vector are selected. Then these k feature vectors are used
for a prediction, often using a simple arithmetic mean with equal weights. In case of cor-
relations, k vectors having highest correlation with the feature vector are used to form a
prediction. The k-NN method for univariate time series is extended to multivariate time
series by extending construction of vectors for each input variable.

2.4 Artificial Neural Networks

ANNs consist of simple neurons, and links that process information in order to find relation-
ship between inputs and outputs. ANNs take input, apply the activation function to combine
the input into a single value and to produce an output. The activation function generally
consists of the combination and the transfer functions. The combination function assigns
weights to inputs and combines the weighted inputs in a single value. The transfer func-
tion produces an output. The sigmoid, hyperbolic tangent and step functions are widely
used as the transfer functions. There exist many algorithms to train neural networks, but the
back propagation algorithm and its variations are the most computationally efficient (see,
for example, Haykin (2001) for more details). The application of ANNs for rainfall predic-
tion can be found in Abbot and Marohasy (2012), Abbot and Marohasy (2014), Aksoy and
Dahamsheh (2009), Awan and Bae (2014), Karamouz et al. (2008), Lorrai and Sechi (1995),
Mekanik et al. (2013), Ramirez et al. (2005), and Shukla et al. (2011).

3 Data

Historical monthly rainfall data was taken from the Scientific Information for Land Own-
ers (SILO) available at www.longpaddock.qld.gov.au/silo/. SILO is an enhanced climate
database hosted by the Queensland Government Department of Science, Information
Technology and Innovation. The data is reliable and quality checked.

There are six major climatic zones in Australia: temperate, grassland, desert, tropical,
subtropical and equatorial (Australian weather and seasons 2013). We selected two weather
stations from the tropical zone, two from subtropical, five from desert, seven from temperate
and eight from grassland zones. The number of stations depends on areas of zones. The
equatorial zone is not considered as its area is small.

We used data of six meteorological variables from 24 weather stations for the period Jan-
uary 1970 - December 2014 to develop prediction models. Meteorological variables used
in this study are: Monthly rainfall, Maximum temperature (TMax), Minimum temperature
(TMin), Evaporation (Evap), Vapour pressure (VP), and Solar radiation (Rad). These vari-
ables were selected because they are interdependent and influence precipitation. There are
540 records for each weather station. The geographic details as well as climatic zones of
these stations and descriptive statistics of the monthly rainfall are given in Table 1 and a
location map is given in Fig. 1. The average monthly rainfall varies across these sites from
15.07 mm to 125.87 mm.

Correlations between rainfall and input variables for each weather station are given in
Table 2. In this table for each station we also present the number of high (H) (between −1
and −0.5 and between 0.5 and 1), medium (M) (between −0.5 and −0.3 and between 0.3
and 0.5), low (L)(between −0.3 and −0.1 and between 0.1 and 0.3) correlations and the
number of no correlations (N) (between −0.1 and 0.1). In all locations there is at least low
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Table 1 Geographic details, climatic zones, elevation (m.), minimum, maximum and average of monthly
rainfall values for weather stations

