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Abstract The suspended sediment load in rivers is an important parameter in watershed
planning and management. Since daily suspended sediment time series contain linear and
nonlinear components, existing prediction models are associated with limitations. Therefore,
this study introduces a new hybrid model comprising two commonly used stochastic and
nonlinear models. The sediment load is first modeled by an autoregressive-moving average
with exogenous terms (ARMAX) model. Subsequently, the ARMAX residuals are modeled
with an artificial neural network (ANN). For this purpose, discharge (Q) and sediment (S) are
considered as model input parameters. Three modeling scenarios are defined to investigate the
impact of data normalization on the hybrid model. The exponential and Box-Cox transforma-
tion methods are combined into a new data normalization method called mixed transformation.
The performance of these methods is then compared. In addition, the impact of the type and
number of input combinations on ARMAX-ANN model accuracy is evaluated. To this end, 12
input combinations and 1331 ARMAX and ANN models are verified. The ARMAX model
inputs include S, Q and the white noise disturbance term (e), while the ANN model inputs
include the ARMAX model results and residuals. Moreover, the hybrid model’s accuracy is
compared with the ARMAX and ANN models.

Keywords Sediment load . River . Stochastic . Hybrid model . Data normalization .

Transformation

1 Introduction

Predicting the suspended sediment load of rivers accurately is among the most significant
factors in hydraulic structure design. The suspended sediment load of a river can be considered
a function of hydrological and meteorological parameters, determining which directly affects
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suspended sediment load and is a complicated and costly process. Therefore, applying a
classical hydromechanics approach cannot produce reliable results (Alp and Cigizoglu
2007). Hence, in modeling the suspended sediment load in a river, optimum combinations
of the most effective and significant parameters should be used. Alp and Cigizoglu (2007)
demonstrated that river discharge is the main hydrological factor. Furthermore, other
studies have indicated that utilizing measured sediment load along with discharge data
contributes to optimum prediction of suspended sediment load (Afan et al. 2015). In
some cases, the river discharge parameter is measured and is more suitable for use in
modeling and prediction.

Traditional statistical models including autoregressive moving average (ARMA) and
autoregressive-moving average with exogenous terms (ARMAX) are applicable for modeling
and predicting sediment load. ARMA predictions only involve the impact of sediment, while
ARMAX uses other effective modeling parameters such as flow characteristics. However,
these models are not adequate for nonlinear hydrological problems (Moeeni and Bonakdari
2016), because as the suspended sediment load system of a river exhibits more complex
behaviour, statistical models cannot produce suitable functionality modeling results. Models
based on computational intelligence are another means of modeling nonlinear systems; hence,
they are an appropriate alternative to statistical models. Rahim and Akif (2015) and Mustafa
et al. (2012) evaluated Artificial Neural Network (ANN) model performance in predicting
suspended sediment load. Researchers have also studied and compared the performance of
ANN models with regression models from physical and statistical perspectives (Demirci et al.
2015; Tiwari and Rai 2015). In addition to ANN, other computational intelligence models may
be used to predict suspended sediment. Comparing these models has also attracted much
interest (Kisi et al. 2012; Lafdani et al. 2013; Alizdeh et al. 2015; Kumar et al. 2016). Despite
the respective studies presenting different results, it appears that ANN models perform
reasonably.

However, the ANN model considers the time series under study as nonlinear, whereas time
series may not always be purely nonlinear (Moeeni et al. 2017). In practical cases, it is
challenging to understand whether a time series is created from a linear or nonlinear underlying
process or whether stochastic methods are more effective than ANN methods with out-of-
sample prediction data. To overcome the limitations of statistical and ANN models, Zhang
(2003) presented a hybrid model combining both ARMA and ANN models (ARMA-ANN).
Other researchers have applied this hybrid model for various purposes (Faruk 2010; Nourani
et al. 2011; Liu et al. 2012). Moeeni and Bonakdari (2016) improved ARMA-ANN accuracy
of forecasting time series with extreme seasonal variation and presented the four-step seasonal
autoregressive integrated moving average (SARIMA)-artificial neural network (SARIMA-
ANN) model. They used the new model to predict the monthly inflow to a dam reservoir
with high and irregular seasonal changes.

