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Abstract Quantification of the uncertainty associated with stormwater models should be
analyzed before using modelling results to make decisions on urban stormwater control and
management programs. In this study, the InfoWorks Integrated Catchment Modelling (ICM)
rainfall-runoff model was used to simulate hydrographs at the outfall of a catchment (drainage
area 8.3 ha, with 95% pervious areas) in Shenzhen, China. The model was calibrated and
validated for two rainfall events with Nash-Sutcliffe efficiency >0.81. The influence of rainfall,
model parameters and routing methods on outflow hydrograph of the catchment was system-
atically studied. The influence of rainfall was analyzed using generated rainfall distributions
with random errors and systematic errors (± 30% offsets). Random errors had less influence
than systematic errors on peak flow and runoff volume, especially for two rainfall events with
larger depths and longer durations. The Monte Carlo simulations using 500 parameter sets
were used to verify the equifinality of the nine model parameters and determine the prediction
uncertainty. Most of the monitored flows were within the uncertainty range. The influence of
two routing methods from rainfall excess to hydrograph was studied. The InfoWorks ICM
model incorporating double quasilinear reservoir routing was found to have a larger effect on
the simulated hydrographs for rainfall events having larger depths and longer durations than
using the U.S. EPA’s StormWater Management Model nonlinear reservoir routing method did.
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1 Introduction

In recent years, stormwater models that are used as design, optimization and evaluation tools
play a critical role in urban stormwater drainage management (Beck et al. 2017; Massoudieh
et al. 2017). Several commonly-used comprehensive urban stormwater simulation models
include the United States (U.S.) Environmental Protection Agency (EPA) Storm Water
Management Model (SWMM) (Baffaut and Delleur 1989), InfoWorks Integrated Catchment
Modeling (ICM) (Wallingford 2015), and the Danish Hydraulic Institute MIKE model
(Doulgeris et al. 2012). However, model predictions are subject to uncertainty for various
reasons and total elimination of uncertainty is not possible (Harremoës 2003). Therefore,
quantifying the uncertainty of model prediction is important in order to understand the
behavior of a model, assess the level of reliability of the model results and provide a robust
basis for their practical application. The uncertainty of model prediction is due to model inputs,
parameter selection and calibration based on limited rainfall events, model structure, and
approximation of natural processes for a model (Freni et al. 2009; Harmel and Smith 2007;
Miguntanna et al. 2010).

Interference factors such as evaporation, outsplash, wind and rain-gauge height above
ground may all affect the accuracy of rainfall measurement. Nandakumar and Mein
(1997) also determined that 10% deviation of evaporation resulted in 10% deviation of
runoff; however, 10% deviation of rainfall resulted in 35% deviation of runoff when
using the Monash model.

The influence of model parameters on simulation results should be assessed before the
simulation results are used in the decision-making process. The Generalized Likelihood
Uncertainty Estimation (GLUE) method (Beven and Binley 1992), Bayesian approach
(Bayes and Price 1763), Markov Chain Monte Carlo (MCMC) method (Kao and Hong
1996) and first-order error analysis (Melching and Yoon 1996) are commonly used to study
the prediction uncertainty resulted from model parameter selection. In this study, Monte Carlo
(MC) simulations were conducted to examine the equifinality and the influence or uncertainty
of model parameters on an outflow hydrograph. The equifinality (Beven and Freer 2001)
means different parameter sets may produce similar simulation results.

For runoff modeling in hydrology, model structural deficits arise primarily from process
misspecifications, insufficient spatial resolution, oversimplified empirical equations, and nu-
merical errors. The model structure for hydrological models depends on the selection of the
perceptual model and the conceptual/physical model. The influence of the model structure on
the model performance for catchment runoff, including high- and low-flow conditions, was
investigated by Butts et al. (2004) using an ensemble of two hydrological models (MIKE 11
and MIKE SHE) with different spatial resolutions and process descriptions.

