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Abstract Evapotranspiration is one of the most important components in the optimi-
zation of water use in agriculture and water resources management. In recent years,
artificial intelligence methods and wavelet based hybrid model have been used for
forecasting of hydrological parameters. In present study the application of the Gauss-
ian Process Regression (GPR) and Wavelet-GPR models to forecast multi step ahead
daily (1–30 days ahead) reference evapotranspiration at the synoptic station of Zanjan
(Iran) were investigated. For this purpose a 10-year statistical period (2000–2009) was
considered, 7 years (2000–2006) for training and the final three years (2007–2009) for
testing the various models. Various combinations of input data (various lag times) and
different kinds of mother wavelets were evaluated. Results showed that, compared to
the GPR model, the hybrid model Wavelet-GPR had greater ability and accuracy in
forecasting of daily evapotranspiration. Moreover, the use of yearly lag times in the
GPR and wavelet-GPR model increased its accuracy. Investigation of various kinds of
mother wavelets also indicated that the Meyer wavelet was the most suitable mother
wavelet for forecasting of daily reference evapotranspiration. The results showed that
by increasing the forecasting time period from 1 to 30 days, the accuracy of the
models i s reduced (RMSE = 0.068 mm/day for one day ahead and
RMSE = 0.816 mm/day for 30 days ahead). Application of the proposed model to
summer season showed that the performance of the model at summer season is better
than its performance throughout the year.
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1 Introduction

Water demand and consumption in agricultural ecosystems is heavily dependent on climatic
parameters. In the planning and management of water resources for irrigation requirements,
hydrological variables such as rainfall and evapotranspiration should be analyzed. Evapotrans-
piration (ET) is one of the key components of the hydrologic cycle and its accurate estimation
is important for irrigation system design (Torres et al. 2011). Using past data of these variables
and forecasting them is a key factor in planning, design and management of water resources.
Application of long-term averaged of reference evapotranspiration value for upcoming days is
a simple method, however because of climate change the results of this method may lead to
large errors (Landeras et al. 2009). Given that the crop water requirements is calculated by
multiplying reference evapotranspiration (ET0) in the crop coefficient (Kc) (Allen et al. 1998),
forecasting of reference crop evapotranspiration (ET0) plays an important role in planning real
time irrigation water requirements.

Time series models such as ARIMA and SARIMA have been used to forecast reference
evapotranspiration in monthly and weekly time scales by various researchers (Landeras et al.
2009; Mariño et al. 1993; Meshram et al. 2015). However, using high resolution daily data is a
limitation for the SARIMA model, since the season is 365 days which did not allow the model
to converge (Bachour et al. 2016). Difficulties related to these models, motivated the re-
searchers to use other modeling technics including data driven tools and statistical learning
machines such as support vector machines (SVM), artificial neural networks (ANN), adaptive
neuro-fuzzy interference system (ANFIS), Gaussian process regression (GPR) and decision
trees. Trajkovic et al. (2003) used RBF neural networks to forecast monthly reference
evapotranspiration. They used one and two year delay in their study. The results showed
that RBF neural network is able to forecast monthly reference evapotranspiration with high
accuracy. Landeras et al. (2009) used MLP (Multiple Layer Perceptron) and RBF (Radial
Basis Function) neural networks to model future weekly reference evapotranspiration. In their
research, two types of delays (weekly and yearly) were used. Their results showed that MLP
and RBF neural networks can forecast weekly evapotranspiration with high confidence.

