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Abstract Considering network topologies and structures of the artificial neural network
(ANN) used in the field of hydrology, one can categorize them into two different generic
types: feedforward and feedback (recurrent) networks. Different types of feedforward and
recurrent ANNs are available, but multilayer perceptron type of feedforward ANN is most
commonly used in hydrology for the development of wavelet coupled neural network (WNN)
models. This study is conducted to compare performance of the various wavelet based
feedforward artificial neural network (ANN) models. The feedforward ANN types used in
the study include the multilayer perceptron neural network (MLPNN), generalized
feedforward neural network (GFFNN), radial basis function neural network (RBFNN), mod-
ular neural network (MNN) and neuro-fuzzy neural network (NFNN) models. The rainfall-
runoff data of four catchments located in different hydro-climatic regions of the world is used
in the study. The discrete wavelet transformation (DWT) is used in the present study to
decompose input rainfall data using db8 wavelet function. A total of 220 models are developed
in this study to evaluate the performance of various feedforward neural network models.
Performance of the developed WNNmodels is compared with their counterpart simple models
developed without applying wavelet transformation (WT). The results of the study are further
compared with - multiple linear regression (MLR) model which suggest that the WNN models
outperformed their counterpart simple models. The hybrid wavelet models developed using
MLPNN, the GFFNN and the MNNmodels performed best among the six selected data driven
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models explored in the study. Moreover, performance of the three best models is found to be
similar and thus the hybrid wavelet GFFNN and the MNN models can be considered as an
alternative to the most commonly used hybrid WNN models developed using MLPNN. The
study further reveals that the wavelet coupled models outperformed their counterpart simple
models only with the parsimonious input vector.

Keywords Rainfall-runoff modelling .Wavelet transformation . Feedforward .Modular .

Generalized . Neural network

1 Introduction

The relationship between rainfall and runoff remains complex due to the spatial and temporal
variability of watersheds. Since the introduction of the rational method (Mulvany 1850) for
determination of peak runoff, hydrologists have proposed numerous empirical and process based
models for estimating rainfall-runoff relationships. Process-based models apply physical princi-
ples to model various constituents of physical processes of the hydrological cycle. The black-box
data-driven models, on the other hand, are primarily based on the measured data and map the
input-output relationship without giving consideration to the complex nature of the underlying
process. Among data-drivenmodels, the ANNs have appeared as powerful black-boxmodels and
received a great attention during last two decades. Themerits and shortcomings of using ANNs in
hydrology can be found in ASCE Task Committee (200a, b) and Abrahart et al. (2012).

Despite good performance of the ANNs in modelling of non-linear hydrological relation-
ships, yet these models may not be able to cope with non-stationary data if pre-processing of
input and/or output data is not performed (Cannas et al. 2006). Application of WT has been
found effective in dealing with this issue of non-stationary data (Nason and Von Sachs 1999).
The WT is a mathematical tool that improves the performance of hydrological models by
simultaneously considering both the spectral and the temporal information contained in the
data. It decomposes the main time series data into its sub-components. Thus, the hybrid
wavelet data driven models which use multi scale-input data, result in improved performance
by capturing useful information concealed within the main time series data. Recently, various
hydrological studies successfully applied WT to increase forecasting efficiency of neural
network models. Partal (2016), Wei et al. (2013) and Anctil and Tape (2004) applied wavelet
based data driven models for streamflow forecasting. Partal (2016) investigated wavelet based
multilinear regression (WMLR) model and WMLPNN model and concluded that the WMLR
can be considered as an alternative to the WMLPNN models. Wei et al. (2013) examined
MLPNN and WMLPNN models and found that theWMLPNN models are superior in
performance. Anctil and Tape (2004) compared WMLPNN and WNFNN models and found
that the WNFNN model have relatively better performance. Nourani et al. (2009a) found that
WMLPNN model can successfully predict short and long term rainfall events. Partal et al.
(2015) used WMLPNN model, WRBFNN model and wavelet coupled generalized regression
neural network (WGRFNN) model for precipitation forecasting and found WMLPNN model
to yield better results. Wang et al. (2009) and Kumar et al. (2015) applied WMLPNN models
for reservoir inflow prediction. Kim and Valde’s (2003) developed WMLPNN model for
drought forecasting whereas Mirbagheri et al. (2010) used WNFNNmodel for estimating river
suspended sediment concentration and Abghari et al. (2012) used WMLPNN model for daily
pan evaporation forecast.
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Among various types of available feedforward neural networks, selection of a suitable type
is very important and difficult task. Network type determines the number of connection
weights and the way information flows through the network. Although the application aspect
of different feedforward neural network models have been well documented, the selection
basis of these models have received very limited attention. Currently there are no scientific
basis reported in the literature for the selection of these models. For instance, MLPNN is
considered to produce accurate results, yet it does have some disadvantages. For example, it
takes more time to train an MLPNN network because of the number of parameters to be
determined. The RBFNN, on the other hand, is trained in a fraction of the time as it has fewer
parameters to be determined. Similarly, majority of the wavelet coupled neural network studies
are also considered to be limited as they either used the MLPNN or the neuro-fuzzy network
type only. Different network types may behave differently with increased number of inputs in
the case of wavelet coupled models. No study is reported to evaluate the effect of network type
on the performance of wavelet coupled neural network models. This study compares the
performance of wavelet coupled neural network models by considering numerous neural
network types.

Section 1 gives the introduction and review of literature. Section 2 describes the method-
ology used in this study. Moreover, the development of simple and the hybrid wavelet rainfall-
runoff models and the performance indices used to evaluate the models developed in this study
is also reported in section 2. The data used in the study is described in Section 3 while results
of the different developed models are elaborated in Section 4. The conclusions are provided in
Section 5.