Station name Classification Latitude Longitude Elev. Min. Max. Mean

Victoria

Annuello Grassland −34.85 142.78 52 0.00 261.40 27.20

Dookie Temperate −36.37 145.70 185 0.00 227.60 47.23

Orbost Temperate −37.69 148.46 41 1.90 425.00 72.06

Cape Otway Temperate −38.86 143.51 82 1.60 218.20 77.80

New South Wales

Warren Grassland −31.50 147.69 192 0.00 258.80 41.49

Yamba Subtropical −29.43 153.36 27 0.10 629.40 125.87

Moss Vale Temperate −34.54 150.38 675 0.40 527.00 75.60

Wilcannia Desert −31.56 143.37 75 0.00 252.30 24.31

Queensland

Palmerville Tropical −16.00 144.08 203 0.00 813.20 89.69

Richmond Grassland −20.73 143.14 211 0.00 664.20 42.46

Boulia Desert −22.91 139.90 161 0.00 464.90 22.74

Fairymead Subtropical −24.79 152.36 5 0.00 1143.40 88.22

Northern Territories

Katherine Tropical −14.46 132.26 106 0.00 937.70 91.43

Newery Grassland −16.05 129.26 101 0.00 810.00 69.17

Henbury Desert −24.55 133.25 432 0.00 376.10 22.68

Alexandria Grassland −19.06 136.71 274 0.00 565.40 37.76

South Australia

Marree Desert −29.65 138.06 50 0.00 203.30 15.07

Blinman Grassland −31.09 138.68 615 0.00 294.20 28.86

Koppio Temperate −34.41 135.82 173 0.00 204.00 42.92

Port Elliot Temperate −35.53 138.69 10 0.00 152.60 41.14

Western Australia

Ningaloo Grassland −22.70 113.67 10 0.00 293.60 20.85

Wiluna Desert −26.59 120.23 521 0.00 271.60 24.29

Dowerin Grassland −31.19 117.03 273 0.00 171.20 28.52

Peppermint Grove Temperate −34.44 119.36 60 0.00 308.60 58.75

correlation between rainfall and some input variables. In most locations, more specifically,
in 20 out of 24 there is at least one medium correlation. Finally, in 14 out 24 locations there
are high correlations between rainfall and some input variables. These observations justify
the use of meteorological variables for rainfall prediction.

4 Implementation and Evaluation of Models

Statistical package R-Version 3.2.2 is used to implement all models. R is an environment for
statistical computing and graphics including time series analysis, clustering, classification,
modeling and statistical tests (R Core Team 2013).
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Fig. 1 Location map

We use the R package nnet for ANNs (Venables and Ripley 2002), kknn for k-NN
(Schliep and Hechenbichler 2016) and e1071 for SVMReg (Meyer et al. 2015). In imple-
menting k-NN, the most important step is the selection of the number of neighbours.
Different values were evaluated ranging from 1 to 12 and the model with the minimum
RMSE value was selected. We implement ANNs both without hidden layer and with one
hidden layer, linear SVMReg and SVMReg with the RBF kernel function.

Prediction models were developed using all combinations of input variables without rep-
etition. There are total of fifteen such combinations. Then the best combination for each
model is selected according to prediction performance measures described in next subsec-
tion. All models were developed for each weather station using training data sets consisting
of 360 records and evaluated by using test data sets consisting of 180 records.

Prediction performance of models was evaluated by comparing observed and predicted
rainfall using three measures of prediction accuracy calculated from the test sets: the Root
Mean Squared Error (RMSE), the Mean Absolute Error (MAE) and the Coefficient of
Efficiency (CE). It is well-known that MAE is less sensitive to outliers than RMSE. The
small values of RMSE and MAE indicate small deviations of the predictions from actual
observations.

CE, proposed in Nash and Sutcliffe (1970), is a normalized statistic that determine the
relative magnitude of the residual variance and data variance. CE ranges from −∞ to 1. An
efficiency CE = 1 means a perfect prediction. An efficiency of 0 indicates that the model
predictions are as accurate as the mean of the observed data and an efficiency −∞ < CE <

0 occurs when the observed mean is a better predictor than the model.
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Table 2 Correlations between monthly rainfall and input meteorological variables