In this paper, we systematically analyzed the influence of rainfall, model parameters and
catchment routing methods on outflow prediction using InfoWorks ICM (Digman et al. 2014;
Wallingford 2015). The aim of this study was to quantify uncertainties of outflow prediction
from this integrated stormwater model for decision-making in comprehensive water resources
management of the study catchment when the model was calibrated and validated using
available observed data from two rainfall events.
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2 Material and Methods

2.1 Study Area and Data

The study area is one of the 11 catchments located in the New District Park, an ecological
municipal park of 56 ha located in the Guang-Ming New District, Shenzhen, China. The
catchment has a drainage area of 8.3 ha, 95% of which is pervious (green space). The mean
annual temperature of the study region is 22 °C and the mean annual precipitation is 1837 mm,
most of which falls from April to September.

The rainfall data were recorded by a Watchdog 3554WD rain gauge in one-minute
intervals. Discharges were measured by a FL900 flowmeter installed in the catchment outfall
(Fig. 1). Six rainfall events used for the study were monitored in 2013 and observed outfall
discharges were available for only two rainfall events: May 19 and September 14, 2013. Data
from these two events were used to calibrate and validate the InfoWorks ICM model,
respectively. The rainfall data for the other four events were used in the uncertainty analysis.
Severe tropical storms on August 17 and 30, 2013 produced rainfall depths of more than
90 mm. The maximum 1-min rainfall intensities for all six events were similar (1.3–1.8 mm/
min). The rainfall event on May 19, 2013 had the highest average rainfall intensity (1.1 mm/
min) and the shortest duration (18 min). The two rainfall events for model calibration and
validation had similar and relatively small rainfall depths (19.9 mm and 18.3 mm) but quite
different durations (18 min and 70 min). The six rainfall events used in the study had durations
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Fig. 1 Subdivision of the catchment based on the manholes as nodes
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from 18 min to 344 min and depths from 18.3 to 139.9 mm. All these events allowed the study
to identify model uncertainties for a broad range of rainfall depth and duration events and to
understand whether or not the model works for heavy rainfall events and for longer duration
events after the calibration and validation.

2.2 Model Description

InfoWorks ICM incorporates the hydraulics and hydrology of natural watersheds and man-
made environments into a single integrated model. A rainfall–runoff model determines rainfall
losses, including initial losses, infiltration and evaporation. It then transfers the rainfall excess
into a runoff hydrograph (Viessman and Lewis 2003). Initial losses may be specified either as
absolute losses or losses as function of slope in InfoWorks ICM. The absolute loss method was
used and allows the modeler to input a constant initial rainfall loss (mm).

The InfoWorks ICM provides seven alternative runoff volume models—methods for
determining rainfall excess after initial rainfall losses (Wallingford 2015). In this study, the
fixed percentage model was used for impervious areas such as roofs and roads, and the Horton
model was used for pervious areas.

Several runoff routing models are available in InfoWorks ICM for simulating the storage
and transport of rainfall excess by surface drainage network before entering into the under-
ground stormwater pipelines in an urban catchment: (i) the double quasilinear reservoir
(DQLR) model, (ii) the SWMM nonlinear reservoir routing model, (iii) the Wallingford runoff
routing model, and (iv) the unit hydrograph model (Viessman and Lewis 2003). Both
kinematic- and dynamic-wave routing methods are available for the flow routing in stormwater
pipelines (Wallingford 2015).

2.3 Model Setup, Calibration and Validation

In this study, manholes were considered as model nodes linking underground stormwater pipes.
The Thiessen polygon tool of InfoWorks ICMwas used to automatically divide the catchment into
27 sub-catchments (Fig. 1). The sub-catchment data includes drainage area, width, slope, and
percent of impervious areas. The 27 sub-catchment areas range from 0.06 to 1.61 ha, the widths
from 14.3 to 71.6 m, and the land slopes from 0 to 7%. The model also requires meteorological
data, soil infiltration capability of pervious areas and underground stormwater pipelines informa-
tion. Only one set of model parameters was used for all 27 sub-catchments with similar land use
and soil conditions. The Nash–Sutcliffe efficiency (NSE) index (Nash and Sutcliffe 1970) was
chosen to evaluate the simulation results for model calibration and validation.