The GPR is a full Bayesian Non-parametric machine learning algorithm that has received
significant attention in the machine learning community for applications such as model approxi-
mation, multivariate regression, and classification problems. Gaussian processes (GP) assume that
the joint probability distribution of model outputs is Gaussian (Sun et al. 2014). Grbić et al. (2013)
applied GRP model to predict water temperature of rivers. Their results showed that GPR model
performs better than traditional approaches. Sun et al. (2014) used GRP to forecast monthly stream
flow. Their results showed that GPR outperforms both linear regression and artificial neural network
models. Hu and Wang (2015) used empirical wavelet transform-GRP model to forecast short-term
wind speed. The new hybrid model can improve the forecasts in comparison of other models.
Roushangar et al. (2016) usedwavelet GRP hybridmodel to forecast seepage through an earth dam.
Applying different kernel functions, they concluded that RBF kernel function is superior to other
kernel functions. Other applications of GRPmodel in modeling hydrological parameters have been
reported (Grbić et al. 2013; Holman et al. 2014; Raghavendra and Deka 2016).

In recent years the use of hybrid models based on wavelet for forecasting hydrological time
series (such as river flow, rainfall, ground water level and suspended sediment load) has
attracted the attention of many researchers (Nourani et al. 2014). Gocić et al. (2015) used four
soft computing technics: artificial neural network (ANN), support vector machine- firefly
algorithm (SVM-FFA), genetic programming (GP) and support vector machine-Wavelet
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(SVM-Wavelet) to forecast monthly ET0 at some meteorological stations of Serbia. Their
results showed that SVM-Wavelet model has the highest accuracy for monthly ET0 forecasting.
Bachour et al. (2016) used a hybrid model, Wavelet- multivariate relevance vector machine
(MVRVM) to predict 16 days of future daily ET0. The results of the hybrid model showed that
forecast of ET0 up to 16 days ahead reliably is possible (R2 = 0.619 and RMSE = 0.766mm/day
for best model). Also their results showed that inclusion of 10-days of forecasted minimum and
maximum air temperature as additional inputs can improve the performance of the model for
10 days forecast (R2 = 0.706 and RMSE = 0.713 mm/day for best model). Also application of
wavelet regression models has been reported in evapotranspiration estimation (Falamarzi et al.
2014; Kişi 2011; Partal 2009). Kişi (2011) showed that combination of discrete wavelet
transform (DWT) and linear regression performs better than empirical equations in daily
evapotranspiration modeling. Partal (2009) and Falamarzi et al. (2014) used discrete wavelet
transform and artificial neural network (ANN) to model ET0. Both of the results showed that
combination of DWT and ANN performs better than single ANN model.

The first objective of present study is to forecast daily evapotranspiration at a semi-arid climate
condition using a new hybrid wavelet-Gaussian process regression model. The second objective of
this study is to forecast multistep ahead daily reference evapotranspiration and determination of best
input data andmodel type to achieve higher accuracy in medium range evapotranspiration forecasts.
The third Objective is to evaluate forecasts in different seasons of the year. Reviewing the previous
researches shows that less attention has been paid in the forecasting of the reference evapotranspi-
ration time series in more than one day ahead, and also in this research, the Gaussian process
regression model is also used for the first time in the forecasting of reference evapotranspiration.

2 Materials and Methods

2.1 Study Area and Meteorological Data

In the present study, daily climatic data of minimum and maximum temperature, wind speed,
sunshine hours and minimum and maximum relative humidity of Zanjan synoptic station (Fig. 1)
(Longitude, 48°29′ E; Latitude, 36°41′ N; Elevation, 1663 m) was used to calculate the reference
crop evapotranspiration. Meteorological data of the Zanjan synoptic station was available from
1980 to 2009, but the implementation of the model was difficult due to the use of daily weather data
and the increase in the number of input data when using wavelet transforms. Therefore period of
2000 to 2009 was selected. The average temperature, annual rainfall and average daily evapotrans-
piration of Zanjan synoptic station are 11.1 °C, 311 mm and 2.8 mm per day respectively.