2 Methodology

2.1 Wavelet Transformation

Grossmann and Morlet (1984) introduced wavelet transformation (WT) which is capable of
providing the time and frequency information simultaneously, hence giving the time-frequency
representation of the temporal data. The wavelet in WT refers to the window function that is of
finite length (the sinusoids used in the Fourier Transformation are of unlimited duration) and is
also oscillatory in nature. The WT is considered to be capable of revealing aspects of the
original time series data such as trends, breakdown points, and discontinuities that other signal
analysis techniques might miss (Adamowski and Sun 2010; Singh 2012).

There are two types of the wavelet transformations; Continuous Wavelet Transformation
(CWT) and Discrete Wavelet Transformation (DWT). The Continuous Wavelet Transform
(CWT) of a signal f(t) is defined as follows:

Wa;b tð Þ ¼ ∫þ∞
−∞ f tð Þ 1ffiffiffi

a
p ψ* t−b

a

� �
dt ð1Þ

where * refers to the complex conjugate and ψ(t) is called the wavelet function or the mother
wavelet. The entire range of the signal is analysed by the wavelet function by using the
parameters ‘a’ and ‘b’. The parameter ‘a’ and ‘b’ are the dilation (scale) and translation
(position) parameters, respectively. The calculation of CWT coefficients at each scale ‘a’ and
translation ‘b’ results in a large amount of data. This problem was resolved in the DWTwhich
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operates scaling (low pass filter) and wavelet (High pass filter) functions. The DWT scales and
positions are based on power of two (dyadic scales and positions) and can be defined for a
discrete time series f(t), which occurs at any time t as;

W a; bð ÞD ¼ 2
− j
.

2
∫ j¼ J
j¼1ψ

* 2
− j
.

2
−k

 !
f tð Þdt ð2Þ

where the real numbers, j and k are the integers which control the wavelet dilation and
translation, respectively. More details on the DWT can be found in many text books
including Daubechies and Bates (1993) and Addison (2002).

2.2 Data Driven Models

2.2.1 Multiple Linear Regression (MLR)

MLR is a statistical approach to modelling the relationship between a dependent variable y and
independent variables x1, x2…….xm which can be expressed as:

y ¼ aþ b1x1 þ b2x2 þ…þ bnxn ð3Þ
a, b1, b2, bn are the coefficients which are evaluated in this study using the least square

method and the training data set.

2.2.2 Multilayer Perceptron Neural Network (MLPNN)

The MLPNN consists of several neurons (computational elements) arranged in a series of
different layers. Typically, it consists of an input layer, hidden layer and an output layer. A
layer usually contains a group of neurons each of which has the same pattern of connections to
the neurons in other layers. Each layer has a different role in overall operation of the network.
Each neuron is connected to the neuron in the next layer through connections called weights.
Each neuron receives an array of inputs and produces a single output. The output of a neuron
in the input layer will be the input for the neurons in hidden layer. Similarly, the output of the
neuron in the hidden layer will be the input for the neurons in the output layer. Each neuron in
the hidden and output layer processes its input by a mathematical function known as the
neuron transfer function. However, in the case of neurons in the input layer the transfer
function is the identity function. The neurons in the input layer have connections with the
neuron in the hidden layer while the neuron in the output layer is only connected to the neuron
in the hidden layer. There is no direct connection between the neuron in the input layer with
those neurons in the output layer. MLPNN is considered as the the most widely used neural
network type in various application of hydrology.

2.2.3 Generalized Feed Forward Neural Network (GFFNN)

The GFFNN is a simplification of the MLPNN such that connections can jump over one or
more layers. The GFFNN theoretically can solve any problem that a MLPNN can solve.
However, in practice, GFFNN can often solve problems much more efficiently. A classic
example of this is the two-spiral problem (Hassoun 1995). The advantage of GFFNN is in the
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ability to project activities forward by bypassing layers. As a result, the training of the layers
closer to the input becomes much more efficient. The architecture of GFFNN, having two
hidden layers is illustrated in Fig. 1. The circles represents processing elements (PEs) called
neurons arranged in the input, hidden and output layers. The lines represent weighted
connections between neurons. By adapting its weights, the network evolves towards an
optimal solution. The back propagation algorithm is normally used for training of the
GFFNN which propagates the error through the network and allows adaption of the hidden
neurons weights.

2.2.4 Radial Basis Function Neural Network (RBFNN)

The RBFNN closely resembles the configuration of MLPNN. It was first proposed by Luo and
Unbehauen (1998) as an alternative to the MLPNN. Similar to the MLPNN, the RBFNN has
three layers, namely, the input, the hidden and the output layer. The hidden layer uses Gaussian
transfer functions, rather than the standard sigmoidal functions employed by the MLPNN.
More details on RBFNN can be found in Waszczyszyn (1999).

2.2.5 Modular Neural Network (MNN)

Modular feed forward networks are a special class of MLPNN, such that layers are segmented
into independentmodules. All modules are functionally integrated and eachmodule operates on
separate inputs to accomplish some sub-task of the neural network’s global task. This tends to
create some structure within the topology (i.e. how the connections are made), which will foster
specialization of function in each sub-module. In contrast to MLPNN, the modular networks do
not have full interconnectivity between their layers. Therefore, a smaller number of weights are
required for the same sized network (i.e. same number of PEs). This tends to speed up training
time and reduce the number of required training data samples. A MNN generally trains faster

Input Layer

Hidden Layer

Output Layer

Fig. 1 Schematic diagram of generalized feed forward neural network
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than aMLPNN, due to its Bshort-cut^ connections to the output, aiding in the weight adaptation
for the hidden and input layers. There are many ways to segment aMNN into modules. There is
no strict rule available to select best modular topology based on the data. The schematic
diagram of MNN along with topology used in the present study is shown in Fig. 2.