Station name TMax TMin Evap. VP Rad. H M L N

Temperate zone

Dookie −0.23 −0.04 −0.26 0.12 −0.25 0 0 4 1

Orbost −0.17 0.01 −0.11 0.02 −0.12 0 0 2 3

Cape Otway −0.17 0.01 −0.11 0.02 −0.12 0 0 3 2

Moss Vale −0.02 0.16 −0.09 0.22 −0.15 0 0 3 2

Koppio −0.67 −0.54 −0.63 −0.40 −0.63 4 1 0 0

Port Elliot −0.64 −0.54 −0.61 −0.42 −0.58 4 1 0 0

Peppermint Grove −0.62 −0.48 −0.60 −0.39 −0.57 3 2 0 0

Grassland zone

Annuello −0.09 0.07 −0.12 0.32 −0.11 0 1 2 2

Warren 0.04 0.22 −0.03 0.45 −0.03 0 1 1 3

Richmond 0.20 0.47 −0.05 0.66 −0.12 1 1 2 1

Newry 0.20 0.56 −0.17 0.72 −0.38 2 1 2 0

Alexandria 0.20 0.45 −0.08 0.67 −0.22 1 1 2 1

Blinman −0.15 −0.02 −0.18 0.38 −0.19 0 1 3 1

Ningaloo −0.23 0.00 −0.35 0.22 −0.43 0 2 2 1

Dowerin −0.52 −0.37 −0.51 −0.10 −0.55 3 1 1 0

Desert zone

Wilcannia 0.00 0.16 −0.05 0.52 −0.05 1 0 1 3

Boulia 0.18 0.33 0.03 0.61 −0.06 1 1 1 2

Henbury 0.09 0.25 0.01 0.59 −0.06 1 0 1 3

Marree 0.07 0.21 0.03 0.49 0.00 0 1 1 3

Wiluna 0.08 0.23 −0.01 0.51 −0.12 1 0 2 2

Tropical and Subtropical zones

Yamba 0.17 0.29 −0.14 0.35 −0.21 0 1 4 0

Fairymead 0.34 0.44 0.14 0.50 0.05 1 2 1 1

Palmerville 0.05 0.63 −0.26 0.75 −0.27 2 0 2 1

Katherine 0.13 0.55 −0.39 0.70 −0.57 3 1 1 0

5 Results and Discussion

All models are trained using data from Jan 1970 to Dec 1999 and tested using data from
Jan 2000 to Dec 2014 with each combination of input variables in all 24 locations. Negative
predicted values were adjusted to zero rainfall before the calculation of performance mea-
sures. The best combination of input variables for each model was determined using test
data and RMSE and MAE as primary performance measures.

Tables 3 and 4 summarize the prediction performance of models with best combinations
of input variables. In tables best results among all models are highlighted in bold.

Results for the temperate zone are presented in Table 3 and illustrated in Fig. 2. These
results show that SVMReg(RBF) and ANN(1) models outperform other models. Accord-
ing to all performance measures SVMReg(RBF) provides best predictions at four out of
seven stations and all of them are coastal stations. ANN(1) gives best results at Koppio and
Dookie. At Moss Vale, these two models demonstrate the similar performance.
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Table 3 Prediction performance of models in the temperate and grassland zones

Stations Measures SVMReg SVMReg ANN ANN MLR K−NN

(linear) (RBF) (0) (1)