2.2 Penman-Monteith FAO-56 Model

In order to estimate daily reference evapotranspiration and create evapotranspiration time
series, Penman-Monteith FAO-56 model was used (Allen et al. 1998):

ET0 ¼ 0:408Δ Rn−Gð Þ
Δþ γ 1þ 0:34uð Þ þ

900γ

Δþ γ 1þ 0:34uð Þ½ �
u es−eað Þ
T þ 273ð Þ ð1Þ

Where ET0 is reference evapotranspiration (mm/day), T is mean daily air temperature at 2 m
of ground surface (Celsius degrees), Rn is the net radiation at the surface vegetation (MJ /m2/
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day), u is wind speed at height 2 m above the ground (m/s), es − ea is saturation vapor pressure
deficit (kPa), γ is Psychrometric constant (kPa/°C),Δ slope of vapor pressure curve (kPa/°C),
G ground heat flux (MJ /m2/day) (Allen et al. 1998). Equation 1 assumes that the plant height
of 0.12 m and the reference grass surface resistance of 70 s per meter (Allen et al. 1998). At the
above equation values of ground heat flux (G) for daily period are relatively low and can be
neglected (Allen et al. 1998).

2.2.1 Our Available Data

In this study, a 10-year period 2000 to 2009 was selected. The first 7 years (2000–2006) were
used as train data and remaining data (2007–2009) was considered as test data. Table 1 shows
the statistical parameters of train and test dataset.

Fig. 1 Location of studying area

Table 1 Statistical parameters of train and test data

Variable Data range Mean Standard deviation

Train Test Train Test Train Test

Tmean (C°) −16.4–28.7 −16.4–29.2 11.62 11.32 9.15 9.46
Wind speed (m/s) 0–11.98 0.25–13.27 2.96 2.71 1.17 1.23
Sunshine Hours (h) 0–13.8 0–13.6 8.09 7.64 3.92 3.62
Rain (mm) 0–44.6 0–39.4 0.79 0.779 2.76 2.82
ET0 (mm/day) 0.32–9.54 0.17–8.85 3.69 3.45 2.27 2.09

1038 Karbasi M.



2.3 Gaussian Process Regression

A Gaussian process (GP) is a probabilistic nonparametric model, where observations
occur in a continuous domain (Grbić et al. 2013). It can be used for solving non-
linear regression (Williams 1997) and classification (Williams and Barber 1998)
problems. A Gaussian process regression directly defines a prior probability distribu-
tion over a latent function. GPR is specified by it mean function and covariance
(kernel) function.

f xð Þ∼GP m xð Þ; k x; x
0

� �� �
ð2Þ

The mean function is often assumed zero, as it encodes central tendency of the function
(Zhang et al. 2016). The covariance function encodes information about shape and structure of
the function that we expect to have. The connection among input and output variables is
expressed as

y ¼ f xð Þ þ ε ð3Þ

It is assumed that noise ε is independent and a Gaussian distribution with zero mean and σ2
n

variance is distributed over it.

ε∼N 0;σ2
n

� � ð4Þ

According to Eq. (2), the likelihood is given by

p yj fð Þ ¼ N yj f ;σ2
nI

� � ð5Þ

Where y = [y1, y2,…, yn]
T , f = [f(x1), f(x2),…, f (x3)] and I is a M ×M unit matrix.

According to definition of Gaussian process (MacKay 1998) the marginal distribution p(f)
is given by a Gaussian whose mean is zero and whose covariance is defined by a Gram matrix,
so that

p fð Þ ¼ N f j0;Kð Þ ð6Þ

Where K = k(xi, xj). Since both Eqs. (4) and (5) follow the Gaussian distribution, the
marginal distribution of y is given by

p yð Þ ¼ ∫p yj fð Þp fð Þd f ¼ N f j0;Ky
� � ð7Þ

Where Ky ¼ K þ σ2
nI .