2.2.6 Co-Active Neuro-Fuzzy Inference System (CANFIS)

The CANFIS is considered as the more general class of ANFIS introduced byMaier and Dandy
(2000). CANFIS model integrates the modular neural network with the fuzzy inference system
(FIS) in the same topology. An FIS is a system that uses the fuzzy set theory to map inputs to
outputs. An adaptive network is a feed-forward network which employs a collection of
modifiable parameters for determining the output of the network. Like other neural networks,
an adaptive network also consists of a set of nodes connected through directional links and each
node is a process unit that performs a static node function on its incoming signal to generate the
signal output. Unlike other neural networks, the links in an adaptive network only indicate the
flow direction of signals between nodes and no weights are associated with these links.

The CANFIS architecture generally uses a neural network learning algorithm for construct-
ing a set of fuzzy-if-then rules with appropriate membership function (MF) from the stipulated
input-output pairs. The fundamental component of CANFIS is a fuzzy axon which applies MF
to the inputs. The present study uses the well-known fuzzy structure suggested by Takagi and
Sugeno (1985) owing to its simplicity. Also, this structure suits well for multi-input and single-
input system. More details on CANFIS can be found in Krishnapura and Jutan (1997) and
Shoaib et al. (2016).

2.3 Development of Wavelet Coupled Data Driven Models

In this study, wavelet coupled data driven models are developed by integrating them with the
DWT.. In order to examine impact of WT on model performance, the models are developed

Input Layer

Output Layer

Hidden Layer

Modules

Fig. 2 Schematic diagram of modular neural network
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with and without WT. The DWT is used to decompose the daily observed rainfall into
approximations and details. The Mallat’s algorithm (Mallat 1989) is used in the present study
for DWT as it is the most efficient algorithm. The following two options are considered in
order to observe the impact of WT on the performance of selected rainfall-runoff data driven
rainfall models.

Option 1: Develop the models with observed rainfall as input and observed discharge as
output without applyingWTon input rainfall data. These models are referred to as Simple
models in this study
Option 2: Develop the coupled wavelet rainfall-runoff models with wavelet transformed
rainfall data as the input and the observed discharge as the output. These models are
referred to as wavelet models.

2.4 Flow Duration Curves (FDCs)

Flow Duration Curves (FDCs) are used to test ability of the developed models to capture low,
medium and high flows of the observed hydrograph. The FDCs illustrate the percentage of
time a given flow was equalled or exceeded during a specified period of time. From the FDC,
the 10 percentile flow, the flow that is equalled or exceeded 10% of the period of record, can be
considered as high flow percentile. Likewise, 11 to 89 percentile flow is considered as medium
flow percentile while 90 percentile flows are considered as low flow percentile. The medium
flow percentile can be further divided in to high medium flow percentile and low medium flow
percentile from 11 to 49 percentile and 50 to 89 percentile flows, respectively.

2.5 Performance Indicators

Statistical measures of goodness of fit can be used to evaluate performance of the developed
models. Two statistical measures, namely, the Root Mean Squared Error (RMSE) and the
Nash-Sutcliffe Efficiency (NSE) (Nash and Sutcliffe 1970) are used in the present study to
measure performance of the models. These two indicators are defined by the following
equations:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
∑N

i¼1 Qobs−Qmodð Þ2
r

ð4Þ

NSE ¼ 1−
∑N

i¼1 Qobs−Qmodð Þ2
∑N

i¼1 Qobs−Qobsð Þ2 ð5Þ

where N is the total number of observations, Qobs and Qmod are the observed and modelled

discharges respectively, and Qobs is the mean of observed discharge of training/calibration
data. Eq. (5) is multiplied by 100 to express NSE in terms of percentage.

The RMSE is used to measure the estimated output accuracy. A RMSE value of zero
indicates perfect match between the estimated and the observed outputs. Similarly, a higher
value of RMSE suggests that there is no match between the estimated and the observed output.
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Karunanithi et al. (1994) suggested that the RMSE value is a good measure for indicating the
goodness of fit at high flows. Likewise, the NSE provides a measure of the capacity of the
model to predict observed values. In general, high values of NSE (up to 100%) and small
values for RMSE indicate a good model. These two statistical measures can be used to
evaluate performance of hydrological models satisfactorily (Legates and McCabe 1999).

3 Study Area and Data

The daily rainfall runoff data of four catchments located in different hydrological conditions in
the world is used in the present study. The four selected catchments are the Baihe and Yanbian
catchments located in China, the Brosna catchment located in Ireland and the Nan catchment
located in Thailand.

The Baihe catchment is a sub-basin of Upper Hanjian River basin. The Hanjian River is the
largest tributary of the Yangtze River in China, covering a total drainage area of approximately
151,000 km2 (340 30′- 300 49′ N, 1060 14′- 1140 56′E) with a total length of 1577 km. The
altitude of the basin decreases from 3500 m in the northwest to 88 m at the Danjiangkou
reservoir in the southeast (Sun et al. 2014). The Hanjian River is about 737 km long from
northwest to Baihe station in the southeast. The average width of the main stream of Hanjiang is
about 200–300 m with an average slope of 6% and surrounded by high and steep mountains,
narrow valleys and swift torrents. Normally, evaporation is greater than rainfall from November
to April and in August, whereas rainfall is less in the other months resulted in low evaporation
as well. The daily rainfall data for a period of eight years starting from 1st January1972 onwards
from nineteen rain gauge stations and three hydrological stations (having rainfall data recording
facility) are used to obtain lumped daily average rainfall. The concurrent discharge data used in
the study is the daily averaged data measured at the Baihe station. The Yanbian catchment is
also located in the monsoon climatic region of China. The rainfall occurs mainly during the
summer when the rainfall is greater than the evaporation. The river flow rate is also high during
this period. The peaks of the rainfall usually occur between June and September while discharge
peaks mainly occur between July and September. The flood hydrographs have narrow and high
peaks. Most flooding happens during the wet season that lasts from June to October, and the
flow rate gradually recedes to reach critically low levels from November to May until the rains
start in June. The summers are generally hot while winters are mild to cold in this humid
climatic regions. The Brosna catchment located in Ireland has a very flat topography except for
some undulations caused by glacial deposits. There is no noticeable evidence of substantial
groundwater movement across the topographical boundary of the catchment. Daily rainfall data
for a period of ten years (1st January1969 to 31st December 1978) are lumped by averaging the
data from four rain gauge stations. The concurrent discharge data used in the study is the daily
averaged data measured at the Ferbane station. The Nan river basin is located in Thailand and
topographically it is a plain area surrounded by mountains. The overall climate of the area is
tropical monsoon and categorized by winter, summer and rainy seasons. The area is affected by
the northeast and southwest monsoons. The rainy season, accomplished by the southwest
monsoon, persists from mid-May until the end of October. July and August are usually months
of strong rainfall. During the winter season, the weather is cold and dry because of the northeast
monsoons, commencing in November and ending in February. From February until mid-May
the weather is slightly warm. More than 80 % of the rainfall is concentrated in the wet season.
Both Yanbian and Nan catchments are located in humid/monsoon climatic zones. Humid
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climate is associated with an excess of moisture from the precipitation. A brief detail of these
catchments is presented in Table 1 and 2. The data is divided into two parts, first part for
training/calibration and the second part for testing/validation purposes. About three quarters of
the data was used for training purposes while the remaining one quarter was used for testing
purposes in the present study.