Besides modeling, data analysis and pre-processing can also affect result accuracy.
Cigizoglu and Kisi (2006) demonstrated that the initial statistical analysis of flow and sediment
affect the most suitable ANN model inputs. In the present study, the daily suspended sediment
load at upstream and downstream stations on the Cumberland River is modeled. Because both
sediment load and discharge impact the results, discharge is also used as model input.
However, no study has been found that employs a combination of stochastic and nonlinear
models to predict the suspended sediment load of rivers. Therefore, the ARMAX-ANN hybrid
model is proposed in this study. The effect of discharge normalization and sediment on
modeling accuracy is evaluated. The impact of data normalization on the ARMAX-ANN
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model is investigated in three different scenarios. A new data normalization method called
mixed transformation is introduced, which is based on both exponential and Box-Cox
transformation methods. Subsequently, the performance of the three transformations is com-
pared. The impact of the number and type of ANN model inputs on ARMAX-ANN result
accuracy is investigated. The proposed hybrid model results are also compared with the
ARMAX and ANN models.

2 Materials and Method

2.1 Data Used

Daily water discharge (Q) and daily suspended sediment load (S) data from two stations
located on the Cumberland River, USA, were used in this study. Each time series includes a
10-year period from October 1, 1979 to September 30, 1989. Data for seven years (from
October 1, 1979 to September 30, 1986) were used for model training, and the remaining data
were used for testing. These sites include time series data with highly irregular behavior, which
can be used to evaluate the performance of different models. Since the aim is to identify an
efficient model for predicting such data, these stations were selected. Table 1 presents the
statistical characteristics of the data. In this table, xmin, x, xmax, Sd, Sk, Ku, Cv,Md, q1, q3 are the
minimum, average, maximum, standard deviation, skewness, kurtosis, coefficient of variation,
median, first quarter and third quarter of discharge and suspended sediment load series. These
quantities represent drastic fluctuation in this time series.

2.2 ARMAX Model

ARMAX is capable of modeling sediment load using water discharge as a linear input. This
model is denoted by ARMAX (na, nb, nc) with the following equation:

1−a1q−…−anaq
nað ÞSt ¼ 1−b1q−…−bnbq

nbð ÞQt−k þ 1−c1q−…−cncq
ncð Þet ð1Þ

Table 1 Statistical characteristics of the data employed

Barbourville station Pineville station

Discharge (Q) Sediment load (S) Discharge (Q) Sediment load (S)

Train Test Whole Train Test Whole Train Test Whole Train Test Whole

xmin 1.44 2.15 1.44 0.83 0.14 0.14 1.42 1.53 1.42 0.50 0.14 0.14
x 43.9 47 44.8 1289 1355 1306 34.5 38.5 35.7 1151 1091 1133
xmax 1178 835 1178 182,000 123,000 182,000 892 966 966 244,000 135,000 244,000
Sd 71.5 73.2 72 7061 6108 6831 56.6 61.3 58.1 7751 5936 7253
Sk 5.7 4.1 5.2 14.8 10.8 14 6.7 5.8 6.4 18.4 13.8 18
Ku 59 25 48 300 167 278 72 60 68 461 261 456
Cv 1.6 1.6 1.6 5.5 4.5 5.2 1.6 1.6 1.6 6.7 5.4 6.4
Md 21.1 25 22.3 56 40 50 17.3 20.7 18.3 48 37 44
q1 7.5 6.4 7.4 15 8.7 12 6.7 6.3 6.6 13 8.7 11
q3 50.4 52.1 51 292 286.8 290 40.2 44.5 42.2 187 195.3 189
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Where St and Qt − k are the suspended sediment load and discharge time series, et is the white
noise disturbance series, a1; a2;…; anað Þ is the vector of autoregressive coefficients,
b1; b2;…; bnað Þ is the vector of exogenous input coefficients, c1; c2;…; cnað Þ is the vector of
moving average coefficients, na, nb and nc are orders of the autoregressive, exogenous input
and moving average components, k is the dead time in the system (here it is equal to zero) and
q is the delay operator.

To identify the best input combination and achieve the most accurate results, each value for
na, nb, and nc was considered between 0 and 10 in the form of the set [0, 1, 2, ..., 10]. Hence,
three sets of 11 memberships were considered. The parameters of the 113 = 1331 ARMAX
model were estimated and the best input combination was identified based on the evaluation
criteria. The model based on this combination is considered the most accurate of all models.

