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Abstract In this paper, we study pumping cost minimization for any number and layout of
wells under transient groundwater flow conditions in infinite confined aquifers and semi-
infinite ones, to which the method of images applies. Moreover, we take into account
additional steady-state flow, which is independent of the well system and results in non-
horizontal initial hydraulic head level distribution. We prove analytically that, at any time, the
instant pumping cost is minimum, when the following condition holds: the observed at that
instant differences between hydraulic head values at the locations of the wells are equal to the
half of the initial ones, which are due to the additional steady-state flow. Based on this proof,
an analytical calculation procedure of the time-dependent optimal distribution of the required
total flow rate to the individual wells is also presented. Moreover, as well flow rates usually
remain constant over the pumping period, an approximate calculation of the optimal constant
well flow rate distribution is outlined, based again on an analytical procedure.

Keywords Transient groundwater flow. Pumping cost . System of wells . Optimization .

Analytical solution .Method of images

1 Introduction

Minimization of energy consumption, usually translated as pumping cost, is one of the most
common problems in groundwater resources management. Simulation of groundwater flow is
usually part of the optimization procedure and may determine the difficulty of the respective
optimization problem (e.g. Ketabchi and Ataie-Ashtiani 2015; Moutsopoulos et al. 2017; Singh
and Panda 2013; Sreekanth and Datta 2011). Moreover, there are often additional constraints to
the optimization process, such as flow rate limits, due to pump capacities, or limits to hydraulic
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head drawdown in parts of the aquifer (e.g. Bayer et al. 2009). In other cases, pumping cost is
examined together with other cost items, such as well or pipe network construction cost. Water
quality considerations may also enter the optimization process (e.g. Mayer et al. 2002). In many
cases, pumping cost is the main item in aquifer restoration problems (e.g. Kontos 2013; Matott
et al. 2006). Moreover, optimal conjunctive management of surface and groundwater resources
is often sought (e.g. Heydari et al. 2016; Mani et al. 2016). Parameter uncertainty may also
increase the complexity of optimization problems (Sreekanth and Datta 2014).

Due to the importance of proper development of groundwater resources, many optimization
methods (and combinations of them) have been used to tackle the respective problems (e.g. Bostan
et al. 2016; Fowler et al. 2008; Khadem and Afshar 2015; Nicklow et al. 2010; Sidiropoulos and
Tolikas 2008). On the other hand, some analytical solutions have led to more general results, which
can serve as guidelines. Such results are outlined in the following paragraphs.

Katsifarakis (2008) studied steady flow in confined infinite aquifers, as well as in semi-infinite
ones to which the method of images applies. He proved that the cost to pump a given total flow
rate QT from any number and layout of wells is minimized, when hydraulic head levels at all wells
are equal to each other, as long as flow is due to that system of wells only. Moreover, he presented
an analytical calculation procedure of the optimal distribution of QT to the individual wells.

Katsifarakis and Tselepidou (2009) extended the aforementioned work to steady flows in
aquifers with two zones of different transmissivities, to which themethod of images applies. They
proved that pumping cost is minimized, when hydraulic head levels at all wells are equal to each
other, as long as flow is due to that system of wells only. Moreover, they outlined the analytical
calculation of the optimal distribution of QT to the individual wells. Then they took into account
regional flow, independent of the operation of the wells. They proved that in this general case,
pumping cost is minimized, when final differences between hydraulic head values at the locations
of the wells, resulting from superposition of the regional flow and the operation of the well
system, are equal to the half of those, which are due to the regional flow only. They also presented
an analytical calculation procedure of the optimal distribution of QT to the individual wells.

Ahlfeld and Laverty (2011), using a matrix formulation, have come up with similar results, even
for non-infinite flow fields, if the groundwater flow equation is linear and boundary conditions are
not head dependent. Their proof is based on the assumption that the responsematrix of drawdown to
pumping is symmetric. Its coefficients have to be calculated numerically, and symmetry of the
numerical model coefficient matrix is a prerequisite. Moreover, their proof holds for transient flows
with constant well flow rates, under the same assumptions. In a more recent paper, Ahlfeld and
Laverty (2015) have tested their formulation on a hypothetical problemwith complex hydrogeology
and large drawdowns, which was developed from a field-scale problem in California.

Recently, there is a renewed interest in analytical solutions for groundwater flows.
Saeedpanah and Golmohamadi Azar (2017), for instance, derived a new analytical expression
for predicting the groundwater level and flow rate in a confined aquifer between two streams
of varying water level boundaries and two constant head boundaries, while Bansal et al. (2016)
investigated the influence of a thin clogging layer in aquifer-stream interaction.