Sample size is very much important for a data driven models to make a reasonable accurate
estimate. A larger sized sample is normally preferred as it helps to better comprehend structure
and configuration of the data. However, a long time series data does not inevitably supposed to
have additional information, since there can be several repetitions of similar type of information
in the time series data (Wagener et al. 2003). This may result only in increasing the computational
time and numerous over-fit series rather than refining the predicting efficacy (Gaweda et al. 2001;
Fernando et al. 2009). Normally, it is suggested that the sample size must not be lesser than the
number of parameters used in the model (Hyndman and Kostenko 2007). Therefore, a sample
size of eight years (2918 data points) for Brosna catchment and six years (2190 data points) for
Baihe, Yanbian andNan catchments is used in present study for training of the developedmodels.

4 Results and Discussion

4.1 Selection of Input Vector

The performance of rainfall-runoff data driven models is dependent on the selection of
appropriate input vector. The common approach for input selection of data driven models is
the selection of input vector comprising of sequential time series data which starts from
containing only 1-day lagged time series data in the input vector and then modifying the
external input vector by successively adding one more lag time series into input vector and this
continues up to a specific lag time (e.g. Furundzic 1998; Tokar and Johnson 1999; Riad et al.
2004; Chua et al. 2008; Moosavi et al. 2013).

The present study investigates the size of input vector by considering the following five
input vectors.

1. M1 r(i-1)
2. M2 r(i-1), r(i-2)
3. M3 r(i-1), r(i-2), r(i-3)
4. M4 r(i-1), r(i-2), r(i-3), r(i-4)
5. M5 r(i-1), r(i-2), r(i-3), r(i-4), r(i-5)

Table 1 Summary description of test catchments of data used

Catchment Area Calibration
Period

Verification
Period

Data
starting

Climate Topography

Km2 (years) (years) date

Baihe (China) 61780 6 2 1/01/1972 Semi-arid Mountainous
Brosna (Ireland) 1207 8 2 1/01/1969 Temperate Flat
Nan (Thailand) 4609 6 3 1/04/1978 Humid Flat
Yanbian

(China)
2350 6 2 1/01/1978 Humid Flat to Mountainous
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The first input vector M1 contains only 1-day lagged rainfall r(i-1) in input vector. The input
vector M2 is obtained by adding lagged-2 day rainfall r(i-2) in M1. Likewise, M3 and M4 are
obtained by adding lagged-3 day rainfall series r(i-3) in M2 and r(i-4) in M3 respectively.
Finally, M5 is obtained by adding lagged-5 day r(i-5) rainfall series in M4.

4.2 Selection of Mother Wavelet Function

The performance of different wavelet coupled based models is very sensitive to the selection of
the mother wavelet function to be used for transformation of data using DWT. A number of
wavelet families are available, each having different members. Examples of these families
include the most popular Daubechies db wavelet family containing db2, db3, db4, db5, db6,
db7, db8, db9 and db10 members and the Coiflet wavelet family having Coif1, Coif2, Coif3,
Coif4, Coif 5 as members (Daubechies and Bates 1993). These different wavelet functions are
characterized by their distinctive features including the region of support and the number of
vanishing moments. The region of support of a wavelet is associated with the span length of
the wavelet which affects its feature localization properties of a signal and the vanishing
moment limits the wavelet’s ability to represent polynomial behaviour or information in a
signal. The details of different wavelet families can be found in many text books such as
Daubechies and Bates (1993) and Addison (2002). The present study employed the db8
wavelet function to decompose the input rainfall data. The db8 wavelet function with eight
vanishing moments has the ability to best describe the temporal and the spectral information in
the input rainfall data, (Shoaib et al. 2014, 2015, 2016).

4.3 Selection of Decomposition Level

The choice of suitable decomposition level in the development of wavelet coupled data driven
models is vital. A DWT decomposition consists of Log2N levels/stages at most. Aussem et al.
(1998) and Nourani et al. (2009a, b) used the following equation to calculate suitable
decomposition level:

L ¼ int log Nð Þð Þ ð5Þ

Table 2 Statistical summary of data of test catchments

Catchment Data type Calibration Period Validation Period

Max. (mm/d) Avg. (mm/d) Cv Max. (mm/d) Avg. (mm/d) Cv

Baihe Rainfall 47.08 2.59 2.17 79.98 2.48 2.53
Evaporation 12.80 2.89 0.80 8.10 2.53 0.71
Discharge 28.25 1.04 1.89 22.66 0.78 2.23