2.4 Methods for Uncertainty Analysis

The InfoWorks ICM model of the catchment (Fig. 1) after calibration and validation was then
used to systematically study the influence of rainfall, model parameters and routing methods
on outflow hydrographs.

2.4.1 Uncertainty from Rainfall

Rainfall data is a greater source of uncertainty in the runoff simulation results than evaporation,
air temperature or other meteorological data (Moradkhani and Sorooshian 2009). The rainfall
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inputs may have random errors and systematic errors. The random errors of rainfall were
modeled using ten rainfall distributions with random errors generated from

I*i ¼ I i 1−αð Þ ð1Þ
where I*i is the rainfall including the random error for the time step i; Ii is the measured rainfall
intensity;αIi is the random error; and the coefficientα is selected from a uniform distribution in the
range of (−0.5, 0.5) (Carpenter and Georgakakos 2004) using a random number generator.

Systematic errors in the rainfall measurements are mainly caused by the accuracy of the rain
gauges, and also whether the rainfall measured at a point location represents the rainfall in the
entire catchment. Molini et al. (2001) reported average absolute errors of measured rainfall to
be in the order of 10–30%. Therefore, in this study the systematic error in rainfall data was
assumed to be ±30% offset of the observed rainfall. The model uncertainty from rainfall inputs
on outflow prediction was first investigated using above generated rainfall time series with
random errors or systematic errors.

2.4.2 Uncertainty from Model Parameters

Nine model parameters (Table 1) were chosen for determining the model uncertainty and their
significance on simulated outfall hydrographs using the Monte Carlo method. Manning’s n
values for underground conduits, impervious and pervious surfaces are 0.11–0.015, 0.011–
0.033 and 0.1–0.8; the impervious and pervious depressions are 0.2–10 mm and 2–12 mm; the
runoff coefficient is 0.7–0.9; the initial infiltration rate, equilibrium infiltration rate, and decay
constant are 70–200 mm/h, 2–30 mm/h, and 2–7 h−1, respectively, based on recommendations
for InfoWorks ICM. Due to the lack of information regarding the distributions of the
parameters, a uniform distribution was adopted for sampling each parameter.

The NSE objective function and NSE threshold of 0.7 were selected and used to evaluate
the acceptability threshold of the model parameter values (Freni et al. 2008). The NSE was
calculated from simulated and observed flows for the rainfall event on May 19, 2013, and was
used to assess and verify the equifinality of the model parameters.

Table 1 Calibrated model parameters and statistical summary and the 90% parameter intervals of behavioral
model parameters (NSE ≥ 0.7)

Parameters Calibrated Min. Maxi. Average Deviation 5%, 95% intervals

n-Conduit 0.013 0.0110 0.0150 0.0130 0.0011 0.0114, 0.0148
nImper

a 0.013 0.0111 0.0330 0.0222 0.0063 0.0124, 0.0318
nPer 0.200 0.1022 0.7993 0.4564 0.2012 0.1416, 0.7668
DImper (mm) 2.0 0.20 8.54 3.80 2.16 0.69, 7.79
DPer (mm) 10.0 2.01 11.98 8.04 2.69 3.41, 11.74
C b 0.75 0.701 0.900 0.799 0.057 0.711, 0.889
fo (mm/h) c 76.0 70.41 199.90 135.96 36.99 78.02, 192.86
fc (mm/h) 2.5 2.06 29.94 15.85 8.03 3.37, 28.38
k (hr−1) 2.0 2.02 6.99 4.48 1.46 2.24, 6.77

a for the SWMM nonlinear reservoir routing model, the subscript BImper^ stands for impervious, BPer^ for
pervious surface
b for the fixed percentage method
c for Horton’s equation
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Latin Hypercube Sampling (LHS) was used to sample 500 sets of the nine model param-
eters (Table 1). The LHS method, proposed by McKay et al. (2000) as an improvement on
Monte Carlo sampling (Hastings 1970) facilitates access to a wider range of parameter values.
Since modelers can readily grasp the overall modeled results, it is widely used in model
parameter uncertainty analysis.