To predict the target variable y∗ for a new input (x∗), the joint distribution over y1, y2,…,
ym, y∗ is given by

y
y*

� �
¼ f

f *

� �
þ ε

ε*

� �� 	
∼N 0;

Ky k*

kT
* k** þ σ2

n

� �� 	
ð8Þ

Where f∗ = f(x∗) is the latent function for input variable x∗ and ε∗ is corresponding noise;
k∗ = [k(x∗, x1),…, k(x∗, xM)]

T and k∗∗ = k(x∗, x∗). Application of the rules for conditioning
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Gaussians (Bishop 2006), the predictive distribution p(y∗| y) is a Gaussian distribution with
mean and covariance given by

m x*ð Þ ¼ kT* K
−1
y y ð9Þ

σ2 x*ð Þ ¼ k**−kT* K
−1
y k* þ σ2

n ð10Þ

The Cholesky decomposition (Rasmussen and Williams 2006) can be used to calculate the
inverse of the covariance matrix Ky. Equations (8) and (9) form the main results of GPR. The
mean predictive distribution is used as point prediction and variance is used to evaluate the
uncertainty of the prediction. The prediction interval calculation can be done using the
predictive mean and variance. The 95% prediction interval is computed as m(x∗) ± 1.96σ(x∗)
(according to the property of Gaussian distribution) (Zhang et al. 2016).

The covariance (kernel) function is acritical component in a Gaussian process
regression. It encodes assumption about the function which wish to learn. In super-
vised learning similarity among data is very important. The covariance function
defines this similarity (Rasmussen and Williams 2006). In this research, Squared
Exponential covariance function was used

k xi; x jjθ
� � ¼ σ2f exp −

1

2

xi−x j
� �T xi−x j

� �
σ2
l

" #
ð11Þ

Where σl is the characteristic length scale and σf is the signal standard deviation. Hyper
parameters of the covariance function θ (σl, σf) can be estimated from above equations by
using a gradient-based algorithm (Rasmussen and Williams 2006).

2.4 Wavelet Decomposition

The wavelet transform of a continues time series x(t), is defined as (Mallat 1989):

T a; bð Þ ¼ 1ffiffiffi
a

p ∫þ∞
−∞ g

* t−b
a

� 	
x tð Þ:dt ð12Þ

Where a is a scale factor, b is temporal translation of the g(t) , * corresponds to the complex
conjugate and g(t) is mother wavelet. Continues wavelet transform (CWT) decomposes the
signal with large number of scale and translation parameters. Therefore, calculation of wavelet
coefficients for all scales lead to large size of information. For practical applications, the
hydrological time series are not continues signals but rather discrete time signals (Nourani
et al. 2014). To overcome this, a logarithmically uniform spacing can be used for the a scale
discretization with a correspondingly coarser resolution of the b locations, which allows for N
transform coefficients to completely describe a signal of length N. Such a discrete wavelet has
the form

gm;n tð Þ ¼ 1ffiffiffiffiffiffi
am0

p g
t−nb0am0

am0

� 	
ð13Þ

The most common values for a0 and b0 are 2 and 1 time steps, respectively. m and
n are integers that control the wavelet dilation and translation. Mallat (1999) used
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filters to develop an efficient way to implement this scheme. The DWT decompose
the signal in to approximation (a) and details (d) components by passing the signal
through the low-pass and high pass filters. The approximations and details
components are high scale low frequency and low scale high frequency respectively.
The most significant component of the signal is low frequency part, on the other
hand, the high frequency component imparts nuance. For more details on the Wavelet
transform readers are referred to text books including Daubechies (1992) and Wallen
(2004).

2.5 Hybrid Model Structure

Main goal of wavelet-Gaussian process regression model is forecasting of daily
reference evapotranspiration at a semi-arid region. To do this, firstly reference evapo-
transpiration time series were decomposed to approximation sub-series (A) (low
frequency) and detail sub-series (D) (high frequency). In the next step, approximation
and detail sub-series (A1, D1, D2…, Dn) (where n is level of decomposition) were
used as input matrix for wavelet-GPR model. Determination of mother wavelet type
and level of decomposition plays an important role in model performance. In this
research, debauches, symlet, coiflet and Meyer mother wavelets were used. Applica-
tion of higher decomposition level can cause slower training process and in some
cases can reduce the accuracy of the models. The following equation was used to
select discrete wavelet transform decomposition level (Nourani et al. 2014).