2.3 ANN Model

One of the known structures of this model is the multilayer perceptron neural network
(MLPNN). In this structure, a multi-input vector such as discharge and sediment load is used
to model daily suspended sediment load. MLPNN includes three layers: input, hidden and
output layers. The used MLPNN structure contains two inputs and one hidden layer with 4
nodes. The following relationship is related to a network with a hidden layer of S andQ inputs:

Ŝt ¼ aþ ∑
g

j¼1
aj f b j þ ∑

h

i¼1
bijSt−i þ ∑

h

i¼1
cijQt−i

� �
ð2Þ

where Ŝtþ1 is the predicted discharge, cij and bij are model parameters (connection weights) in
the hidden layer, ai is a model parameter in the output layer, bj and a are bias components in
the hidden and output layers, g is the number of neurons in the hidden layer, h is the number of
inputs and f is the transfer function. For modeling, the present perceptron structure with a
hidden layer contains sigmoid and linear transfer functions in the hidden and output layers,
respectively. The number of hidden layer neurons considered is between 1 and 20. These
models were trained by the Levenberg-Marquardt (LM) algorithm, after which the best model
was selected based on error criteria.

f tð Þ ¼ 1

1þ exp ‐tð Þ ð3Þ

2.4 Time Series Normalization

Time series normality is an essential assumption in statistical models (Salas et al. 1988; Marco
et al. 2012). Various research works present different interpretations of series normality. More
precisely, it means that time series data follow a normal probability distribution. In most cases,
series with extreme fluctuations in discharge and daily sediment for instance, do not
follow a normal distribution, as seen in Fig. 1. This figure presents the discharge time
series and daily sediment for both upstream and downstream stations as normal
probability plots. It is observed that each time series is long with a normal line.
Therefore, none of these series is normal.
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Data normalization has always had an important role in improving the result accuracy of
statistical models. The effect of this practice is investigated on the result accuracy of the
proposed hybrid model, which is based on a statistical model and a computational intelligence
model. The exponential and Box-Cox transformations were used for normalization in this
study. In addition, the transformation notion served as a basis for presenting a mixed
transformation. The discharge and daily sediment time series for both stations were normalized
using each of the three transformations. Their relationships are presented below:

Exponential function transformation : y ¼ xa ð4Þ

Box−Cox transformation : y ¼
xþ bð Þc−1

c
c≠0

Ln xþ bð Þ c ¼ 0

8<
: ð5Þ

Mixedtransformation : y ¼
xa

0 þ b
0

� �c0
−1

c
c
0
≠0

Log xþ b
0

� �
c
0 ¼ 0

8>>><
>>>:

ð6Þ

where x is the original series, y is the normalized series, a is the exponential transformation
coefficient, b and c are the Box-Cox transformation coefficients and a’, b’ and c’ are the mixed
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Fig. 1 Normal probability plots of original series
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transformation coefficients. There is usually no time series that completely follows a normal
distribution after normalization, but will approach the distribution as much as possible. The
normality results of each mentioned transformation were compared using the Jarque-Bera,
Doornick chi-squared and Anderson-Darling tests. The statistics related to these tests are
provided below:

JB ¼ N
S2k
6
þ Ku−3ð Þ2

24

 !
ð7Þ

DCS ¼ Z2
1 þ Z2

2≈χ
2 2ð Þ ð8Þ

AD ¼ −N−
1

N
∑
N

t¼0
2t−1ð Þ In F Y tð Þð Þ þ In 1‐F YNþ1ð Þð Þð Þ ð9Þ

where JB, DCS and AD are the Jarque-Bera, Doornick chi-squared and Anderson-Darling test
statistics, respectively; Sk is skewness, Ku is kurtosis, Z2

1and Z2
2 are the transformed skewness

and kurtosis, χ2(2)is the chi-square distribution with two freedom degrees, F(xt) is the
cumulative distribution function of the standard normal distribution and Yt is the ordered
and standardized data. A smaller quantity of each statistic leads to a perfectly normal time
series.