The model was run for each set of model parameters and the likelihood measure was
calculated using the modeled and measured flow at the outfall. If the likelihood measure
exceeded the NSE threshold, the simulation and the parameter set were considered to be
‘behavioral’ and were saved for the following analysis steps; if not, they were discarded as
‘non-behavioral’. For the behavioral parameter sets, the probability density distribution and
cumulative probability density distribution were obtained for each parameter in order to
quantify model parameter uncertainty.

The 5% and 95% percentiles (Table 1) of the behavioral parameter set were assumed to
represent the uncertainty bands in this study (Dotto et al. 2012); that is, the ‘true’ value of each
model parameter should lie within that percentile region. The 5% and 95% percentiles of the
simulated flows in each output time step were determined to give the 90% prediction interval
of simulated flow, quantifying the uncertainty due to those particular model parameters.

2.4.3 Uncertainty from Routing Methods

This study also focused on the uncertainty of the simulated runoff hydrographs for the catchment
routing methods for transforming the rainfall excess to the hydrograph. Two model scenarios (A
and B) were studied. The scenario A was used throughout the study for model calibration and
validation, and for sensitivity analysis of rainfall and model parameters. The overland flow routing
in SWMM solves the Manning formula and the continuity equation, and it is a hydraulic—not
hydrological—routing method. The overland flow routing in SWMM as an option under
InfoWorks ICM was classified as a nonlinear reservoir routing method used in scenario A.

For the scenario B, the overland flow routing model was the UK Wallingford Procedure
(Wallingford 1981). The DQLR method was applied in series (Eq. (2)) for each surface type
(two impervious areas and one pervious area) with the same storage–outflow relationship for
each hypothetical reservoir: S = λQ, where S is the storage and Q is the outflow of the
reservoir, and λ is a linear reservoir routing constant that is inversely proportional to the
running ten-minute average rainfall intensity (i10); therefore, λ is not a constant, but varies with
rainfall and thus leads to a quasilinear reservoir model (Price and Vojinovic 2011).

Q tð Þ þ 2λ
dQ tð Þ
dt

þ λ2 d
2Q tð Þ
dt2

¼ in ð2Þ

λ ¼ ci−0:39* λi* ¼ 1þ i10ð Þ=2 ð3Þ

whereQ(t) is the outflow of the two reservoirs as a function of time t; in is the net rainfall intensity
multiplied by catchment area; and c is an empirical coefficient, which is a function of the catchment
area and slope (Wallingford 1981). In the UK Wallingford method, the user specifies rainfall,
catchment slope and area, and a runoff routing parameter for impervious areas and another for
pervious areas. In this study, the runoff routing parameter was set to be 1, 1 and 4 for buildings,
roads and green space, respectively, as recommended by Wallingford (1981).
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3 Results and Discussion

3.1 Calibration and Validation Results

The simulated hydrographs at the outfall for the model calibration and validation
compared well with observed data (Fig. 2). The rainfall depth on May 19, 2013 for the
model calibration, was only 1.6 mm more than the rainfall depth on September 14, 2013
for the model validation. But the May event produced a much greater flow than occurred
in the September event. Its shorter duration (18 min.) and higher intensity (up to 1.8 mm/
min) produced a simulated peak discharge of 86.9 L/s. The longer-duration rainfall (1 h
10 min.) event on September 14 resulted in a simulated peak discharge of only 9.9 L/s.
The NSE values for model calibration and validation were 0.92 and 0.81, respectively,
which indicated satisfactory performance of the model. The manually calibrated model
parameters are summarized in Table 1.
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Fig. 2 Simulated and observed hydrographs (different scales on x- and y-axes) including uncertainty bounds of
simulated flow defined by 90% prediction intervals with rainfall hyetographs on (a) May 19, 2013, (b)
September 14, 2013
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3.2 Uncertainty Analysis of Rainfall