L ¼ Int log Nð Þ½ � ð14Þ

Where L is decomposition level, N is number of time series data and Int is floor function. In
this study, all the proposed models are implemented using MATLAB 2016a software.

2.6 Model Input Data

In order to obtain the right combination of inputs to the model, several different
combinations of input data was examined. Table 2 shows 10 different combinations of
input data for 1 to 30 days ahead forecasting. The ET parameters used at Table 2,
were calculated using Eq. (1).

Table 2 Different sets of model input and output variables for 1 to 30 days ahead forecasting

Output parameters Input parameters Model

ETt-ETt + 30 ETt-1 M1
ETt-ETt + 30 ETt-1, ETt-2 M2
ETt-ETt + 30 ETt-1, ETt-2, ETt-3 M3
ETt-ETt + 30 ETt-1, ETt-2, ETt-3, ETt-4 M4
ETt-ETt + 30 ETt-1, ETt-2, ETt-3, ETt-4, ETt-5 M5
ETt-ETt + 30 ETt-1, ETt-2, ETt-3, ETt-4, ETt-5, ETt-6 M6
ETt-ETt + 30 ETt-1, ETt-2, ETt-3, ETt-4, ETt-5, ETt-6, ETt-7 M7
ETt-ETt + 30 ETt-1, ETt-2, ETt-3, ETt-4, ETt-5, ETt-365 M8
ETt-ETt + 30 ETt-1, ETt-2, ETt-3, ETt-4, ETt-5, ETt-365, ETt-730 M9
ETt-ETt + 30 ETt-1, ETt-2, ETt-3, ETt-4, ETt-5, ETt-365, ETt-730, ETt-1095 M10
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2.7 Performance Evaluation Criteria

To evaluate the accuracy of the proposed models, following statistical measures were used:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 Oi−Pið Þ2
N

s
ð15Þ

MBE ¼ 1

N
∑N

i¼1 Oi−Pið Þ ð16Þ

NRMSE ¼ RMSE

Oi
ð17Þ

MAPE ¼ 1

N
∑N

i¼1

Oi−Pi

Oi

����
����� 100 ð18Þ

R2 ¼

�
∑N

i¼1 Oi− �Oið Þ Pi−
�
Pi

�� 	2

∑N
i¼1 Oi− �Oið Þ2∑N

i¼1 Pi− �Pið Þ2
ð19Þ

At the above equations Oi and Pi respectively are observed and predicted values, �Oi is the
mean value of observations, �Pi is the mean value of predictions and N is the total number of
data. RMSE (Root Mean Square Error) is the measure of the differences between predicted and
observed values. MAPE (Mean Absolute Percentage Error) is measure of prediction accuracy
of the model. MBE (Mean Bias Error) is defined as the difference between the predicted values
and true observed values. It is measure of over/under estimate of the model. The coefficient of
determination R2 describes the degree of association between the forecasted and the observed
values. NRMSE (Normalized Root Mean Square Error) can be used to compare models with
different scales. The performance of the model according to NRMSE is defined as follow
(Mihoub et al. 2016):

Excellent if: NRMSE <10%
Good if: 10% < NRMSE <20%
Fair if: 20% < NRMSE <30%
Poor if: NRMSE >30%

3 Results

3.1 Gaussian Process Regression Model

Firstly simple GPR models are developed to forecast daily evapotranspiration. Data of
daily evapotranspiration is used as model inputs. For wavelet-GPR hybrid models, the
input evapotranspiration data is transformed using DWT. The transformed
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evapotranspiration data is used as input in the development of wavelet-GPR models.
Table 3 shows the results of single GPR model. For all of the time steps (days ahead)
M1–M10 input models were implemented and the best model presented at Table 3.