Temperate zone

Moss Vale RMSE 46.48 45.68 46.56 44.69 46.51 47.48

MAE 31.03 29.92 32.82 31.52 34.72 33.47

CE 0.32 0.34 0.32 0.37 0.32 0.29

Koppio RMSE 23.01 22.89 22.75 22.24 22.75 22.39

MAE 17.08 16.93 17.37 16.61 17.37 17.05

CE 0.51 0.51 0.52 0.54 0.52 0.54

Port RMSE 19.82 18.71 19.60 19.62 19.60 19.08

Elliot MAE 14.99 14.25 14.96 15.01 14.96 14.45

CE 0.51 0.56 0.52 0.52 0.52 0.54

Dookie RMSE 26.57 26.48 26.30 25.34 25.91 28.32

MAE 18.37 18.13 18.64 17.36 18.08 19.63

CE 0.35 0.35 0.36 0.41 0.38 0.26

Orbost RMSE 37.57 36.71 36.70 41.54 36.68 37.53

MAE 26.97 26.83 28.05 32.59 28.03 29.56

CE 0.30 0.33 0.33 0.15 0.33 0.30

Cape RMSE 33.58 31.27 32.10 33.32 33.41 32.84

Otway MAE 25.33 23.81 24.80 25.72 25.59 24.95

CE 0.35 0.44 0.41 0.36 0.36 0.38

Peppermint RMSE 35.80 35.22 35.55 36.62 36.41 37.07

Grove MAE 23.52 22.78 24.25 25.62 25.20 24.19

CE 0.38 0.40 0.39 0.35 0.36 0.34

Grassland zone

Warren RMSE 28.57 25.13 25.13 24.88 27.59 28.13

MAE 19.77 18.05 18.58 18.56 19.85 21.19

CE 0.50 0.61 0.61 0.62 0.53 0.51

Newry RMSE 84.98 68.68 75.09 69.18 75.10 67.75

MAE 43.20 36.84 40.39 36.10 40.31 37.17

CE 0.50 0.68 0.61 0.67 0.61 0.68

Alexandria RMSE 55.62 43.09 40.97 40.53 46.38 44.40

MAE 24.52 19.82 20.84 20.28 23.21 22.72

CE 0.45 0.67 0.70 0.71 0.61 0.65

Richmond RMSE 41.88 34.94 35.81 34.50 39.21 35.67

MAE 25.30 21.47 25.66 24.91 26.12 22.27

CE 0.56 0.69 0.68 0.70 0.61 0.68

Blinman RMSE 21.26 21.59 21.08 23.90 21.08 23.73

MAE 14.52 14.73 15.02 17.56 15.02 17.56

CE 0.37 0.35 0.38 0.20 0.38 0.21

Annuello RMSE 24.16 24.05 23.27 23.10 23.46 23.84

MAE 13.94 13.93 13.46 13.32 13.72 14.87

CE 0.19 0.20 0.25 0.26 0.23 0.21
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Table 3 (continued)

Stations Measures SVMReg SVMReg ANN ANN MLR K−NN

(linear) (RBF) (0) (1)

Ningaloo RMSE 32.11 27.43 25.70 34.55 29.02 30.29

MAE 14.09 12.79 13.53 18.67 14.54 15.19

CE 0.32 0.51 0.57 0.22 0.45 0.40

Dowerin RMSE 21.23 20.66 20.02 20.67 20.07 21.24

MAE 13.18 12.87 12.91 13.40 12.88 14.13

CE 0.33 0.37 0.40 0.37 0.40 0.3

Table 4 Prediction performance of models for monthly rainfall prediction in desert, tropical and subtropical
zones

Stations Measures SVMReg SVMReg ANN ANN MLR KNN

(linear) (RBF) (0) (1)

Desert zone

Wilcannia RMSE 23.43 22.32 21.47 24.73 21.29 22.96

MAE 13.02 12.89 12.77 16.80 12.31 13.99

CE 0.43 0.48 0.52 0.36 0.53 0.45

Henbury RMSE 32.80 27.64 24.95 27.92 30.39 29.80

MAE 16.77 16.26 17.48 18.65 18.21 17.67

CE 0.35 0.54 0.62 0.53 0.44 0.46

Boulia RMSE 29.27 23.76 24.34 24.59 28.78 26.20

MAE 16.86 14.46 15.85 15.99 17.11 16.50

CE 0.42 0.62 0.60 0.59 0.44 0.54

Marree RMSE 13.26 13.84 15.23 17.14 14.98 15.12

MAE 8.73 8.63 11.09 10.97 10.86 10.77

CE 0.44 0.39 0.26 0.06 0.28 0.27

Wiluna RMSE 28.02 29.34 27.43 27.69 28.33 27.61

MAE 20.53 17.37 17.10 17.36 17.88 17.64

CE 0.26 0.19 0.29 0.28 0.25 0.29

Tropical and subtropical zones

Katherine RMSE 77.19 60.15 62.51 64.85 68.26 60.51

(Tropical) MAE 44.88 34.26 38.15 38.28 42.32 36.09

CE 0.67 0.80 0.78 0.77 0.74 0.80

Palmerville RMSE 90.77 71.67 74.43 72.34 83.00 69.80

(Tropical) MAE 54.15 41.03 43.38 42.64 51.02 40.91

CE 0.51 0.69 0.67 0.69 0.59 0.71

Yamba RMSE 77.48 76.48 76.14 75.11 76.06 78.15

(Subtropical) MAE 54.57 54.65 56.20 55.25 56.64 60.53

CE 0.34 0.36 0.37 0.38 0.37 0.33

Fairymead RMSE 105.46 99.81 98.59 98.00 101.59 91.28

(Subtropical) MAE 48.85 47.64 45.26 51.61 49.71 47.04

CE 0.19 0.27 0.29 0.30 0.25 0.39
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Fig. 2 Graphical display of the performance of models in the temperate zone

The best predictions with SVMReg(RBF) for Port Elliot and Cape Otway had inputs
TMax, TMin, Evap and Rad; for Peppermint Grove TMax, TMin and VP; for Moss Vale
TMax, TMin, Evap and VP; while for Orbost the best combination was the full set of five
variables. The most accurate predictions with ANN(1) model for Koppio had TMax and
TMin as inputs; for Dookie Rad was the only input variable; while for Moss Vale the best
combination was the full set of five variables.