In many cases, it is plausible to consider steady groundwater flow during parts of the
examined period (Papadopoulou et al. 2007). Nevertheless, taking into account transient
groundwater flow conditions is imperative in other applications of practical interest, e.g. when
real-time management is sought (e.g. Bauser et al. 2012) or when variable power price has to
be taken into account (Bauer-Gottwein et al. 2016). Our work is relevant to such cases. We
study pumping cost minimization for any number and layout of wells under transient ground-
water flow conditions in infinite confined aquifers and semi-infinite ones, to which the method
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of images applies. Moreover, we take into account additional steady state flow, which is
independent of the well system and results in non-horizontal initial hydraulic head level
distribution. We prove analytically that, at any time, the instant pumping cost is minimum,
when the following condition holds: the observed at that instant differences between hydraulic
head values at the locations of the wells are equal to the half of the initial ones, which are due
to the additional steady-state flow. Based on this proof, an analytical calculation procedure of
the time dependent optimal distribution of the required total flow rate QT to the individual
wells is presented. Moreover, as well flow rates usually remain constant over the pumping
period, an approximate calculation of the optimal constant flow rate distribution is outlined. To
our knowledge, no such optimal analytical solutions exist for transient groundwater flows.

2 Formulation of the Optimization Problem

At any time, and for any aquifer type, pumping cost for a system of N wells can be defined as:

K1 ¼ A⋅ ∑
N

J¼1
QJ ⋅hJ ð2:1Þ

where QJ is the flow rate of well J, hJ is the distance between water level at well J and a
predefined level (e.g. highest ground elevation) and Α is a constant, depending on energy cost.
Treating A as constant implies that: a) pump efficiencies are considered as constants and equal
to each other and b) Energy price does not change with time.

In the simplest case, the initial undisturbed hydraulic head level is horizontal, namely flowwill
be due to the studied system of wells only. Here, we consider a more general case, involving an
additional regional flow, which is independent of the well system, remains constant and results in
non-horizontal initial hydraulic head level. Then, Eq. (2.1) can be written as:

K1 ¼ A⋅ ∑
N

J¼1
QJ sJ tð Þ þ δ Jð Þ ð2:2Þ

where sJ(t) is the time-dependent hydraulic head level drawdown (from then on simply draw-
down) at well J at time t and δJ is the distance between the initial hydraulic head level at well J and
the reference level, the choice of which should guarantee that no δJ value is negative. Constant A
does not affect the optimization process, hence the objective function that should be minimized is:

K ¼ ∑
N

J¼1
QJ sJ tð Þ þ δ Jð Þ ð2:3Þ

The flow rates QJ are the decision variables, while the terms (sJ(t) + δJ) serve as coefficients.
While δJ values can be considered as known constants, sJ(t) have to be calculated using the
flow simulation model.

The decision variables, namely the well flow rates QJ, should fulfill the basic constraint of
the problem, namely:

∑
N

J¼1
QJ ¼ QT ð2:4Þ

Moreover, in praxis, they should not obtain negative values, since such values correspond
to recharge wells.
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The problem will be solved first for infinite aquifers and then for semi-infinite ones, to
which the method of images applies. Use of analytical solutions for the flow simulation model,
allows analytical, namely more accurate solution of the optimization problem, at low overall
computational load. Moreover, the possibility of superposition with additional steady-state
flow, allows application to more complex cases. Finally, it should be kept in mind, that
sophisticated models produce better results, only if they are supported by accurate and
adequate field data, which are not always available.

3 Infinite Aquifers

3.1 The Combined Simulation-Optimization Model

Suppose that N wells start pumping at time t0 = 0 with constant flow rates from a confined
infinite aquifer. For any time tk > 0, transient drawdown sJ(t) at a point J of the aquifer with
respect to the initial horizontal hydraulic head level is given as (Theis 1935):

sJ tkð Þ ¼ 1

4πT
∑
N

I¼1
QIW uIJð Þ ð3:1Þ

where

W uIJð Þ ¼ ∫
∞

uij

e−y

y
dy ¼ −γ−ln uIJ− ∑

∞

n¼1

−1ð Þn⋅unIJ
n⋅n!

ð3:2Þ

and

uIJ ¼ Sr2IJ
4Ttk

ð3:3Þ

In Eqs. (3.1) to (3.3), T is the aquifer’s transmissivity, QI the flow rate of well I, γ the
Euler’s constant, S the aquifer’s storativity and rIJ the distance between point J and well I. It is
worth mentioning that W(uIJ) decreases with increasing uIJ (namely with increasing rIJ, for any
given tk). The physical meaning is that the influence of pumping at well I on location J,
decreases with the distance between I and J.

The superposition principle (e.g. Bear 1979) allows adding the result of pumping to that of
the steady-state flow. Hence, for any tk, and as long as the flow remains confined at any point
of the flow field, the respective objective function Kk of the cost minimization problem can be
written as:

Kk ¼ ∑
N

J¼1
QJ ∑

N

I¼1

QI

4πT
W

Sr2IJ
4Ttk

� �
þ ∑

N

J¼1
QJ δ J ð3:4Þ

where rIJ is the distance between wells I and J (therefore rIJ = rJI). For I = J in particular, rIJ is
equal to the radius of the well r0. The first and second terms of the right-hand side of (3.4)
represent cost due to transient pumping and to additional steady-state flow, respectively.