3.2.1 Random Rainfall Errors

For random error analysis, the first two events (April 25 and July 10, 2013) had relatively
small rainfall depths, and the last two events (August 17 and 30, 2013) had much larger rainfall
depths (Table 2). The statistical characteristics of the 10 rainfall distributions with random
errors summarized in Table 2 encompass adequate ranges of rainfall depth and peak rainfall
intensity for each event. The rainfall depth variation, taking the random errors into account,
was about 8–11%, but the variation in peak intensity was much larger (40–82%).

The InfoWorks ICM model was run for all 40 rainfall hyetographs using the calibrated model
parameters (Table 1). The simulated hydrographs for the four observed rainfall events are shown in
Fig. 3 together with maximum and minimum envelope curves for the discharges of 10 simulated
hydrographs from rainfall distributions with random errors. In addition to the envelope curves, the
uncertainty of simulated flow at the outlet on rainfall with the random errors was further quantified
by the peak discharge (Qp) variation, the average discharge variation and the variation in runoff
volume (Vrunoff in m

3) (Table 3). The average of all discharge variations for flows ≥5.0 L/s on the
hydrograph was calculated for each event to quantify the overall uncertainty or variation due to
random errors in the simulated outflow hydrograph. The calculated variations in Qp and averages
of discharge variations ranged from 25.5% to 45.7% and from 29.6% to 41.7%, respectively
(Table 3), because the peak intensity variations were 40% or more. The runoff volume in m3 was
calculated for each event by numerical integration. The calculated variations in Vrunoff ranged from
10.5% to 22.8%; these values were similar to the rainfall depth range values for the other events
except for the 8/17/2013 event.

3.2.2 Systematic Rainfall Errors

The four rainfall events were also used to quantify the uncertainty of simulated flow caused by
systematic errors of rainfall. Fig. 3 also shows the simulated hydrographs from rainfall

Table 2 Characteristics of observed and ten rainfall distributions with random errors generated from four
observed rainfall events

Parameters \ Date 4/25/2013 7/10/2013 8/17/2013 8/30/2013

Observed rainfall duration 6:43 1:05 4:56 5:44
Observed rainfall Tpeak

a 0:38 0:05 2:14 & 3:00 1:26
Observed rainfall depth (mm) 40.9 27.7 93.6 139.9
Maximum rainfall depth (mm) 42.6 28.8 98.4 145.9
Minimum rainfall depth (mm) 38.1 26.2 90.3 134.9
Rainfall depth variationb 11.0% 9.4% 8.7% 7.9%
Average rainfall depth (mm) 40.48 27.62 94.20 139.81
Standard deviation (mm) 1.64 0.99 2.54 3.84
Coefficient of Variationb 0.040 0.036 0.027 0.030
Observed ipeak (mm/min)c 1.50 1.30 1.80 1.80
Maximum ipeak(mm/min) 2.10 1.95 2.52 2.7
Minimum ipeak(mm/min) 1.43 0.88 1.80 1.80
ipeak variation

b 44.7% 82.3% 40.0% 50.0%

a Tpeak is time (hr:min) of peak rainfall from the beginning of the rainfall event
b variation (%) = (Maximum - Minimum)/Observed event quantity
c ipeak stands for peak rainfall intensity
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distributions having ±30% systematic errors. The constant ±30% offsets were applied to all
time intervals on the observed hyetographs. The outfall hydrographs show similar variations
with time for all three rainfall distributions because the hyetographs with systematic errors only
had the offsets but no time shift, and the same model parameters were used for all simulations.
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Fig. 3 Simulated hydrographs for observed rainfalls, maximum and minimum envelope curves for simulated
discharges using 10 rainfall inputs with random errors and using rainfalls with ±30% systematic errors for four
rainfall events in 2013: (a) April 25, (b) July 10, (c) August 17, and (d) August 30. Different scales are used on
the x- and y-axes for the four events
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The starting time of the runoff hydrographs for 70% observed rainfalls was 1–8 min later than
the simulated hydrographs for the observed rainfalls; for 130% observed rainfalls, the starting
time of the runoff hydrographs was 2–11 min earlier than for the simulated hydrographs for the
observed rainfalls (Fig. 3). No differences were seen in the peak times for any of the three
rainfall scenarios, which implied that the systematic errors in the rainfall measurement had
some influence on the runoff generation time, since the initial rainfall losses were identical for
all three rainfall hyetographs.