Results presented in Fig. 2 show that according to RMSE and MAE all models provide
best predictions at Port Elliot and worst predictions at Moss Vale. CE indicates that all
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Model RMSE MAE CE

SVM(Linear)

SVM(RBF)

ANN(0)

ANN(1)

MLR

K-NN

0

20

40

60

80

100

0

15

30

45

60

0.0

0.2

0.4

0.6

0.8

0

20

40

60

80

100

0

15

30

45

60

0.0

0.2

0.4

0.6

0.8

0

20

40

60

80

100

0

15

30

45

60

0.0

0.2

0.4

0.6

0.8

0

20

40

60

80

100

0

15

30

45

60

0.0

0.2

0.4

0.6

0.8

0

20

40

60

80

100

0

15

30

45

60

0.0

0.2

0.4

0.6

0.8

0
20
40
60
80

100

0

10

20

30

40

0.0

0.2

0.4

0.6

0.8

Fig. 3 Graphical display of the performance of models in grassland zone

models performed well at Port Elliot and Koppio, while worse at Orbost and Moss Vale.
Models failed to predict extreme rainfall values at all locations.

Table 3 presents monthly rainfall prediction results and Fig. 3 illustrates the performance
of models in the grassland zone. For this zone we also include a visual comparison of
observed and predicted rainfall over the test period which is given in Fig. 6.

These results show that the SVMReg(RBF) and ANN(1) models outperform other mod-
els at most locations. However, the performance of other models are not always significantly
different from that of SVMReg(RBF) and ANN(1). At least one performance measure indi-
cates that ANN(0) is the best at three locations; MLR at two; SVMReg(linear) and k−NN
at one location.
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Results presented in Fig. 3 show that the performance measures RMSE and MAE give
different results than CE. RMSE and MAE indicate that with respect to some tolerance
all models have the lowest prediction error at Dowerin and the highest prediction error at
Newry. According to CE all models, except ANN(1), provide predictions with the lowest
error at Richmond and the highest error at Annuello. The ANN(1) model predictions have
the lowest error at Ricmond and Alexandria and the highest error at Blinman. Figure 6
demonstrates that all models follow the series patterns at Newry and Alexandria, however,
this is not true for Warren. Models failed to predict extreme rainfall values at all three
locations.
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Fig. 4 Graphical display of the performance of models in desert zone
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The SVMReg(RBF) model produced best predictions with inputs TMax, TMin and VP
at Newry and Ningaloo, with inputs TMax, TMin, VP, Rad at Warren, Richmond, Annuello
and Dowerin and with the full set of five inputs at Alexandria and Blinman.

Table 4 presents results for monthly rainfall predictions in desert zone and Fig. 4 illus-
trates the performance of models. One can see that overall, in the desert zone the ANN(0)
and SVMReg(RBF) models produce better predictions than other models. SVMReg(linear)
provides the best prediction for Marree and MLR gives the best prediction for Wilcannia
weather station. The subset of best input variables strongly depends on location. For exam-
ple, the SVMReg(RBF) model gave best predictions for Henbury with inputs Evap, VP and
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Fig. 5 Graphical display of the performance of models in tropical and subtropical zones
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Rad; for Boulia with TMax, TMin, VP, and Rad; and for Marree with the full set of input
variables.

The performance measures RMSE and MAE imply that all models give predictions with
the lowest error at Marree and with the highest error at Henbury and Wiluna. The perfor-
mance measure CE is not in full agreement with RMSE and MAE. According to it the best
performance of models is at Boulia and the worst performance is at Marree and Wiluna.

Monthly rainfall predictions and illustration of the performance of models for tropical
and subtropical classification zones are given in Table 4 and Fig. 5, respectively.