To simplify notation, we use WIJk instead of W Sr2I J= 4Ttkð Þ� �
in the rest of the paper (and

W0k for I = J). Since rIJ = rJI, WIJk = WJIk, too.
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3.2 Analytical Solution of the Optimization Problem

Following the approach developed by Katsifarakis (2008) and Katsifarakis and Tselepidou
(2009) for steady-state flow problems, we shall calculate the first derivatives of Kk with respect
to the decision variables, namely the flow rates QI. First, we note that they are not independent
of each other, since they are subject to the constraint (2.4). We can assume, without loss of
generality, that the first N-1 of them are independent, while QN depends upon the rest, namely

QN ¼ QT− ∑
N−1

I¼1
QI ð3:5Þ

It follows that, for any M ∈ [1, N-1]

∂QN

∂QM
¼ −1 ð3:6Þ

Then, for any M ∈[1, N-1]

∂
∂QM

∑
N

J¼1
QJC J

� �
¼ CM−CN ð3:7Þ

where CJ is a coefficient, e.g. WIJk or δJ. Applying this result to the objective function Kk, we
get, for any M∈[1, N-1]:

∂Kk

∂QM
¼ ∑

N

I¼1

QI

4πT
WIMk− ∑

N

I¼1

QI

4πT
WINk þ ∑

N

J¼1
QJ

WMJk

4πT
− ∑

N

J¼1
QJ

WNJk

4πT
þ δM−δN⇒

⇒
∂Kk

∂QM
¼ 2 ∑

N

I¼1

QI

4πT
WIMk−2 ∑

N

I¼1

QI

4πT
WINk þ δM−δN ¼ 2 sM−sNð Þ þ δM−δN

ð3:8Þ

To derive (3.8), Eq. (3.1) and the equality WIJk = WJIk have been used. Setting the
derivative of Kk equal to zero, we get:

∂Kk

∂QM
¼ 0⇔sM−sN ¼ δN−δM

2
ð3:9Þ

Equation (3.9) holds for every M ∈ [1, N-1]. It follows, then, that (for any given tk) a critical
point of the objective function Kk occurs, when the following condition holds: the differences
between hydraulic head values at the locations of the wells, which result from the superposi-
tion of transient operation of the wells and the steady-state flow, are equal to the half of the
initial ones, which are due to the steady-state flow only.

The coordinates of the critical point, namely the corresponding set of QM values, can be
found by solving a linear system of N equations and N unknowns. The first N-1 equations
have the following form:

∑
N

I¼1

QI

4πT
WMIk−WINkð Þ ¼ δN−δM

2
ð3:10Þ

Equation (3.10) is another form of (3.9), namely it results from (3.8) setting the derivative
of Kk equal to zero, and it can be written for every M ∈ [1, N-1]. The N-th equation, which
completes the system, is the constraint (2.4), namely:

∑
N

J¼1
QJ ¼ QT
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The aforementioned linear system has one solution only, namely only one critical
point P exists. To verify that P corresponds to the minimum of Kk, the respective
second derivatives will be used. Starting from Eq. (3.8) and using Eq. (3.7) one gets,
for any M ∈[1, N-1]:

∂2Kk

∂Q2
M

¼ 1

2πT
∑
N

I¼1

∂QI

∂QM
WIMk−

1

2πT
∑
N

I¼1

∂QI

∂QM
WINk⇒

∂2Kk

∂Q2
M

¼ 1

πT
W0k−WMNkð Þ

ð3:11Þ

The parenthesis of the right-hand side of Eq. (3.11) is positive, for the following reason: As
mentioned in section 3, WIJ decreases with increasing distance between wells. But W0k

corresponds to r0, namely to the radius of each well, which is smaller than any distance rMN

between wells. Then, the value of the second derivative of Kk with respect to QM is positive,
for every M ∈ [1, N-1]. This means that the critical point P corresponds to a minimum or to a
saddle point.

Moreover, it is easily proved that all second derivatives of Kk with respect to well flow rates
are constant. Then, according to the reasoning developed by Katsifarakis (2008) for steady-
state flows, P is a minimum of Kk; and since it is the only critical point, P is the absolute
minimum.

Finally, it should be mentioned that, as discussed in Katsifarakis and Tselepidou (2009) for
steady-state flows and in Ahlfeld and Laverty (2015), solution of the aforementioned linear
system may result in negative (namely recharge) flow rates for some of the wells, which have
the largest δI values, at least for certain tk values. In praxis, wells should not be used as long as
the respective QI values are negative, and QT should be redistributed to the rest of the wells.
This point is further discussed in the second example of section 6.

4 Semi-Infinite Aquifers

In the following paragraphs, we study the pumping cost minimization problem, described by
Eqs. (2.1) to (2.3), in semi-infinite aquifers, to which the method of images applies. We take
into account flow fields with a rectilinear impermeable boundary or with a rectilinear constant
head boundary. The optimization procedure remains the same, but the flow simulation model
is different for each case.

The method of images (e.g. Bear 1979), provides analytical solutions for fields with one (or
more, under certain conditions) straight-line boundaries. Its basic concept is that a boundary can
be Bremoved^ by adding a number of fictitious (or image) wells, symmetrical of the real ones
with respect to it. The relationship between the flow rate of each real well and that of its image
depends on the boundary condition along the Bremoved^ boundary and guarantees its obser-
vance. Application of the method of images to a flow field with one rectilinear boundary is
shown in Fig. 1, where real and image wells are denoted with capital and lower case letters,
respectively.