The hydrographs simulated from observed rainfalls, the variations of the peak flow Qp and the
total runoff volume Vrunoff between 130% and 70% observed rainfalls were compared. The
variations of Qp and Vrunoff (mm, normalized by area) were similar to the rainfall systematic errors
(± 30%) for the two rainfall events with relatively small rainfall depths (April 25 and July 10,
2013). The rainfall event on August 17, 2013 was comprised of a continuous and relatively high
rainfall intensity for 1.5 h, with a single large peak discharge (Fig. 3). The variations of Qp and
Vrunoff are −74.1 to 55.7% and −73.0 to 76.2% for the 70% and 130% rainfalls, respectively, which
were up to 2.5 times larger than the rainfall random errors. The overall variations forQp and Vrunoff
due to systematic errors were up to 129.8% and 149.2%, respectively. The rainfall event onAugust
30, 2013 consisted of rainfall over two separate time periods of approximately one hour in length
with a half-hour time period of lower intensity between the two. This resulted in two similar large
peak discharges (Fig. 3), and the variations of Qp and Vrunoff were −40.3 to 31.1% and −52.8 to
53.1% for 70% and 130% rainfalls, respectively.

Rainfall loss of pervious areas was determined by the Horton infiltration method, which gave a
high infiltration capacity at time t = 0 (fo = 76 mm/h) and decreased rapidly with time in the early
hours of the rainfall event (k = 2 h−1, Table 1). When the total rainfall depth was small and of short
duration (events April 25 and July 10, 2013), the rainfall loss showed a large increase with
increasing rainfall depth. For example, in the April 25, 2013 event the loss increased by 85.5%
(from 27.6 mm to 51.3 mm) when the rainfall increased by 60%. This effect is seen when the
Horton infiltration capacity exceeds the rainfall intensity for most of the rainfall event.

For the two events with larger rainfall depths and of longer durations (August 17 and 30,
2013), the rainfall loss was <3.2% increase for a 30% rainfall increase. This occurs when the
Horton infiltration capacity is close to the equilibrium infiltration rate (fc = 2.5 mm/h, Table 1)
and smaller than the rainfall intensity late in the rainfall event. Therefore, the peak discharge
and runoff volume variations are different for rainfall events of different depths and intensities

Table 3 Statistical summary of simulated hydrographs using ten rainfall hyetographs with random errors for
four observed rainfall events

Parameters \ Date 4/25/2013 7/10/2013 8/17/2013 8/30/2013

Qp (L/s, observed rainfall) 54.17 30.23 891.24 1023.21
Maximum Qp (L/s) 67.24 38.69 1060.39 1131.97
Minimum Qp (L/s) 42. 51 25.98 776.16 871.12
Maximum Qp variation

a 45.7% 42.0% 31.9% 25.5%
Average of discharge varationb 41.7% 36.5% 29.6% 30.1%
Vrunoff (m

3, observed rainfall) 120.44 80.3 2982.7 6478.72
Maximum Vrunoff (m

3) 125.59 83.9 3394.4 6973.46
Minimum Vrunoff (m

3) 111.64 75.4 2713.0 6048.89
Maximum Vrunoff variation

a 11.6% 10.5% 22.8% 14.3%

a variation = (Maximum - Minimum)/Observed quantity
b Discharge variation = [Qmax(t) – Qmin(t)]/Qobs(t), where Qmax(t), Qmin(t), Qobs(t) are simulated discharges at
different time of hydrographs plotted on Fig. 3
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from ±30% rainfall systematic errors. The rainfall systematic error could cause great uncer-
tainty of simulation results for the rainfall event with large depth and long duration.