Results show that the k-NN model gives the best predictions at Palmerville and
Fairymead. At Katherine k-NN model’s results are similar to the best results obtained by
SVMReg(RBF). According to the performance measures RMSE and CE, ANN(1) gives
best predictions at Yamba. Again the subset of input variables providing the best perfor-
mance of models depends on a location. For example, the SVMReg(RBF) model gives best
predictions at Katherine with inputs TMax, TMin, Evap and VP; at Palmerville with inputs
TMax, TMin and Rad and at Yamba with the full set of input variables.

Figure 5 shows that there is an agreement between all three performance measures in
determining a location with the best prediction results. All of them indicate Katherine. How-
ever, there is some inconsistency in determining a location with the worst prediction results.
RMSE determines Fairymead, MAE Yamba and CE Fairymead (except the k−NN model)
as the location with the worst prediction results. k−NN gives the worst prediction at Yamba
(Fig. 6).

The scatter plot of three performance measures for all 24 locations and models is given
in Fig. 7. This figure shows that RMSE and MAE give similar results on the quality of
prediction in all climatic zones while CE not always follows their patterns. There is some
disagreement between RMSE and MAE on one side and CE on the other side on the quality
of predictions.

6 Conclusions

This paper reports results on a comparison of monthly rainfall prediction models using mete-
orological input variables. Data from 24 weather stations distributed over five climatic zones
in Australia are used for this purpose. This data set consists of 540 records (from January
1970 to December 2014) and six meteorological variables, one output variable: rainfall and
five input variables: maximum and minimum temperatures, vapour pressure, evaporation
and solar radiation. The use of different climatic zones allowed to study the performance of
the prediction models depending on different climate and hydrological regimes.

Six prediction models: SVMReg(linear), SVM with the RBF kernel function (SVM-
Reg(RBF)), ANN without hidden layer (ANN(0)), ANN with one hidden layer (ANN(1)),
k-NN and Multiple Linear Regression (MLR) were selected for comparison. All the selected
models were developed for each weather station using training sets and evaluated using
test sets. The prediction performance of models was evaluated by comparing observed and
predicted rainfall using performance measures RMSE, MAE and CE.

Based on obtained results we can draw the following conclusions:

1. Among all six models, SVMReg(RBF) and ANN(1) are most accurate for rainfall
prediction. Although k-NN and ANN(0) models give the best predictions for some loca-
tions, they are not as accurate as SVMReg(RBF) and ANN(1) for many other locations.
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Two linear models, SVMReg(linear) and MLR, in general, are not accurate models for
rainfall prediction. The SVMReg(RBF) and ANN(1) models are especially accurate in
temperate, grassland and desert zones.

2. In tropical and subtropical zones the k−NN model is the most suitable model for
monthly rainfall predictions where this model obtained best predictions or close to the
best predictions. In these zones prediction errors by all models are higher than those for
other climatic zones because of higher rainfall variability and extreme values.

3. All six models at all locations, with a very few exceptions, fail to predict extreme
rainfalls.

4. Prediction performance of all six models varies considerably both within and across
climatic zones. In tropical and subtropical zones, predictions have a large deviation
from the actual rainfall observations.

5. The performance measures RMSE and MAE give approximately similar results, while
in some locations CE provides opposite results to that of by RMSE and MAE. This is
very clear from the scatter plot of the performance measures for all 24 locations given
in Fig. 7. One reason for such a behavior of performance measures is extreme rainfall
values. In the case of large number of extreme rainfall values the RMSE measure is
better than the MAE measure as in this case the former measure takes into account the
effect of these values.

6. Results show that both RMSE and MAE should be considered as primary measures to
identify a subset of best input variables, that is the subset of input variables which pro-
vides the best prediction. This is due to the fact that these measures allows to determine
almost the same subset of input variables across all weather stations for a given climatic
zone, whereas for the CE measure this subset varies significantly even within a climatic
zone.

7. We use results from papers (Abbot and Marohasy 2012, 2014) to compare the per-
formance of the ANN model with that of presented in this paper. These two papers
and the current paper use the data from the same weather stations in Queensland,
Australia. However, the sets of input variables are not the same. The comparison is
based on the RMSE measure and it shows that there is no any significant difference
in the performance of ANN presented in these papers. However, this comparison can-
not be considered conclusive as data used are not the same. There are no results with
other models on similar data sets and therefore, it is not possible to compare their
performance.