Brosna Rainfall 32.67 2.20 1.63 27.56 2.47 1.51
Evaporation 9.80 1.31 1.04 6.90 1.32 1.04
Discharge 6.94 0.98 0.83 6.62 1.22 0.86

Nan Rainfall 128.01 3.89 2.39 113.83 4.05 2.33
Evaporation 4.70 3.33 0.20 4.70 3.33 0.20
Discharge 41.20 1.82 1.68 25.78 1.82 1.68

Yanbian Rainfall 70.53 3.28 2.40 72.07 3.36 2.42
Evaporation 17.70 5.79 0.58 15.60 6.08 0.55
Discharge 29.56 2.55 1.36 22.43 2.65 1.32
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where L is the level and N is the total data points in data. This equation was derived for fully
autoregressive data by only considering the length of data without giving attention to the
seasonal signature of the hydrologic process (Nourani et al. 2011). With N = 730 testing data
points in the present study, the L value is calculated as three by using Eq. (5) which contains
one approximation at level three ‘a3’ and three details ‘d1’ and ‘d2’ and ‘d3’. Hence, using
decomposition at level 3, only small temporal and spectral variation of input rainfall data may
be considered. In the present study, the daily observed rainfall data of two selected catchments
is transformed by DWT using the db8 mother wavelet functions. The input rainfall data is
decomposed up to maximum decomposition level nine as suggested by Shoaib et al. (2014).
The decomposition of data at level nine contains one large scale (lower frequency) sub-signal
approximation (a9) and nine small scale (higher frequency) sub-signals detail (d1, d2, d3, d4, d5,
d6, d7, d8 and d9) in order to get the temporal and the spectral information contained in the
original time series rainfall data. The detail sub-series d1 corresponds to time series of 2-day
mode which represents the features of original data discernible at a scale of up to two days. The
d2 sub-series correspond to a 4-day mode, which represents features detectable at a scale of 2–
4 days. Likewise, d3 corresponds to 8-day mode, d4 to 16-day mode, d5 to 32-day mode, d6 to
64-day mode, d7 to 128-day mode, d8 to 256-day mode and d9 to 512-day mode. All these ten
data series are used as input for developing wavelet coupled data driven models in this study,
except for the wavelet coupled CANFIS model because of the exponential relationship
between the number of inputs and the number of internal processing elements in case of
neuro-fuzzy modelling.

4.4 Simple and Wavelet Coupled Data Driven Models

Firstly, simple neural network (SNN) models including the MLR, MLPNN, GFFNN, MNN,
RBFNN and CANFIS models were developed without applying any data pre-processing
(wavelet transformation) on the rainfall data to simulate the rainfall-runoff transformation
process of the two selected catchments. The observed daily discharge is taken as the target
(output) and the observed rainfall is used as the input. The selected simple models of MLPNN,
GFFNN, MNN, RBFNN and CANFIS are comprised of three layers; input, hidden and output
layer. The input layer of all SNN models contain one neuron with input vector M1 to five
neurons with input vector M5.

The wavelet coupled neural network (WNN) models are developed next using the wavelet
transformed rainfall data as input and the observed discharge as the target output. The input
layers of all WNN models except CANFIS contain ten neurons with input vector M1 to fifty
neurons with input vector M5. As an exponential relationship exists between the number of
input variables and the number of internal processing elements in case of the CANFIS model,
all wavelet transformed data series cannot be used. To avoid this, a special procedure is
adopted as suggested by Krishnapura and Jutan (1997) and Nourani et al. (2011). For this,
firstly a correlation analysis is performed between each wavelet sub-time series and the
observed discharge. It is revealed from the correlation analysis that some of the sub-signal/
coefficient has a very poor correlation with the observed discharge. Based on the correlation
analysis, the poorly correlated coefficients are eliminated and a new series is formed by adding
the strongly correlated coefficients.

The number of neurons in the output layer is fixed as one for all the SNN and WNN
models developed in the present study. The selection of the number of neurons in the hidden
layer is important for better enhancing the SNN and WNN models performance. The
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selection of the appropriate number of neurons in the hidden layer is done by trial and error
procedure in the present study. This is accomplished by training the network and evaluating
its performance over a range of different increasing values of number of hidden layer neurons
in order to obtain near maximum efficiency with as few neurons as necessary (Hammerstrom
1993). Similar to the number of neurons in the hidden layer of MLPNN, GFFNN and MNN
models, there is also no basic rule to find the number of MF’s in the CANFIS model and
these are determined in the present study iteratively. However, large number of MF’s should
be avoided to reduce the computational time and effort. The number of MF’s in the present
study is selected by trial and error. The sigmoid activation function is used for the neurons of
the hidden and the output layer for the SNN and WNN models except for RBFNN and the
CANFIS models. The RBFNN models use Gaussian transfer function in the RBF/hidden
layer. For simple and wavelet coupled CANFIS models, the generalized bell shaped function
is used as the membership function (Jang 1993) in hidden layer, as it is considered to be
more flexible because it has three parameters to modify, versus two parameters for the
Gaussian function. Training/calibration is a process of adjusting connection weights in the
network so that the network’s response best matches desired response (Muttil and Chau
2006). The simple and the wavelet coupled models used in the study are trained in a process
called supervised learning. In supervised learning, the input and output are repeatedly fed
into the neural network. With each presentation of input data, the model output is matched
with the given target output and an error is calculated. This error is back propagated through
the network to adjust the weights with the goal of minimizing the error and achieving
simulation closer and closer to the desired target output. Learning in the RBFNN is
conducted in two stages: first for the hidden layer, and then for the output layer. The centres
and widths of the gaussians are set by unsupervised learning rules which uses a competitive
rule with full conscience. The Levenberg-Marquardt algorithm (LMA) (Levenberg 1944;
Marquardt 1963) is used in the current study to train all selected SNN and WNN models
because it is considered to be fast, accurate and reliable (Adamowski and Sun 2010). It is an
iterative algorithm that locates the minimum function value which is expressed as the sum of
squares of nonlinear functions. LMA is a combination of nonlinear optimization techniques
using the steepest descent combined with the Gauss-Newton method to solve a set of
nonlinear equations using least-squares. The stopping criteria for training of all the developed
models in the present study is either a maximum of 1000 epochs or training is set to
terminate when the mean squared error (MSE) of the cross validation testing data set begins
to increase. This is an indication that the network has begun to overtrain. Overtraining is
when the model simply memorizes the training set and is unable to generalize the problem.
The trained models are then tested by presenting different sets of two years rainfall-runoff
data of the selected catchments it has not been trained with. The models are re-trained by
changing the number of neurons in the hidden layer, if it failed to perform satisfactorily
during testing phase. Testing of the network ensures that it has learned the general patterns of
the system and has not simply memorized a given set of data.