According to Table 3 in the one-day ahead reference evapotranspiration forecast, the M4
model yielded the best result with RMSE = 0.678 mm / day and R2 = 0.896. Given that
NRMSE = 19.6% is obtained, the model is evaluated as a good model. In forecasting of 2 to
30 days, the RMSE value increases and R2 decreases with the increase of the forecasting time
interval. In most models, the M10 input model provides the best result, indicating that the use
of 365, 730, and 1095 daily delays can increase the accuracy of the model, while the one-day
forecasting model annual delays could not increase accuracy of the model. In forecasting of 2
to 30 days, the value of the NRMSE parameter is between 21.1 and 25.5%, and the models are
evaluated as fair models. Figure 2 shows the predicted evapotranspiration values against the
results obtained from the PMF-56 equation for different forecasting periods.

Figure 3 demonstrates the point and interval predictions of reference evapotranspiration
based on the single GPR model. It is obvious that nearly all the PMF-56 evapotranspiration
data are within the 95% confidence interval.

3.2 Wavelet-GPR Model

3.2.1 Effect of Wavelet Type

Proper selection of wavelet type (function) to decompose time series signal to approximation
and details components is very important in the development of wavelet based hybrid models
(Shoaib et al. 2015). To investigate effect of wavelet type on accuracy of the models, 10 mother
wavelets (db1, db4, db8, sym2, sym4, sym8, coif1, coif3, coif5 and dmey) were selected.
Results of application of different types of wavelet types on forecasting of one day ahead
evapotranspiration has been shown at Table 4. According to Table 4, dmey (Meyer) type
wavelet has the highest accuracy (RMSE = 0.068mm/day). Coif5 (Coiflet) typemother wavelet
is the second best Model (RMSE = 0.113 mm/day). Higher performance ofMeyer type wavelet
in modeling hydrological time series has been reported by Shoaib et al. (2015), Ebrahimi and

Table 3 Results of single GPR model for multi-step ahead evapotranspiration forecasting

Days ahead Best Model RMSE R2 MAPE(%) MBE NRMSE(%)

1 M4 0.678 0.896 18.7 −0.021 19.6
2 M10 0.765 0.868 22 0.008 22.1
3 M10 0.795 0.857 23.5 0.001 23
4 M8 0.817 0.849 24 −0.026 23.6
5 M10 0.829 0.844 24.2 0.004 24
7 M10 0.840 0.840 24.4 0.017 24.3
10 M9 0.864 0.831 24.2 0.024 25
12 M10 0.882 0.825 25.8 0.040 25.5
14 M10 0.871 0.830 25.9 0.061 25.2
16 M10 0.865 0.832 25.5 0.073 25
18 M10 0.853 0.837 24.8 0.075 24.6
21 M10 0.867 0.831 25.9 0.051 25.1
24 M10 0.870 0.829 26.4 0.033 25.1
27 M10 0.874 0.828 25.7 0.032 25.3
30 M10 0.861 0.833 24.9 0.037 24.9
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Rajaee (2017) and Karbasi (2015). Because of higher performance of Meyer type wavelet, this
type of wavelet were used for multi-step ahead (2–30 days) forecasting. Figure 4 shows the
decomposed reference evapotranspiration time series using Meyer type wavelet (Table 4).

3.2.2 Multi Step Ahead Forecasting

Table 5 shows the results of the wavelet-GPR hybrid model in the forecasting of 1 to 30-days
ahead reference evapotranspiration. According to Table 5, in the forecasting of a one-day
ahead reference evapotranspiration, the M8 model provided the best result with
RMSE = 0.068 mm day and R2 = 0.999. The NRMSE value obtained for this model is 2%,
and so the model is evaluated as an excellent model for forecasting evapotranspiration. By
increasing the forecasting interval, the RMSE error value begins to increase. For example, the
RMSE value has increased to 0.225 mm/day in the 2-days ahead forecasting of evapotrans-
piration. In the 7-days ahead forecast, the RMSE has increased to 0.458 mm per day. RMSE
values in forecasting of 14, 21, and 30 days ahead evapotranspiration are 0.639, 0.818 and