4.1 Flow Fields with a Straight-Line Impermeable Boundary

First, we study a system of N wells, which start pumping at time t0 = 0 with constant flow rates
from a confined semi-infinite aquifer, bounded by a rectilinear impermeable boundary. At any
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time tk > 0, transient drawdown sJ(t) at a point J of the aquifer with respect to the initial
horizontal hydraulic head level is given as:

sJ tkð Þ ¼ 1

4πT
∑
N

I¼1
QI W

SrIJ
4Ttk

� �
þW

SriJ
4Ttk

� �� �
ð4:1Þ

Equation (4.1) should be introduced to Eq. (2.3) to derive the objective function. Invoking the
superposition principle and the notation used in section 3, and assuming that the flow remains
confined at any point of the flow field, the objective function Kk obtains the following form:

Kk ¼ ∑
N

J¼1
QJ ∑

N

I¼1

QI

4πT
WIJk þWiJkð Þ þ ∑

N

J¼1
QJ δ J ð4:2Þ

In Eq. (4.2), we have used WiJk instead of W Sr2i J= 4Ttkð Þ� �
, in addition to the notation,

which has been already introduced in section 3.
Equations (3.5) to (3.7) hold in this case too, since they do not depend on the flow

simulation model. Then, for any M∈[1, N-1], the derivative of the objective function Kk reads:

∂Kk

∂QM
¼ ∑

N

I¼1

QI

4πT
WIMk þWiMkð Þ− ∑

N

I¼1

QI

4πT
WINk þWiNkð Þþ

þ ∑
N

J¼1

QJ

4πT
WJMk þWjMk
� �

− ∑
N

J¼1

QJ

4πT
WJNk þWjNk
� �þ δM−δN ¼ 2 sM−sNð Þ þ δM−δN

ð4:3Þ

Setting the derivative of Kk equal to zero, we get, as in the infinite aquifer case:

∂Kk

∂QM
¼ 0⇔sM−sN ¼ δN−δM

2
ð4:4Þ

Since Eq. (4.4) holds for every M ∈ [1, N-1], a critical point of the objective function Kk

occurs, when the following condition holds: the differences between hydraulic head values at
the locations of the wells, which result from the superposition of transient operation of the
wells and the steady-state flow, are equal to the half of the initial ones, which are due to the
steady-state flow only.

Fig. 1 Real and fictitious wells in a semi-infinite aquifer with one straight-line boundary
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The coordinates of the critical point, namely the corresponding set of QM values, can be
found by solving a linear system of N equations and N unknowns. The first N-1 equations have
the following form:

∑
N

I¼1

QI

4πT
WIMk þWiMk−WINk−WiNkð Þ ¼ δN−δM

2
ð4:5Þ

Equation (4.5) is a more explicit form of Eq. (4.4). The N-th equation, which completes the
system, is the constraint (2.4). The linear system has one solution only, namely only one
critical point P exists. To verify that P corresponds to the minimum of Kk, the respective
second derivatives will be used. Starting from Eq. (4.3) one gets, for any M ∈[1, N-1]:

∂2Kk

∂Q2
M

¼ 1

2πT
2W0k−2WMNk−2WmNk þWmMk þWnNk½ � ð4:6Þ

To prove that the term inside the brackets is positive, we rewrite it in the following way:

2W0k−2WMNk−2WmNk þWmMk þWnNk½ � ¼
¼ W0k þWmMkð Þ− WMNk þWmNkð Þ þ W0k þWnNkð Þ− WNMk−WnMkð Þ ð4:7Þ

In the right-hand side of Eq. (4.7), the first parenthesis has larger value than the second, for
the following reason: If they are multiplied by QM/(4πT), the first parenthesis will be equal to
the drawdown at the well M, while the second at the point N, when only QM is pumped.
Similarly, if the values of the third and fourth parentheses are multiplied byQN/(4πT), they will
be equal to the drawdown at the well N and at the point M, respectively, when only QN is
pumped. Therefore, the value of the third parenthesis is larger than that of the fourth. It
follows, then, that the right-hand side of Eq. (4.7) and the second derivative of Kk are positive.
Another proof, based on the definition of W(u), is given in appendix A.

The rest of the proof, regarding the nature of critical point P, is exactly the same as the one
outlined for the infinite aquifer case.