The performance of the developed SNN and WNN models are determined in terms of
performance indicators of NSE (%) and the RMSE (m3/s). Variation of NSE for Baihe, Brosna,
Nan and Yanbian catchments is presented in Tables 3, 4, 5 and 6 respectively while Tables 7, 8,
9 and 10 shows corresponding RMSE variation for all the input vectors considered in this
study. Examination of Table 3 reveals that for all SNN models including MLR, MLPNN,
GFNN, MNN, RBFNN and CANFIS, the value of NSE (%) is found minimum for input
vector M1 and maximum for input vector M5. The input vector M1 contains only 1-day lagged
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rainfall data series while input vector M5 contains all rainfall data series from 1-day up to 5-day
lagged. It can also be seen from Table 3 that the performance of all WNN models is found
superior relative to their counterpart SNN models for all the input vectors M1 to M5.
Furthermore, Table 3 suggested that the performance of simple and wavelet coupled
MLPNN, GFNN and MNN is found better relative to their counterpart MLR, RBFNN and

Table 3 Variation of NSE (%) for SNN and WNN Models (Baihe catchment)

Simple Wavelet

M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

MLR
Training 4.54 20.43 48.86 60.92 65.87
Testing 3.40 21.26 55.55 64.34 69.91

MLPNN
Training 3.60 12.30 28.72 70.72 78.10 64.69 84.28 88.88 86.78 88.85
Testing 3.60 10.97 27.31 69.31 76.48 60.75 84.45 85.26 85.57 88.64

GFNN
Training 4.19 20.19 56.89 73.55 88.57 62.74 83.73 84.01 93.13 83.11
Testing 2.09 18.54 53.69 70.17 84.82 56.63 82.35 83.04 87.10 82.00

MNN
Training 6.15 24.00 63.04 75.37 82.59 61.83 88.76 87.15 87.83 86.70
Testing 6.62 23.29 61.90 74.41 80.35 57.79 83.48 86.51 86.11 83.18

RBFNN
Training 3.96 11.81 12.36 17.76 43.70 22.46 34.54 35.54 49.79 60.78
Testing 2.33 10.55 11.11 16.43 43.31 21.92 30.02 31.70 45.69 57.67

CANFIS
Training 4.41 21.91 56.66 68.91 78.13 24.17 64.96 73.44 73.03 78.76
Testing 4.45 17.29 56.11 66.70 74.30 23.40 60.56 63.41 73.59 70.69

Table 4 Variation of NSE (%) for SNN and WNN Models (Brosna catchment)

Simple Wavelet

M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

MLR
Training 1.67 9.60 17.61 20.83 23.31
Testing 2.24 12.09 21.08 25.14 27.92

MLPNN
Training 4.30 11.92 19.52 24.03 28.06 68.01 69.05 68.01 68.80 60.26
Testing 4.74 12.50 21.54 26.60 31.39 48.08 63.47 63.09 65.59 52.52

GFNN
Training 2.32 11.34 19.06 22.43 28.07 51.73 65.29 64.08 63.38 51.97
Testing 7.39 13.67 23.54 28.24 32.50 50.28 61.96 63.87 63.07 45.78

MNN
Training 4.58 11.86 18.19 24.53 28.27 52.28 69.05 68.01 68.80 60.26
Testing 4.44 13.13 23.51 27.66 31.69 48.08 63.47 63.09 65.59 52.52

RBFNN
Training 1.46 10.80 14.22 19.13 20.12 18.17 23.35 31.02 32.68 27.30
Testing 2.19 12.44 16.03 22.80 25.81 18.74 25.02 26.04 29.82 26.95

CANFIS
Training 3.04 9.96 16.52 19.21 23.18 9.08 17.11 21.08 22.82 24.77
Testing 6.05 12.24 19.65 21.99 29.87 12.04 21.13 23.79 28.99 29.66
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CANFIS models. Table 7 presents RMSE values (cumecs) for the all the SNN and WNN
models for Baihe catchment with all the input vectors considered in the study. It is apparent
from Table 7 that all the SNN models yielded best results with input vector M5 by having
minimum value of RMSE and worst results with input vector M1 by having maximum value. It
is also evident that all the WNN models gives best results relative to their counterpart SNN

Table 5 Variation of NSE (%) for SNN and WNN Models (Nan catchment)

Simple Wavelet

M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

MLR
Training 2.83 5.64 8.22 10.70 15.33
Testing 3.86 6.29 8.60 10.78 13.84

MLPNN
Training 7.17 9.43 10.46 13.97 16.66 51.99 68.28 80.51 78.81 79.27
Testing 5.14 6.29 8.56 10.35 13.98 49.90 64.02 71.03 72.72 72.72

GFNN
Training 5.97 7.02 9.50 12.94 16.89 47.51 65.06 67.93 70.44 76.84
Testing 5.37 6.59 8.82 10.44 13.36 43.80 61.59 68.02 70.41 67.80

MNN
Training 5.89 7.54 9.89 12.38 15.96 48.58 72.36 77.70 79.52 82.46
Testing 4.86 6.73 8.93 10.72 13.58 40.62 67.00 67.71 75.39 76.15