2.5 ARMAX-ANN Hybrid Model

The ARMAX-ANN hybrid model presented in this study is used to predict the daily
suspended sediment load as follows:

Ŝt ¼ a1qþ… anaq
nað ÞSt þ 1−b1q−…−bnbq

nbð ÞQt−k− c1qþ…þ cncq
ncð Þet

þ aþ ∑
g

j¼1
aj f b j þ ∑

h

i¼1
bijet−i

� � !
ð10Þ

The parameters in this equation are the parameters defined for Eqs. 1 and 2. If the Box-Cox
conversion (Eq. 5) is used to normalize the discharge time series and sediment load, the
equation provided for the hybrid model is changed as follows:

Ŝt ¼

c
a1qþ… anaq

nað Þ St þ bð Þc−1
c

� �
þ 1−b1q−…−bnbq

nbð Þ Qt−k þ bð Þc−1
c

� �
þ 1−c1q−…−cncq

ncð Þen tð Þ

0
@

1
Aþ 1

0
@

1
A

1
c

−bþ aþ ∑
g

j¼1
aj f b j þ ∑

h

i¼1
bijet−i

� � !
c≠0

exp
a1qþ… anaq

nað ÞLn St þ bð Þ þ 1−b1q−…−bnbq
nbð ÞLn Qt−k þ bð Þ

þ 1−c1q−…−cncq
ncð Þen tð Þ

� �
−b

� �

þ aþ ∑
g

j¼1
aj f b j þ ∑

h

i¼1
bijet−i

� � !
c ¼ 0

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

ð11Þ
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Following linear component normalization and data modeling, the normal residuals are
modeled with the nonlinear component. The hybrid model equation with the Box-Cox
conversion is as follows:

Ŝt ¼
c

a1qþ… anaq
nað Þ St þ bð Þc−1

c

� �
þ 1−b1q−…−bnbq

nbð Þ Qt−k þ bð Þc−1
c

� �

þ 1−c1q−…−cncq
ncð Þen tð Þ þ aþ ∑

g

j¼1
aj f b j þ ∑

h

i¼1
bijen t−ið Þ

� �
0
BB@

1
CCAþ 1

0
BB@

1
CCA

1
c

−b c≠0

exp

a1qþ… anaq
nað ÞLn St þ bð Þ þ 1−b1q−…−bnbq

nbð ÞLn Qt−k þ bð Þ
þ 1−c1q−…−cncq

ncð Þen tð Þ þ aþ ∑
g

j¼1
aj f b j þ ∑

h

i¼1
bijen t−ið Þ

� � !0
B@

1
CA−b

0
B@

1
CA c ¼ 0

8>>>>>>>>>><
>>>>>>>>>>:

ð12Þ

In order to study the impact of normalization on the results, three modeling scenarios were
defined for the ARMAX-ANN model. Figure 2 shows the hybrid model steps based on the
three scenarios. The process in each scenario is as follows:

– Scenario 1: The data does not undergo normalization. The daily suspended sediment load
series (S(t)) is initially modeled by ARMAX. The model inputs areS(t) and Q(t), while the
output is the linear term of sediment load (ŜL). Then the ARMAX model residual (e(t)) is
modeled by ANN and the ANN model output is the nonlinear term of sediment load
(ê tð Þ). Finally, the linear and nonlinear components are summed, leading to the modeled

sediment load (Ŝ) in scenario 1.
– Scenario 2: Here,S(t) and Q(t)are normalized first. The normalized sediment load series

(Sn(t)) and normalized discharge series (Qn(t)) are obtained. Sn(t) is modeled by ARMAX

and the normalized linear term of sediment load (ŜnL) is obtained. With component

denormalization, the linear term of sediment load (ŜL) is computed. Then the difference

between S(t) and ŜL is calculated, which is the ARMAXmodel error after denormalization
(e(t)). In the next step, the e(t) series is modeled by ANN and the nonlinear term of

sediment load (ê tð Þ) is obtained. Finally, the modeled sediment load (Ŝ) is the calculated
sum of the linear and nonlinear components.

– Scenario 3: In this scenario, S(t) andQ(t) are normalized. Then Sn(t)is modeled by

ARMAX and the normalized linear term of sediment load (ŜnL) is obtained. The ARIMA
model residual from the normalized series (en(t)) is modeled by ANN. Therefore, the

normalized nonlinear term (ên tð Þ) is obtained. The sum of ên tð Þand ŜnLis the normalized

modeled sediment load (Ŝn). With series denormalization, the modeled sediment load (Ŝ)
is obtained.