4.2 Flow Fields with a Rectilinear Constant Head Boundary

In this section, we study a similar system of N wells, which start pumping at time t0 = 0 with
constant flow rates from a confined semi-infinite aquifer, bounded by a rectilinear constant
head boundary. At any time tk > 0, sJ(t) at a point J of the aquifer with respect to the initial
horizontal hydraulic head level is given as:

sJ tkð Þ ¼ 1

4πT
∑
N

I¼1
QI W

SrIJ
4Ttk

� �
−W

SriJ
4Ttk

� �� �
ð4:8Þ

Then, the objective function Kk of the pumping cost minimization problem, which results
from introducing Eqs. (4.8) to (2.3), reads:

Kk ¼ ∑
N

J¼1
QJ ∑

N

I¼1

QI

4πT
WIJk−WiJkð Þ þ ∑

N

J¼1
QJ δ J ð4:9Þ

Invoking again Eqs. (3.5) to (3.7), we get, for any M∈[1, N-1]:

∂Kk

∂QM
¼ ∑

N

I¼1

QI

4πT
WIMk−WiMkð Þ− ∑

N

I¼1

QI

4πT
WINk−WiNkð Þþ

þ ∑
N

J¼1

QJ

4πT
WJMk−WjMk
� �

− ∑
N

J¼1

QJ

4πT
WJNk−WjNk
� �þ δM−δN ¼ 2 sM−sNð Þ þ δM−δN

ð4:10Þ
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Setting the derivative of Kk equal to zero, we get, as in section 4.1:

∂Kk

∂QM
¼ 0⇔sM−sN ¼ δN−δM

2
ð4:11Þ

Equation (4.11) is exactly the same with Eq. (4.4). Therefore, it leads to the same
conclusions, regarding the existence and the properties of the critical point P of Kk. The
coordinates of P, namely the corresponding set of QM values, can be found by solving a linear
system of N equations and N unknowns. The first N-1 equations have the following form:

∑
N

I¼1

QI

4πT
WIMk−WiMk−WINk þWiNkð Þ ¼ δN−δM

2
ð4:12Þ

The N-th equation, which completes the system, is the constraint (2.4). The linear system
has one solution only, namely only one critical point P exists. To verify that P corresponds to
the minimum of Kk, we shall check the respective second derivatives. Starting from Eq. (4.10),
and after proper term rearrangement, we get, for any M ∈[1, N-1]:

∂2Kk

∂Q2
M

¼ 1

2πT
W0k−WmMkð Þ− WMNk−WmNkð Þ þ W0k−WnNkð Þ− WNMk−WnMkð Þ½ � ð4:13Þ

As explained for the respective terms of Eq. (4.7), the first term of the right hand side of Eq.
(4.13) is larger than the second, and the third larger than the fourth. Therefore, the second
derivative of Kk is positive. The rest of the proof, regarding the nature of critical point P, is
exactly the same as the one outlined for the infinite aquifer case.

5 Optimal Constant well Flow Rates Over the Pumping Period

Changing well flow rates continuously, or even every few minutes, is practically infeasible. It
is quite useful then to come up with an approximate calculation of the optimal well flow rate
distribution, given that it will not change during the pumping period TP. To achieve this, TP is
divided in T1 equal intervals and the objective function KC is written as:

KC ¼ ∑
T1

k¼1
Kk ¼ ∑

T1

k¼1
∑
N

J¼1
QJ ∑

N

I¼1

QI

4πT
WI Jk þ ∑

N

J¼1
QJ δ J

� �
ð5:1Þ

Rearranging terms in Eq. 5.1, we get:

KC ¼ ∑
N

J¼1
QJ ∑

N

I¼1

QI

4πT
∑
T1

k¼1
WIJk þ T1 ∑

N

J¼1
QJδ J ð5:2Þ

The average value WIJav of WIJk over the pumping period can be approximated as:

WIJav ¼ 1

T1
∑
T1

k¼1
WIJk ð5:3Þ

Taking into account Eq. (5.3), Eq. (5.2) can be written as follows:

KC ¼ T1 ∑
N

J¼1
QJ ∑

N

I¼1

QI

4πT
WIJav þ ∑

N

J¼1
QJ δ J

� �
ð5:4Þ

It follows from Eq. (5.4) that KC has the same decision variables and the same form as any
Kk. Moreover, WIJav have the same properties as WIJk, namely they decrease with rIJ and
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WIJav = WJIav. Then, KC behaves as any Kk, namely its minimum occurs when, for every J ∈
[1, N-1], the following equation holds:

sJav−sNav ¼ δN−δ J
2

ð5:5Þ
where

sJav ¼ 1

4πT
∑
N

I¼1
QJWIJav ð5:6Þ

As mentioned above, the calculation of the optimum is approximate. Its accuracy improves
with that of WIJav, depending on the value of T1, as in the case of calculating integrals using
the Simpson rule. The optimal well flow rate distribution is calculated by solving the
respective linear system of N equations and N unknowns, as in section 3.

6 Illustrative Examples

The aforementioned analytical procedure allows calculation of the optimal distribution of QT

to N wells for any tk > 0. Change of this distribution with time is discussed in the first of the
following examples. Moreover, the influence of different initial hydraulic head levels δI is
investigated in the second example.

Example 1 A total flow rate QT = 200 lit/s will be pumped by 8 wells, from an infinite confined
aquifer, with transmissivity and storativity equal to T = 0.002 m2/s and S = 0.001, respectively.
Pumping will start at t = 0 and it will last for 18 h. The initial hydraulic head level is horizontal,
namely there is no additional steady-state flow. The layout of the wells is shown in Fig. 2, while
their coordinates xI, yI appear in the first line of Table 1. The radius of each well is r0 = 0.2 m.