3.3 Analysis of Model Parameter Uncertainty

3.3.1 Equifinality for Different Parameters

Parameter sets and corresponding NSE values for the Monte Carlo simulations using 500
parameter sets are shown in Fig. 4 for nine model parameters (Table 1). Although the values of
the parameters in each set were dissimilar, it was found in 440 of the 500 parameter sets that
the objective function values exceeded 0.7 (Fig. 3). From this it was inferred that the
equifinality principle was applicable to the model parameters selected for the catchment.
Traditional manual calibration methods of establishing calibrated model parameters had certain
limitations (Table 1). Fig. 4a shows that the depression storage in impervious areas was
strongly correlated with NSE, but the other parameters were not; this suggests that parameter
identification or selection for InfoWorks ICM has a high level of uncertainty. Zhao et al.
(2009), in a study using SWMM for a hydrological uncertainty analysis in Macao, also
concluded that depression storage in impervious areas was a sensitive parameter for simulated
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Fig. 4 Scatter plots of NSE: (a) likelihood for initial loss parameters and runoff coefficient used in InfoWorks
ICM model; (b) likelihood for Horton infiltration parameters for green spaces used in InfoWorks ICMmodel; (c)
likelihood for Manning roughness coefficient used in InfoWorks ICM model
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hydrographs. Using Monte Carlo simulations, parameter sets, but not one most optimized
parameter set, were identified for the InfoWorks ICM model of the study catchment.

The posterior probability distribution of depression storage D (mm) for impervious areas
was developed (Song 2014) and similar to a normal distribution with negative or left skewness,
whereas D for pervious areas had a trapezoidal distribution with the higher probability on the
higher D values or right skewness. These were both unlike their prior distributions, which were
uniform. Parameter uncertainty and identification were strongly related to their posterior
distribution, which is consistent with finding in a previous study (Sun and Yeh 1990). When
the posterior probability distribution differs markedly from the prior distribution, the model
performance is more sensitive to the parameter, and thus better-optimized parameter values or
ranges may be identified. The posterior distributions of the other parameters were similar to
their prior distributions (Song 2014); in such cases, the model is not sensitive to those
parameters and a lesser uncertainty is attached to their selection. Therefore, from the above
discussion, the selection of parameter D for impervious and pervious areas had a stronger
recognition and identification value than other parameters. For example, the rainfall depth on
May 19, 2013 was relatively small, and depression storage had a more significant effect on
model output than for higher rainfalls.

3.3.2 Prediction Uncertainty from Model Parameters

The Monte Carlo simulations identified 440 sets of behavioral parameters for the InfoWorks
ICM model when an NSE threshold of 0.7 was adopted. The statistical summary and 90%
parameter intervals (95% and 5% percentiles) of the nine model parameters are given in
Table 1. Most of the calibrated model parameters are within the range defining behavioral
parameters (Table 1). The calibrated infiltration parameters (fo and fc) had relatively low values
(outside the 90% parameter intervals) when only two rainfall events were used for model
calibration and validation (Fig. 2).

The likelihood functions for different NSE values (Fig. 4) were determined for the rainfall
event onMay 19, 2013 using observed hydrograph data. The 440 sets of behavioral parameters
identified from that rainfall event were applied to the rainfall event of September 14, 2013. The
90% prediction intervals (upper and lower bounds) of flow at the outlet are plotted in Fig. 2 to
show the bounds of uncertainty for the simulated runoff on those dates.

The observed peak flow on May 19 was 89.5 L/s, slightly larger than the upper bound of
the predicted peak (85.4 L/s, Fig. 2). The observed peak flow on September 14 was 10.8 L/s,
slightly smaller than the upper bound of the predicted peak (11.4 L/s). The most of observed
flows are contained within the uncertainty range (Fig. 2).