In this hybrid model, the ANN model inputs are selected by two approaches. Overall, 12
input combinations are used. Group 1 (et-1 (Model 1), et-1, et-2 (Model 2), et-1, et-2, et-3 (Model
3), et-1, et-2, et-3, et-4 (Model 4)) contains inputs consisting only of ARMAXmodel residuals. In
addition to the ARMAX model residuals, group 2 (St-1, et-1 (Model 5), St-1, et-1, et-2 (Model 6),
St-1, et-1, et-2, et-3 (Model 7), St-1, et-1, et-2, et-3, et-4 (Model 8)) includes this model’s results in a
time step before (St-1) as well. In addition to St-1, group 3 (St-1, St-2, et-1 (Model 5), St-1, St-2, et-1,
et-2 (Model 6), St-1, St-2, et-1, et-2, et-3 (Model 7), St-1, St-2, et-1, et-2, et-3, et-4 (Model 8)) contains
St-1 as an input besides other inputs.
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In the first case, the inputs only include ARMAX model error values in past time steps
(group 1). This means that for nonlinear component estimation only the residuals are used.
Nonetheless, the linear component value can affect the nonlinear component. Therefore, to
assess the relationship between these two components in the second case, the results of this
model are used in past time steps as input in addition to the ARMAX model errors (groups 2
and 3). In other words, in this case the linear component is used to estimate the nonlinear
component. The effects of using linear components as ANN model inputs on ARMAX-ANN
model accuracy are examined. Thus, the impact of input type and number on the model results
can be evaluated and compared better. The ARMAX-ANN model results are compared based
on each of the 12 input combinations in the superior scenario.

2.6 Evaluation Criteria

The performance of the hybrid model in the normalization scenarios with different inputs is
compared with individual models using the scatter index (SI), mean absolute error (MAE),

Fig. 2 Hybrid ARMAX-ANN model flowchart with three scenarios
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mean absolute relative error (MARE), coefficient of residual mass (CRM), variance accounted
for (VAF), correlation coefficient (R2) and Akaike’s information criterion (AIC). The SI and
MAE criteria are based on average absolute error and are sensitive to mean and limited data.
The MARE criterion, which is based on relative error, is more sensitive to base values (small
quantities). The CRM criterion indicates the underestimation or overestimation of the predicted
discharge. VAF shows the difference in error variance compared to the data variance. R2

indicates the extent of the linear relationship between the actual and predicted values. AIC
indicates the most parsimonious model using the errors and the number of model parameters.
These criteria are as follows:

SI ¼ ∑
n

t¼1
St‐Ŝt
� �2� �

=n
� �0:5

=S tð Þ ð13Þ

MAE ¼ ∑
n

t¼1
St−Ŝt
��� ���=n ð14Þ

MARE ¼ ∑
n

t¼1
St−Ŝt
� �

=St
��� ���=n ð15Þ

CRM ¼ ∑
n

t¼1
St− ∑

n

t¼1
Ŝt

� �
= ∑

n

t¼1
St ð16Þ

VAF ¼ 1−var St−Ŝt
� �

=var Stð Þ
� �

� 100 ð17Þ

R2 ¼ ∑
n

t¼1
St−St
� �

Ŝt−Ŝt
� �� �2

= ∑
n

t¼1
St−St
� �2

∑
n

t¼1
Ŝt−Ŝt
� �2

 !
� 100 ð18Þ

AIC ¼ 2N k þ 1ð Þ
N−k−1

þ N ln σ2
ε

� � ð19Þ

3 Results and Discussion

3.1 Performance of the Normalization Transformations

Figure 3a and b illustrate normal probability plots of the discharge and suspended sediment
load series. Comparing these two figures with Fig. 1 signifies that the transformed series is
closer to a normal distribution than the original series. Therefore, all three transformations
were effective on normalization. However, comparing the results of these three transformations
clarifies which one is the most capable. It is evident from Fig. 3a that at both upstream and
downstream stations the exponential transformation showed weaker performance than the
other transformations in daily discharge normalization. The Box-Cox transformation results
exhibited the greatest proximity to the normal line. Hence, it seems that in daily discharge
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normalization, the Box-Cox transformation is more capable than the others. The comparison of
the transformation results in Fig. 3b indicates that the exponential transformation had the
weakest performance in sediment load normalization. The intuitive results of the Box-Cox and
mixed transformations are almost the same.