We are going to calculate the optimal well flow rate distribution for tk = 1, 2, 4, 6, 8, 10, 12,
14, 16 and 18 h after the beginning of pumping. For each tk, a system of 8 equations with 8
unknowns is solved. In all cases the constant terms of the Eqs. 1 to 7 are equal to zero, since
the initial hydraulic head level is horizontal, namely all δI are equal to each other. For the 8th
equation, the constant term is equal to QT, namely to 200, while the coefficients of the
unknowns are equal to 1. All other coefficients depend on tk.

Fig. 2 Well layout of the
illustrative examples
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Results are summarized in Table 1. For each tk, optimal well flow rates are presented,
together with the respective sI values, which are equal to each other, as expected.

It can be seen that for tk = 3600 s the well flow rates are almost equal to each other, since
the interaction between wells is minimal. As time goes by, the transient optimal well flow rate
distribution generally evolves towards that of the steady-state flow, shown also in Table 1 and
calculated according to Katsifarakis (2008). For t = 64,800 s, the ratio of the largest to the
smallest well flow rate Q3/Q6 exceeds 1.43 already, while for the steady-state flow it reaches
1.66.

It is interesting to study the evolution of drawdown at the wells, if the distributions of flow
rates, given in Table 1 as optimal for particular tk values, remain constant during the pumping
period. This evolution is shown in Fig. 3.

Moreover, it is interesting to compare the sI and Kk values, shown in Table 1, which
correspond to instant optimal flow rate distributions, with those of the optimal constant flow
rate distribution. The latter are shown in Table 2. The evolution of drawdowns at the wells is
shown in Fig. 3d. Comparison reveals that constant flow rate distribution is very similar to the
transient one for tk = 28,800 s, namely for t close to, but smaller than Tp/2. This is due to the
form of all WIJ(t), which increase with t at a diminishing rate.

Table 1 Optimal flow rate distribution for different times (QT = 200 l/s)

well 1
(0, 1000)

2
(1000, 1000)

3
(1000, 0)

4
(100, 100)

5
(100, 300)

6
(200, 200)

7
(500, 500)

8
(850, 900)

tk = 3600 s Kk = 2620.8
QI 25.498 25.152 25.498 24.570 24.570 24.061 25.498 25.152
sI 13.104 13.104 13.104 13.104 13.104 13.104 13.104 13.104
tk = 7200 s Kk = 2826.4
QI 26.098 25.193 26.098 24.062 24.049 23.248 26.063 25.190
sI 14.132 14.132 14.132 14.132 14.132 14.132 14.132 14.132
tk = 14,400 s Kk = 3063.4
QI 26.905 25.233 26.909 23.479 23.369 22.352 26.567 25.185
sI 15.317 15.317 15.317 15.317 15.317 15.317 15.317 15.317
tk = 21,600 s Kk = 3221.6
QI 27.458 25.314 27.483 23.173 22.932 21.830 26.638 25.172
sI 16.108 16.108 16.108 16.108 16.108 16.108 16.108 16.108
tk = 28,800 s Kk = 3347.2
QI 27.869 25.421 27.928 22.994 22.621 21.480 26.526 25.162
sI 16.736 16.736 16.736 16.736 16.736 16.736 16.736 16.736
tk = 36,000 s Kk = 3455.4
QI 28.185 25.538 28.287 22.883 22.388 21.225 26.339 25.153
sI 17.277 17.277 17.277 17.277 17.277 17.277 17.277 17.277
tk = 43,200 s Kk = 3552.4
QI 28.436 25.658 28.583 22.815 22.208 21.030 26.126 25.145
sI 17.762 17.762 17.762 17.762 17.762 17.762 17.762 17.762
tk = 50,400 s Kk = 3641.6
QI 28.640 25.776 28.831 22.773 22.062 20.874 25.909 25.134
sI 18.208 18.208 18.208 18.208 18.208 18.208 18.208 18.208
tk = 57,600 s Kk = 3724.8
QI 28.811 25.887 29.042 22.748 21.943 20.746 25.700 25.123
sI 18.624 18.624 18.624 18.624 18.624 18.624 18.624 18.624
tk = 64,800 s Kk = 3803.2
QI 28.956 25.992 29.225 22.734 21.843 20.638 25.503 25.110
sI 19.016 19.016 19.016 19.016 19.016 19.016 19.016 19.016
Steady-state well flow rate distribution
QI 31.009 28.031 31.869 23.158 20.610 19.205 21.638 24.480
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Fig. 3 (a-d) Evolution of the drawdown at the wells, for optimal QI distributions (Tables 1 and 2). (a) tk = 3600 s
(b) tk = 28,800 s (c) tk = 64,800 s (d) constant QI distribution
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Kk values for the constant distribution are larger than those of the respective instant
optimal distributions, as expected. The differences are smaller than 0.5%, though,
allowing us to recommend use of the optimal constant well flow rate distribution for
practical purposes.

Example 2 A total flow rate QT = 200 lit/s will be pumped for 18 h by 8 wells (with
r0 = 0.2 m), from an infinite confined aquifer, with transmissivity and storativity equal to
T = 0.0004 m2/s and S = 0.001, respectively. Pumping will start at t = 0 and it will last for 18 h.
The layout of the wells is shown in Fig. 2, namely their coordinates are the same as the ones of
example 1. One additional well, Ws, located at (60, 60), pumps continuously 30.0 l/s. This
steady-state pumping results in different δI values at the locations of the 8 wells, which are
given in the first line of Table 3.