RBFNN
Training 4.11 6.50 8.47 11.59 13.99 26.15 34.57 42.77 61.00 60.89
Testing 4.43 6.53 8.68 10.28 13.48 27.35 34.30 37.40 56.73 59.04

CANFIS
Training 5.70 5.44 7.18 7.72 10.33 36.14 37.45 38.60 38.17 40.18
Testing 4.82 5.68 7.18 8.11 10.37 36.06 36.66 35.74 34.48 34.66

Table 6 Variation of NSE (%) for SNN and WNN Models (Yanbian catchment)

Simple Wavelet

M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

MLR
Training 14.28 38.81 49.82 56.65 60.90
Testing 13.36 36.30 48.16 54.51 57.71

MLPNN
Training 14.28 38.81 49.82 56.65 60.90 54.44 83.34 83.82 84.93 84.10
Testing 13.36 36.19 48.16 54.51 57.71 50.50 80.50 81.99 81.81 81.33

GFNN
Training 9.28 42.71 51.96 58.45 61.75 57.83 79.96 83.02 89.18 85.33
Testing 5.70 42.69 50.48 57.05 58.83 54.40 73.43 81.71 85.23 82.50

MNN
Training 10.51 42.31 52.48 58.18 62.53 56.89 84.08 90.37 86.71 86.10
Testing 8.62 42.35 51.35 57.24 60.72 52.77 80.91 85.27 82.13 82.17

RBFNN
Training 10.49 34.91 44.51 50.42 54.06 20.25 42.12 42.82 45.25 54.90
Testing 11.57 33.08 44.90 50.04 53.17 19.99 39.63 39.69 39.48 50.11

CANFIS
Training 14.31 32.10 44.16 52.98 55.99 48.93 51.37 57.18 60.64 60.59
Testing 14.22 30.52 42.60 49.70 51.90 45.81 51.12 52.61 55.04 60.03
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models by yielding smaller RMSE values. Moreover, performance of simple wavelet coupled
MLPNN, GFNN and MNNmodels in terms of RMSE values is found higher (smaller value of
RMSE) than their counterpart MLR, RBFNN and CANFIS models. Tables 4 and 8 demon-
strate the NSE (%) and RMSE (cumecs) values respectively, for Brosna catchment.
Examination of Tables 4 and 8 reveals results which are quite similar to Baihe catchment.

Table 7 Variation of RMSE (cumecs) for SNN and WNN Models (Baihe catchment)

Simple Wavelet

M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

MLR
Training 1368 1249 1001 875 818
Testing 1236 1116 838 751 690

MLPNN
Training 1375 1311 1182 758 655 832 555 467 509 468
Testing 1235 1187 1072 697 610 788 496 483 478 424

GFNN
Training 1370 1251 919 720 473 855 565 560 367 575
Testing 1244 1135 856 687 490 828 528 518 452 534

MNN
Training 1356 1221 851 695 584 865 469 502 488 511
Testing 1215 1102 776 636 557 817 511 462 469 516

RBFNN
Training 1372 1315 1311 1270 1050 1233 1133 1124 992 877
Testing 1243 1189 1186 1150 947 1111 1052 1039 927 818

CANFIS
Training 1369 1237 922 781 655 1219 829 721 727 645
Testing 1229 1144 833 726 638 1101 790 761 646 681

Table 8 Variation of RMSE (cumecs) for SNN and WNN Models (Brosna catchment)

Simple Wavelet

M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

MLR
Training 11.24 10.78 10.29 10.09 9.93
Testing 14.81 14.05 13.31 12.96 12.72

MLPNN
Training 11.09 10.64 10.17 9.88 9.61 6.41 6.31 6.41 6.33 7.15
Testing 14.41 13.79 13.05 12.84 12.41 9.10 8.79 9.10 8.79 10.32

GFNN
Training 11.20 10.67 10.20 9.98 9.61 7.88 6.68 6.79 6.86 7.86
Testing 14.42 13.92 13.10 12.69 12.31 10.56 9.24 9.01 9.10 11.03

MNN
Training 11.07 10.64 10.25 9.85 9.60 7.83 6.31 6.41 6.33 7.15
Testing 14.65 13.96 13.10 12.74 12.38 10.80 9.05 9.10 8.79 10.32

RBFNN
Training 11.25 10.71 10.50 10.19 10.13 10.25 9.92 9.41 9.30 9.67
Testing 14.82 14.02 13.73 13.16 12.91 13.51 12.97 12.88 12.55 12.81

CANFIS
Training 11.16 10.76 10.36 10.19 9.93 10.81 10.32 10.07 9.96 9.83
Testing 14.52 14.04 13.43 13.23 12.55 14.05 13.31 13.08 12.63 12.57
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All the SNNmodels yielded best results (higher values of NSE (%) and lower values of RMSE
(m3/s)) with input vector M5. Moreover, all WNN models performed good compared to their
respective simple models for all input vector M1 to M5. Likewise, simple and wavelet coupled
MLPNN, GFNN and MNN models are found to perform well compared to their respective
MLR, RBFNN and CANFIS models for Brosna catchment. It is also apparent from Table 4

Table 9 Variation of RMSE (cumecs) for SNN and WNN Models (Nan catchment)

Simple Wavelet

M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

MLR
Training 160.93 158.59 156.40 154.28 150.22
Testing 160.35 158.31 156.35 154.47 151.80

MLPNN
Training 157.30 155.37 154.49 151.43 149.04 113.11 91.93 72.07 75.14 74.32
Testing 159.33 158.32 156.44 154.89 151.74 115.79 98.12 88.06 85.44 87.41

GFNN
Training 158.31 157.42 155.31 152.33 148.84 118.27 96.48 92.44 88.75 78.55
Testing 159.09 158.06 156.16 154.77 152.22 122.63 101.39 92.52 88.98 92.83