In addition to the intuitive investigation, the transformation results based on the normali-
zation tests appeared more accurate and scientific. The tests include the Jarque-Bera (JB),
Doornick Chi-square (DCS) and Anderson-Darling (AD) tests. The results of these tests for the
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transformed discharge and sediment series are provided in Table 2. In this table, the
critical values for all three tests are presented relative to a significance level of 1%.
By comparing the computational statistics and these critical values, it can be con-
cluded that in some cases the series was not normalised with any transformation,
indicating a limitation in the normalization of daily time series data. However, by
comparing the performance of the transformations, it can be determined which trans-
forms bring the discharge and sediment series closer to a normal distribution. For the
transformed discharges, the exponential transformation statistic is larger than the other
two transformations for both upstream and downstream stations. It was found that the
transformation made the original series too proximate to a normal series, but the
statistic magnitude indicates that the series was still not normal. As a result, the
exponential transformation is not appropriate for normalizing daily discharge. The test
statistics for the Box-Cox transformation are very small. As a result, this transforma-
tion normalized the daily discharge at both stations well. A comparison of the mixed
transformed values with the two others shows that these transformations present much
stronger performance than the exponential transformation. However, the Box-Cox
transformation is the best for normalizing daily discharge.

The normality evaluation test results for the transformed sediment series (Table 2) are
different from those for discharge. For the downstream station, the JB and AD values for the
exponential transformation are smaller than the Box-Cox transformation, but the difference is
very small. Meanwhile, the DCS value for the Box-Cox transformation is smaller with a large
difference. At the upstream station, the values of these three tests for Box-Cox are smaller than
the exponential transformation. As a result, the Box-Cox transformation is more capable of
normalizing daily sediment load than the exponential transformation. Comparing the mixed
transformation results with the two other transformations indicates that the obtained values are
significantly smaller (especially for the upstream station). The transformation presented in this
study is the best and most powerful for daily sediment load normalization. It should be noted
that daily sediment load fluctuations are very intense. Due to these fluctuations, normalizing
this non-normal time series is very difficult. However, the proposed transformation can handle
this well.

Table 2 Statistics of normal tests for the discharge and suspended sediment series

Transformation Downstream Upstream

JB DCS AD JB DCS AD

Discharge Critical value 9.21 9.21 1.1 9.21 9.21 1.1
Exponential 172 424 35.3 177 435 35.1
Normal? No No No No No No
Box-Cox 0.16 0.09 2.1 0.1 0.13 1.1
Normal? Yes Yes No Yes Yes Yes
Mixed 14.2 17.6 5.3 8.4 9.7 4.9
Normal? No No No yes Almost yes No

Suspended sediment Exponential 69 120 8.3 144 203 13.8
Normal? No No No No No No
Box-Cox 70 59 9.8 108 76 11.7
Normal? No No No No No No
Mixed 31 39 2.4 13 14 1.4
Normal? No No No No No Almost yes
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3.2 ARMAX Model Result Evaluation

As ARMAX is one of the components of the hybrid model presented, its results can
affect the hybrid model results. Hence, to achieve the best results, the ARMAX model
inputs were considered between 0 and 10. The inputs include discharge (Q), sediment
(S) and white noise disturbance (e). Therefore, 1331 models were defined for each
station. All these models were obtained once based on the original series and
normalized series. It should be noted that according to the results mentioned in the
previous section, the Box-Cox and mixed transformations were used to normalize Q
and S respectively. To identify the best combination of inputs and most accurate
model, Fig. 4a is provided. This figure displays the SI criterion in the testing period
for both stations and in the actual and normalized modes. Due to the multitude of
models, the results are provided for some cases. It is observed that in both modeling
cases, models in which the discharge is not part of the inputs had greater prediction
error than models which include this factor. With the addition of Q(t-1) as an input,
the prediction error was reduced at once. Adding Q(t-2) also led to a drop in
estimated values, but its impact was less. It is very clear that adding more discharge
data as input had no impact on improving the outcome. Because the graphs are almost
horizontal, no effective error reduction is seen. To achieve the best results with the
ARMAX model it is sufficient to use the daily discharge for one and two days before.
Another point is that when only the previous day’s discharge was used, increasing the
number of white noise disturbance components had a significant impact on outcome
improvement. The error reduction of models 11 to 22 in each diagram demonstrates
this fact. However, when the discharge from two days before was used, the impact of
white noise disturbance components on model error reduction diminished. It can be
seen in each diagram that models 22 to 33 are not very different from each other.
Thus, it seems that the white noise disturbance component may not be required in
modeling.