Fig. 2 Forecasted evapotranspiration for 1–30 days ahead with single GPR model
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Fig. 3 point and interval forecasts of the evapotranspiration by single GPR model
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0.816 mm/day, respectively. The results of the wavelet-GPR model indicate that the proposed
model is able to forecast 3-day ahead evapotranspiration with excellent precision (NRMSE
value in the 3-day ahead forecast is 4.9%). In the forecasting of 4 to 14 days, the NRMSE
value is between 10 and 20%, and the model is evaluated as a good model. In forecasting of 16
to 30 days, the NRMSE value is between 20 and 30%, and the models are evaluated as an
average model. After a 16-days ahead forecast, the performance of the model is almost
constant, with RMSE values higher than 0.8 mm per day. Examining the optimal combination
of inputs to models shows that the M7, M8, M9 and M10 models have the best performance.
The reason for this is the use of most of the above models in the history of the time series.

Fig. 4 Decomposed evapotranspiration time series using Meyer type wavelet

Table 4 Effect of the wavelet type on accuracy of forecasts

Model M9 M7 M8 M10 M7 M7 M8 M7 M7 M7

wavelet type db1 db4 db8 sym2 sym4 sym8 coif1 coif3 coif5 dmey
RMSE 0.415 0.213 0.138 0.315 0.207 0.132 0.308 0.15 0.113 0.068
R2 0.961 0.99 0.996 0.977 0.99 0.996 0.979 0.995 0.997 0.999
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Table 5 Results of Wavelet-GPR model for multi-step ahead evapotranspiration forecasting

Days ahead Best Model RMSE R2 MAPE(%) MBE NRMSE(%)

1 M8 0.068 0.999 1.8 0.000 2
2 M8 0.225 0.988 6.1 0.000 6.5
3 M10 0.324 0.976 8.8 −0.001 9.4
4 M7 0.357 0.971 10.1 0.003 10.3
5 M7 0.400 0.964 11.3 0.001 11.6
7 M10 0.458 0.952 13.1 0.003 13.2
10 M8 0.519 0.939 14.8 −0.002 15
12 M10 0.582 0.923 17 0.025 16.8
14 M8 0.639 0.907 18.4 −0.010 18.5
16 M8 0.742 0.876 21.3 −0.005 21.4
18 M10 0.800 0.857 24.5 0.058 23.1
21 M10 0.818 0.850 24.9 0.045 23.6
24 M10 0.831 0.845 25.2 0.020 24
27 M9 0.823 0.848 25.1 0.016 23.8
30 M9 0.816 0.851 24.8 0.013 23.6

Fig. 5 Forecasted evapotranspiration for 1–30 days ahead with Wavelet- GPR model
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Fig. 6 point and interval forecasts of the evapotranspiration by Wavelet GPR model
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Figure 5 shows the forecasted evapotranspiration values using wavelet-GPR model against the
results obtained from the PMF-56 equation for different forecasting periods.

Figure 6 demonstrates the point and interval predictions of reference evapotranspiration
based on the hybrid Wavelet-GPR model. It is obvious that nearly all the PMF-56 evapotrans-
piration data are within the 95% confidence interval.

According to Tables 3 and 5, comparison of GPR and wavelet-GPR models shows
that the pre-processing of data using wavelet transform and utilizing it as GPR model
input, greatly increases the accuracy of the model in forecasting daily Evapotranspi-
ration. This result is reported by many researchers who compared wavelet-based
hybrid models with non-wavelet models (Adamowski and Chan 2011; Nourani et al.
2014; Ramana et al. 2013). Bachour et al. (2016) using the MRVM method and
combining it with wavelet transform, forecasted reference evapotranspiration for the
next 16 days. Their results showed that the use of wavelet transformation as a
preprocessor can increase forecasting performance of the model.

In the superiority of wavelet-based models, it can be stated that the complex
hydrological time series is decomposed using a discrete wavelet transform into simple
time series; therefore, some of the features of the time series, such as the daily,
weekly, monthly and yearly periods, are clearly more visible. This excellence can be
seen even in wavelet regression models. Kişi (2011), Partal (2016) and Patil and Deka
(2017) analyzed the parameters related to reference evapotranspiration using a discrete
wavelet transform and used them as inputs of different models. Their results also
showed that the use of wavelet transformation in pre-processing of input data has
increased the accuracy of the estimation of reference evapotranspiration.