We are going to calculate the optimal well flow rate distribution for tk = 0.5, 1, 2, 4, 6, 8, 10,
12 and 18 h after the beginning of pumping. It turns out that, for tk = 0.5 h, Q4 is negative,
while it is slightly larger than zero, for tk = 1 h. The conclusion is that the well 4 should start
pumping one hour later than the other 7 wells. Results are summarized in Table 3. For tk = 0.5
and 1 h, both the initial and the corrected flow rate distribution appear. For tk > 1 h, delayed
start of pumping at well 4 is taken into account.

For tk = 1800 s, Kk is smaller for the initial distribution than for the corrected one.
This result is due to the calculation procedure, where negative flow rates result in
Bcost^ reduction. In this case, the solution of the mathematical problem does not
correspond to the solution of the physical one. If only we set the respective cost
coefficient to 0, the term:

Q4 δ4 þ s4ð Þ ¼ 1:029 47:42−0:421ð Þ ¼ 48:36

will be added to the Kk value of the initial distribution, rendering it definitely larger.

Table 2 Drawdown for practically optimal constant well flow rate distribution

well 1 2 3 4 5 6 7 8

QI 27.794 25.541 27.899 23.119 22.695 21.630 26.141 25.183
tk = 3600 s Kk = 2633.1
sI 14.284 13.304 14.338 12.313 12.098 11.805 13.435 13.123
tk = 7200 s Kk = 2833.1
si 15.051 14.321 15.108 13.550 13.334 13.183 14.174 14.135
tk = 14,400 s Kk = 3065.4
si 15.823 15.492 15.881 15.052 14.883 14.850 15.070 15.327
tk = 21,600 s Kk = 3222.1
si 16.304 16.241 16.351 16.051 15.950 15.967 15.814 16.125
tk = 28,800 s Kk = 3347.4
si 16.691 16.809 16.718 16.825 16.794 16.836 16.510 16.754
tk = 36,000 s Kk = 3455.9
si 17.041 17.280 17.042 17.471 17.507 17.564 17.169 17.293
tk = 43,200 s Kk = 3553.6
si 17.372 17.693 17.345 18.036 18.134 18.201 17.791 17.776
tk = 50,400 s Kk = 3643.6
si 17.692 18.067 17.637 18.543 18.698 18.773 18.378 18.221
tk = 57,600 s Kk = 3727.8
si 18.003 18.415 17.920 19.007 19.215 19.296 18.932 18.637
tk = 64,800 s Kk = 3807.1
si 18.305 18.742 18.196 19.438 19.694 19.781 19.455 19.030
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Based on this application example, the following procedure is recommended, when
differences between δΙ values are substantial:

a) Check the optimal flow rate distribution for the end of the pumping period (in our example
for tk = 64,800 s). If there are flow rates with negative signs, the respective wells should not
be used at all.

b) Check the optimal flow rate distribution to the system of the remaining wells for different
tk, starting with short values (in our example we have started with tk = 1800 s). Exclude
the wells with negative flow rates, for the period that remain negative. In our example, we
have excluded well 4 for the first hour, as mentioned in the previous paragraphs.

7 Conclusions

In this paper, we have studied pumping cost minimization for any number and layout of wells
under transient groundwater flow conditions in infinite confined aquifers and semi-infinite

Table 3 Optimal flow rate distribution for different times (QT = 200 l/s)

well (δI) 1 (13.84) 2 (9.72) 3 (13.84) 4 (47.42) 5 (30.0) 6 (32.42) 7 (18.79) 8 (11.42)