The appropriate number of input data (discharge) was detected previously, and the best
number of other input data (sediment) will be discussed subsequently. Figure 4b shows the SI
criterion changes in test mode compared to the number of sediment input data for the case
where Q(t-1) and Q(t-2) are also considered inputs. It is observed that for both stations and
modes, with increasing the number of sediment input data to 2, the diagrams display a decline.
Subsequently, the diagrams become horizontal as normalized data are used. In the case where
actual data are used, the diagrams initially rise (up to 4 sediment input data) and then become
horizontal. This suggests that using sediment input data at more than two steps before is either
ineffective in normal mode or increases the error in real mode. Another point is that in models
that lack sediment input data, increasing the turbulence component in the inputs improves the
results. However, this component is ineffective in models that include sediment input data in
normal mode.

In real mode, when using two or more sediment input data, increasing the number of
turbulence components in the inputs shows the reverse trend and higher model error. As a
result, it is not recommended to use these components in a state when discharge and sediment
are present as inputs. In summary, using S(t-1) and S(t-2) with Q(t-1) and Q(t-2) as ARMAX
model inputs is sufficient. The model that includes these inputs produced the best results for
both stations and in both real and normal modes. Hence, ARMAX(2, 2, 0) is introduced as the
best of all models.
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(a) Discharge

(b) Suspended sediment

Fig. 4 Scatter index values for the ARMAX model based on the number of discharge and suspended sediment
input data
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3.3 The Impact of Normalization on ARMAX-ANN Model Results

In this section, the results from the three scenarios defined for the ARMAX-ANN hybrid
model are compared. Figure 5 shows the MAE and MARE values in test mode for each
scenario and all 12 input combinations. It can be seen that the highest error values for all input
combinations are related to scenario 1. The values obtained for both criteria (especiallyMARE)
are significantly higher than other scenarios. Unlike the two other scenarios, there was no
normalization done in scenario 1. The effective role of normalization in improving the
ARMAX-ANN hybrid model outcomes is evident. However, for all 12 cases, scenario 3
exhibited better results than scenario 2. Thus, it can be concluded that if denormalization is
done in the last step, normalization has the greatest impact on increasing hybrid model
accuracy.

3.4 The Impact of Input Type and Number on Hybrid Model Accuracy

In the previous section, scenario 3 was introduced as the most accurate and effective
scenario for the proposed hybrid model. Therefore, to evaluate the effect of the input
type and number on the accuracy of this model, the results of scenario 3 are used in
this section. Figure 6 shows the MAE, SI, CRM and VAF values for each of the 12
input combinations compared with each other. The 12 cases were divided into three

Fig. 5 ARMAX-ANN model results obtained in each scenario
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groups of four. In the first group, the ANN model inputs in the hybrid model were
only residuals of the ARMAX (ên t−1ð Þto ên t−4ð Þ) model. In the second group, the result

of the ARMAX model for the day before (Ŝnl t−1ð Þ) was added to the first group’s

inputs. In the third group, the ARMAX model results for one and two days before

(Ŝnl t−1ð ÞandŜnl t−1ð Þ) were added to the first group’s inputs. The results of the three groups

separately are shown in Fig. 6. This figure also presents the average of each criterion for each
group. It can be seen that with no exception, the averages for the second and third groups are
better than the first group. These results for all four criteria and both upstream and downstream
stations are the same. Thus, it is concluded that adding the ARMAX model result to the ANN
model input leads to greater hybrid model accuracy. It is also observed that group three
performed better than group two. Therefore, using a higher input number produces better
results and the best result was observed for model 12 with the following inputs:

ên t−1ð Þ; ên t−2ð Þ; ên t−3ð Þ; ên t−4ð Þ; Ŝnl t−1ð Þ and Ŝnl t−1ð Þ. The ARMAX model results led to en-