3.3 Model Evaluation at Summer Season

The developed model in the previous section have been used to forecast reference
evapotranspiration throughout the entire year, while the plant’s growing season is in
the spring and summer seasons. To evaluate the performance of the proposed model,

Table 6 Results of Wavelet-GPR model for multi-step ahead evapotranspiration forecasting at summer season

Days ahead RMSE R2 MAPE(%) MBE NRMSE(%)

1 0.085 0.996 1.3 0.001 1.5
2 0.281 0.952 4.2 0.002 5.0
3 0.385 0.909 5.9 −0.001 6.9
4 0.402 0.901 6.1 0.008 7.2
5 0.460 0.870 6.9 0.010 8.2
7 0.517 0.836 7.7 0.003 9.3
10 0.596 0.782 8.7 −0.026 10.7
12 0.658 0.734 9.8 −0.023 11.8
14 0.744 0.662 11.3 −0.053 13.3
16 0.871 0.539 13.6 −0.047 15.6
18 0.922 0.485 14.2 −0.050 16.5
21 0.948 0.461 14.9 −0.098 17.0
24 0.977 0.435 15.0 −0.094 17.5
27 0.966 0.436 15.4 −0.097 17.3
30 0.966 0.437 15.5 −0.093 17.3
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the results of the model were evaluated in summer. The period from June 22 to
September 22 of test data (2007–2009) was considered as summer. The mean value of
reference evapotranspiration at summer is 5.59 mm/day. Table 6 shows the results of
the wavelet-GPR model in the forecasting of the reference evapotranspiration in
summer in the 1 to 30 days later. According to the results of Table 6, with the
increase of the forecasted time interval, the RMSE value increased from 0.085 mm/
day for one day forecast to 0.996 mm/day for 30 days forecast. Investigating the
value of E also shows that, up to 7 days ahead, the performance of the model is
evaluated as excellent model (NRMSE <10%). In forecasting of 10 to 30 days later,
the NRMSE value is between 10 and 20, which is a good model. The results in this
section show that model performance in the warm season is better than its perfor-
mance throughout the year. Figure 7 shows the forecasted evapotranspiration values
using wavelet-GPR model against the results obtained from the PMF-56 equation for
different forecasting periods at summer season.

Fig. 7 Forecasted evapotranspiration for 1–30 days ahead with Wavelet- GPR model at summer season
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4 Conclusion

The forecasting of reference evapotranspiration and crop water requirement of different plants
can be helpful in the management of water resources. The results of this study showed that two
wavelet-GPR and GPR models can forecast daily evapotranspiration with high accuracy.
Although the GPR model is capable of modeling nonlinear behavior, but due to the non-
stationary behavior of the daily evapotranspiration time series, for more accurate modeling,
there is a need for the processing of input data into the model. Wavelet transformation by
separating the signal into high frequencies and the low-frequency features of the signal
increased the accuracy of the model. The comparison between the wavelet types showed that
the Meyer type wavelet could increase the accuracy of the forecast due to its higher complexity
and similarity to the daily reference evapotranspiration time series. According to the NRMSE
criteria, the forecasting of 1–3 days ahead of reference evapotranspiration was classified as an
excellent model (NRMSE <10). While in the forecasting of 4 to 14 days ahead
(10 < NRMSE < 20) the model was classified as a good model and in the forecasting of 16
to 30 days ahead, the model was classified as an average model. This result shows that the
model is not accurate in forecasting of 16 to 30 days ahead evapotranspiration, and it is
suggested that in the future research, the meteorological forecasts should be used as the input
of the model. The results of this research can be used for irrigation planning and optimal water
use in studied areas. It is suggested that the proposed model be investigated in different climate
conditions.
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