3.3.3 Uncertainty Analysis of Routing Methods

When observed rainfall hyetographs were used, the simulated outfall hydrographs for the four
rainfall events (Fig. 5) show similar variations with time in two different scenarios. These scenarios
examine the uncertainty of catchment routing methods, since hydrograph shapes are predominant-
ly determined by rainfall distributions. For the scenario B with the InfoWorks DQLR routing
model, the simulated hydrographs for the two smaller rainfall events (April 25 and July 10, 2013)
showed 3.0–4.7% attenuation in peak discharge and one minute of delay in the time of the peak.
For the two larger rainfall events of longer durations (August 17 and 30, 2013), the simulated
hydrographs for the scenario B showed higher peak discharges and larger runoff volumes, but no
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delay or earlier peak discharge time. The simulated peak discharges were 38.3% and 10.3% larger
than those in the scenario Awith the DQLR routing model, and simulated runoff volumes were
13.7% and 4.4% larger. For theDQLR routingmodel, the routing coefficient (Eq. (3)) is smaller for
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Fig. 5 Simulated hydrographs at the outfall for model structure scenarios A and B for four rainfall events in
2013: (a) April 25, (b) July 10, (c) August 17, and (d) August 30. Different scales in x- and y-axes are used for
the four events
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higher-intensity rainfall, which results in higher discharge (less attenuation) and smaller ponding
depth on the surface. The smaller ponding depth reduces the actual infiltration rate when the
Horton infiltration capacity exceeds the gross rainfall intensity. It seems that the storage constant
for the DQLR routing in InfoWorks ICM is smaller than the one in SWMM using the Manning
coefficient when the rainfall intensity is large.

4 Summary and Conclusions

This study focused on simulating discharge at the outfall from a small watershed (8.3 ha) with
a 95% of pervious area using InfoWorks ICM software. Summaries and main conclusions of
the study are given below:

(1) Model uncertainty from rainfall was studied using perturbed rainfall data with random
and systematic errors. Ten rainfall distributions were generated with random errors of 8–
11% in rainfall depths and 40–82% in peak rainfall intensity, resulting in 11–23%
variations in total runoff volume Vrunoff and 26–46% variations in peak discharge Qp.
Assumed systematic errors having ±30% offsets form observed rainfall distribution
resulted in similar variations (approximately ±30%) in Vrunoff and Qp for the two events
with relatively smaller depths (<41 mm) and shorter durations, but for the two events
with larger rainfall depths (>93 mm) and longer durations, variations in Vrunoff and Qp are
up to 2.5 times larger than the rainfall random errors. The overall variations for Qp and
Vrunoff due to the ±30% systematic errors were up to 129.8% and 149.2%.

(2) Monte Carlo simulations using 500 parameter sets developed from the LHS were
conducted to study the uncertainty of simulated outflow from nine model parameters
of InfoWorks ICM. The BEquifinality^ phenomenon was found to exist in model
parameters of InfoWorks ICM. Most of the monitored flows for the two events
(May 19 and September 14, 2013) are contained in the simulated uncertainty range.

(3) For the uncertainty of the routing methods in the InfoWorks ICMmodel, the hydrographs
simulated by the DQLR routing model for the two events with small rainfall depths are
almost the same as those from ICM’s SWMM nonlinear reservoir routing model;
however, the DQLR simulated hydrographs for the two rainfall events with larger depths
and longer durations had higher peak discharges, larger runoff volumes, and no delayed
or early peak time. Contributors to these differences included changes in the storage
constant with greater rainfall intensity, which further impacts on the actual filtration rate
when the Horton infiltration capacity is larger than the rainfall intensity.

The uncertainty analyses of rainfall, model parameters and routing methods from excess to
hydrograph in this study were for a catchment with 95% pervious areas and limited rainfall
events; therefore, some results may not be readily generalized for catchments in other regions
with different catchment and rainfall characteristics.
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