tk = 1800 s - initial distribution Kk = 6244.23
QI 33.659 37.793 33.659 −1.029 16.906 14.403 28.569 36.040
sI 16.369 18.429 16.369 −0.421 8.289 7.079 13.894 17.579
tk = 1800 s - corrected distribution Kk = 6244.81
QI 33.513 37.647 33.513 – 16.761 14.248 28.424 35.895
sI 16.298 18.358 16.298 – 8.218 7.008 13.823 17.508
tk = 3600 s - initial distribution Kk = 6436.62
QI 33.432 36.955 33.432 0.169 17.274 14.845 28.616 35.278
sI 17.181 19.241 17.181 0.391 9.101 7.891 14.706 18.391
tk = 3600 s - corrected distribution Kk = 6436.63
QI 33.455 36.978 33.455 – 17.298 14.873 28.639 35.301
sI 17.194 19.254 17.194 – 9.114 7.904 14.719 18.404
tk = 7200 s Kk = 6647.0
QI 33.438 36.007 33.438 1.106 17.599 15.194 28.843 34.376
sI 18.107 20.167 18.107 1.317 10.027 8.817 15.632 19.317
tk = 14,400 s Kk = 6880.15
QI 33.695 35.093 33.698 1.762 17.839 15.384 29.088 33.440
sI 19.181 21.241 19.181 2.391 11.101 9.891 16.706 20.391
tk = 21,600 s Kk = 7033.28
QI 33.952 34.650 33.973 2.101 17.919 15.432 29.068 32.904
sI 19.906 21.966 19.906 3.116 11.826 10.616 17.431 21.116
tk = 28,800 s Kk = 7154.84
QI 34.171 34.406 34.222 2.342 17.952 15.450 28.917 32.540
sI 20.488 22.548 20.488 3.698 12.408 11.198 18.013 21.698
tk = 36,000 s Kk = 7259.83
QI 34.353 34.263 34.442 2.536 17.969 15.457 28.711 32.268
sI 20.995 23.055 20.995 4.205 12.915 11.705 18.520 22.205
tk = 43,200 s Kk = 7354.52
QI 34.506 34.179 34.635 2.701 17.979 15.460 28.487 32.054
sI 21.455 23.515 21.455 4.665 13.375 12.165 18.980 22.665
tk = 64,800 s Kk = 7600.90
QI 34.849 34.087 35.090 3.086 17.991 15.450 27.849 31.599
sI 22.659 24.719 22.659 5.869 14.579 13.369 20.184 23.869
Steady-state well flow rate distribution
QI 36.630 34.485 37.435 4.981 17.834 15.054 23.946 29.635
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ones, to which the method of images applies. Moreover, we have taken into account additional
steady-state flow, which is independent of the well system and results in non-horizontal initial
hydraulic head level distribution. We have proved analytically that at any time, the instant
pumping cost Kk is minimum, when the following condition holds: the observed at that instant
differences between hydraulic head values at the locations of the wells are equal to the half of
the initial ones, which are due to the additional steady-state flow. Moreover, we have presented
the methodology of finding the time dependent optimal well flow rate distribution, by solving
a linear system of N equations and N unknowns, N being the number of the pumping wells. In
addition, we have discussed handling of negative flow rates that might appear when additional
steady-state flow might overlap with the transient operation of the system of wells.

The aforementioned theoretical results have restricted practical importance, since it is infeasible
to change well flow rates continuously, or even every few minutes. For this reason, we have
presented an approximate calculation of the optimal well flow rate distribution, given that it will
remain constant over the pumping period TP. This distribution can be also calculated by solving a
linear system of N equations and N unknowns, and can be used in many cases of practical interest.

Finally, we mention that analytical calculation of the optimal solutions, which in principle
holds for any number of wells, is not computationally intensive. It is restricted only by the
maximum number (N) of linear equations, or the matrix dimensions (N x N) that can be
handled by the available computer.
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Appendix

Sign of the 2nd derivative of Kk for semi-infinite fields with one impermeable boundary.
The second derivative of Kk with respect to QM is given as:

∂2Kk

∂Q2
M

¼ 1

2πT
2W0k−2WMNk−2WmNk þWmMk þWnNk½ � ð4:6Þ

We know that W(u) is decreasing with u at a diminishing rate. Therefore, W0k is larger than
any WMNk, since r0 is smaller than any rMN. Then, in order to prove that the second derivative
of Kk with respect to QM is positive, it is enough to show that:

WmMk þWnNk−2WmNk > 0 ðA:1Þ
In the rest of the proof we drop index k, to simplify the notation.
If rmM and rnM are given, rMn = rmN obtains its smallest value when M and N are on the

same perpendicular to the boundary, namely when the isosceles trapezoid MNnm (see Fig. 1)
is reduced to a line segment. In this case, the following relationships hold:

rMn ¼ rMN þ rNn ðA:2aÞ
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rMm ¼ rNn þ 2rMN ðA:2bÞ
Invoking Eq. (3.2), namely the definition of W(u), we have:

WmM ¼ ∫
∞

umM

e−y

y
dy ¼ ∫

∞

unM

e−y

y
dy− ∫

unM

umM e−y

y
dy ¼ WmN− ∫

unM

umM e−y

y
dy ðA:3Þ

WnN ¼ ∫
∞

umN

e−y

y
dyþ ∫

unN

umN e−y

y
dy ¼ WmN þ ∫

unN

umN e−y

y
dy ðA:4Þ

Introducing Eqs. (A3) and (A4) to (A1) we get:

WmM þWnN−2WmN ¼ ∫
unN

umN e−y

y
dy− ∫

unM

umM e−y

y
dy ðA:5Þ

Suppose that rnN, and therefore unN, is given, and consider the function F(rMN), defined as:

F rMNð Þ ¼ ∫
unN

umN e−y

y
dy− ∫

unM

umM e−y

y
dy ðA:6Þ

While unN is given, the values umN and umM depend on rMN. Moreover,

∂u=∂r ¼ Sr= 2Ttð Þ ðA:7Þ
Therefore, according to the Leibniz rule and some trivial calculations:

dF
drMN

¼ 4

eumN rnN þ rMNð Þ −
4

eumM rnN þ 2rMNð Þ > 0 ðA:8Þ

Therefore, F(rMN) increases with rMN. For rMN = 0, it follows from Eq. (A6) that F(rMN) = 0.
Hence F(rMN) > 0, for any positive rMN value. This proves that the second derivative of Kk

with respect to QM is positive.
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