Rainfall is a very complex climate variable. It is controlled by physical processes involv-
ing random fluctuations. Relationship between rainfall and climatic or meteorological
variables is highly nonlinear. Results confirm that data-driven modelling presents a pow-
erful approach for rainfall prediction. Models which are able to capture nonlinearities are
most suitable for such predictions. Our results on the SVMReg(RBF) and ANN(1) models
confirm this conclusion. However, results from this paper also show that mainstream mod-
els are not always successful for rainfall predictions and there is a need for better models.
Such models should be able, in particular, to predict extreme rainfall events which are real
challenge for existing models.
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Müller KR, Smola A, Rätsch G, Schölkopf B, Kohlmorgen J, Vapnik V (1997) Predicting time series with
support vector machines. In: Gerstner W, Germond A, Hasler M, Nicoud JD (eds) Artificial neural
networks – ICANN’97. ICANN 1997. Lecture notes in computer science, vol 1327. Springer, Berlin,
Heidelberg, pp 999–1004

Nash J, Sutcliffe J (1970) River flow forecasting through conceptual models part I-A discussion of principles.
J Hydrol 10(3):282–290

Nayak M, Ghosh S (2013) Prediction of extreme rainfall event using weather pattern recognition and support
vector machine classifier. Theor Appl Climatol 114(3-4):583–603

Omotosho J, Balogun A, Ogunjobi K (2000) Predicting monthly and seasonal rainfall, onset and cessation of
the rainy season in West Africa using only surface data. Int J Climatol 20:865–880

R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria. http://www.R-project.org/

Ramirez M, de Campos V, Haroldo F, Ferreira N (2005) Artificial neural network technique for rainfall
forecasting applied to the Sao Paulo region. J Hydrol 301(1):146–162

Schliep K, Hechenbichler K (2016) kknn: Weighted k-Nearest Neighbors. https://CRAN.R-project.org/
package=kknn

Sharma V, van de Graaff S, Loechel B, Franks D (2013) Extractive resource development in a changing
climate: learning the lessons from extreme weather events in Queensland. National Climate Change
Adaptation Research Facility, Gold Coast, p 110

http://www.australia.gov.au/about-australia/australian-story/austn-weather-and-the-seasons
http://www.australia.gov.au/about-australia/australian-story/austn-weather-and-the-seasons
https://doi.org/10.1029/2009WR007911
https://CRAN.R-project.org/package=e1071
https://CRAN.R-project.org/package=e1071
http://www.R-project.org/
https://CRAN.R-project.org/package=kknn
https://CRAN.R-project.org/package=kknn


1794 A. M. Bagirov, A. Mahmood

Shukla R, Tripathi K, Pandey A, Das I (2011) Prediction of Indian summer monsoon rainfall using Niño
indices: a neural network approach. Atmos Res 102(1-2):99–109

Smola A, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14:199–222
Venables W, Ripley B (2002) Modern applied statistics with S, 4th edn. Springer, New York. http://www.

stats.ox.ac.uk/pub/MASS4
Wang E, Zhang Y, Luo J, Francis HS, Chiew F, Wang Q (2011) Monthly and seasonal streamflow forecasts

using rainfall-runoff modeling and historical weather data. Water Resour Res 47:1–13
Yakowitz S, Karlsson M (1987) Nearest neighbor methods for time series, with application to rainfall/runoff

prediction. In: Advances in the statistical sciences: stochastic hydrology. Springer, Berlin, pp 149–160

http://www.stats.ox.ac.uk/pub/MASS4
http://www.stats.ox.ac.uk/pub/MASS4

	A Comparative Assessment of Models to Predict Monthly Rainfall...
	Abstract
	Introduction
	Models and Methods
	Support Vector Machines for Regression
	Multiple Linear Regression
	k-Nearest Neighbours Method
	Artificial Neural Networks

	Data
	Implementation and Evaluation of Models
	Results and Discussion
	Conclusions
	Acknowledgements
	References