hanced hybrid model result accuracy. Although in some cases the ARMAX model
may have performed well, this model is linear and there is no guarantee of a
nonlinear relationship between residuals. The results of this study signify that the
ARMAX model has a strong nonlinear relationship with its residuals for daily data.
This relationship leads to an increase in nonlinear ANN model accuracy and subse-
quently ARMAX-ANN model accuracy.
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Fig. 6 Effect of input number and type on ARMAX-ANN model accuracy in scenario 3
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In order to determine the more accurate model with fewer parameters, the principle
of parsimony is considered. The Akaike Information Criterion (AIC) is calculated for
the results of scenario 3 and all 12 input combinations. According to Eq. 19, this
measure consists of two parts. The first part indicates the effect of the number of
parameters and the second part shows the effect of result accuracy on the AIC
criterion. Table 3 displays these two parts along with the AIC criterion and the
number of parameters used in the ARMAX-ANN(k) model. It is evident from the
values in parts 1 and 2 that the effect of the number of model parameters on the AIC
value is much lower than the effect of the error values. This is explained by the fact
that the sediment load has very high daily fluctuations, which thereby leads to an
increase in data variance. This large variance remained in the error values after
modeling and reduced the effect of the number of model parameters. Therefore, it
can be concluded that for the studied data, the most accurate model is the most
parsimonious model. Table 3 also demonstrates that the same as the other error
criteria and based on AIC, the increase in the number of inputs as well as the use
of the ARMAX model improved the results accordingly.

3.5 Comparison of Models

Table 4 shows the R2, MAE, CRM and VAF results for these models in test mode for both
stations. The ANN model results were extracted from Kisi et al.'s (2012) study. This table also
provides the ARMAX model results for both actual and normalized data. A comparison of the
ARMAX model results in these cases shows that for the two stations, the MAE and CRM
criteria in normalization mode are much better. However, the R2 and VAF criteria for these two
cases exhibit very little difference from each other. Thus, it can be said that the normalization
enhanced the ARMAX model results. By comparing the ANN model with the ARMAX
(normal) model, one cannot be deemed superior to the other. The reason may be the diverse
nature of these two models. The ARMAX model is linear and based on probability and
statistics, while the ANN model is nonlinear and based on computational intelligence. By
comparing the results in Table 4 it can be concluded that the hybrid model produced the best
results. The highest difference between this model and other models is seen in the MAE
criterion. It should be noted that this criterion determines the error value directly. It is therefore
more important than other criteria, which are supplemental to MAE. The hybrid model
presented in this study benefits from both ARMAX and ANN models’ advantages and is able
to improve prediction accuracy as well.

Table 4 Model results

Station Model R2 MAE CRM VAF

Pineville Hybrid 0.864 604 −0.210 78.4
ANN (Kisi et al. 2012) 0.889 818 0.377 77.1
ARMAX (normal) 0.820 659 −0.274 55.9
ARMAX 0.860 1272 −0.814 67.8

Barbourville Hybrid 0.885 596 −0.078 80.3
ANN (Kisi et al. 2012) 0.848 798 −0.161 81.5
ARMAX (normal) 0.875 712 −0.185 53.9
ARMAX 0.803 1135 −0.376 74.8

Bold present the best value for each index for two stations
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4 Conclusions

In this study, the daily suspended sediment load at two stations was predicted by the hybrid
ARMAX-ANN model. The ARMAX model was selected for modeling the linear part, and the
effect of the discharge parameter can be considered in the ARMAX model. ANN was chosen
for modeling the nonlinear time series component due to its simplicity and relatively higher
speed compared to other nonlinear models. Three different scenarios were defined for nor-
malization with the hybrid model. Moreover, 12 input combinations were identified. A
summary of the results is as follows:

1- The proposed mixed transformation outperformed the exponential and Box-Cox transfor-
mations in daily sediment load normalization. This transformation also performed better
than the exponential transformation in daily discharge normalization.

2- In addition to the ARMAX model, data normalization led to increased accuracy of the
ARMAX-ANN hybrid model results as well. Scenario 3 was the best modeling scenario
using the hybrid model.

3- Among 1331 specified input combinations for ARMAX modeling, the model with inputs
S(t-1), S(t-2), Q(t-1) and Q(t-2) was the most accurate and parsimonious.

4- Among 12 defined input combinations, the model with inputs ên t−1ð Þ; ên t−2ð Þ; ên t−3ð Þ;
ên t−4ð Þ; Ŝnl t−1ð Þ and Ŝnl t−1ð Þ showed the best results.

5- The ARMAX-ANN hybrid model exhibited superior performance over each individual
ANN and ARMAX model.

6- It is suggested to verify other linear and nonlinear models as part of a hybrid model in
terms of modeling daily time series with high irregular behavior.
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