MNN
Training 158.38 156.99 154.97 152.82 149.67 117.05 85.81 77.09 73.87 68.36
Testing 159.51 157.94 156.07 154.53 152.03 126.02 93.94 92.93 81.13 79.86

RBFNN
Training 159.87 157.87 156.19 153.51 151.41 140.27 132.04 123.49 101.94 102.08
Testing 159.88 158.11 156.28 154.91 152.11 139.39 132.56 129.39 107.58 104.66

CANFIS
Training 158.54 158.76 157.29 156.83 154.60 130.44 129.10 127.90 128.35 126.25
Testing 159.55 158.83 157.56 156.76 154.83 130.81 130.19 131.14 132.42 132.23

Table 10 Variation of RMSE (cumecs) for SNN and WNN Models (Yanbian catchment)

Simple Wavelet

M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

MLR
Training 87.38 73.83 66.86 62.14 59.02
Testing 88.58 76.02 68.52 64.19 61.88

MLPNN
Training 87.38 73.83 66.86 62.14 59.02 63.71 38.52 37.97 36.64 37.64
Testing 88.58 76.02 68.52 64.19 61.88 66.96 42.02 40.39 40.59 41.12

GFNN
Training 89.90 71.44 65.42 60.84 58.37 61.29 42.25 38.89 31.04 36.15
Testing 92.41 72.04 66.97 62.37 61.06 64.26 49.05 40.69 36.57 39.81

MNN
Training 89.28 71.69 65.06 61.03 57.77 61.97 37.65 29.28 34.41 35.18
Testing 90.97 72.25 66.37 62.23 59.65 65.40 41.58 36.53 40.23 40.18

RBFNN
Training 84.29 71.80 71.37 69.84 63.39 84.29 71.80 71.37 69.84 63.39
Testing 85.12 73.94 73.90 74.03 67.22 85.12 73.94 73.90 74.03 67.22

CANFIS
Training 87.37 77.77 70.53 64.72 62.61 67.45 65.82 61.76 59.21 59.25
Testing 88.14 79.33 72.10 67.49 66.00 70.06 66.54 65.51 63.81 60.17
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that NSE (%) values for the SNN models are found slightly higher during testing than during
training. This may be due to the overfitting. Overfitting is when the model performance in the
training period is markedly inferior to that of the testing period. This may be because of over-
parameterization of the model as the model has too many degrees of freedom for the
information carrying capacity of the observed data (Viney et al. 2009). The model learns to
reproduce noise of data or the data pairs itself rather than the general trends in the data set as a
whole in case of over-fitting.

The results for the Nan catchment are presented in Tables 5 and 9 while Tables 6 and
10 demonstrates the results for the Yanbian catchment. Examination of these tables
reveals that the WNN models yielded better results compared with their corresponding
SNN models.

4.4.1 Effect of Size of Input Vector

The effect of size of input vector on the performance of best simple and wavelet coupled
models, namely, MLPNN, GFFNN and MNN is investigated next and the results are
presented in Fig. 3 for all four selected catchments. Examination of the figure reveals
that the wavelet coupled models outperformed their counterpart simple models for all
five input vectors considered in the study for the selected catchments. However, Fig. 3a
reveals that as the size of input vector becomes dense by adding more and more lagged
time rainfall series in the input vector, the gap in the NSE (%) values between both the
simple and the wavelet coupled models constantly decreases. The performance of the
simple and wavelet coupled models becomes almost similar for Baihe catchment with
input vector M5 as shown in Fig. 3a. A similar trend of NSE (%) values can be found for
the Brosna, Nan and Yanbian catchments as shown in Fig. 3c, e and g, respectively. The
performance of the simple models keeps on increasing as the size of input vectors
increases by adding more and more raw lagged rainfall data series in the input vector.
However, the performance of the wavelet coupled models increases from about 50% with
input vector M1 to about 80% with input vector M2 and then it remains constant with M3

and M4 for the Baihe, Brosna and Yanbian catchments. The NSE (%) value for the Nan
catchment is found maximum with input vector M4 and then it remains same afterwards
for input vector M5. Like NSE(%) values, the RMSE values also show a similar trend for
all four selected catchments as shown in Fig. 3b, d, f and h.

It can be inferred on the basis of the above analysis that the NSE (%) value for all simple
models steadily increases from input vector M1 to M5. The addition of more and more rainfall
data in the input vector results in more and more hydrological information of the catchment
being fed to the simple models utilizing raw rainfall data without transformation. Furthermore,
the performance of the wavelet coupled models follows an increasing trend from input vector
M1 to M2 and then stays at a constant value with the remaining input vectors M3, M4 and M5

for all the four selected catchments. This may be due to the reason that the wavelet transformed
lagged one and two rainfall data series contained the maximum temporal and the spectral
information, thus yielding best results in terms of NSE (%) and RMSE values. The addition of
further transformed lagged rainfall data series in the input vector results in no significant
improvement as all or most of the hydrologic information of the catchment has already been
utilized by the model.

Flow Duration Curves (FDCs) are developed and presented next in Fig. 4 to test the
ability of the best developed models to capture low, medium and high flows of the
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observed hydrograph. The FDCs of the observed discharge and the predicted discharges
of the wavelet coupled MLPNN model (WMLPNN), GFFNN (WGFFNN) and MNN
(MNN) are presented for input vector M2 for all four selected catchments. Examination
of the figures illustrates that for high, medium and low flow percentile flows, FDCs of
the WMLPNN, WGFFNN and WMNN models for all the four selected catchments
provide good match with the FDCs of the observed flow except for the Brosna catch-
ment. For Brosna catchment, the modelled discharge line falls below the observed

Fig. 3 Impact of input vector
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discharge line for high and medium high flow percentile while it falls above the observed
discharge line for low medium flow and low flow percentiles. On the basis of the above
analysis of the FDCs, it can be inferred that the WMLPNN, WGFFNN and WMNN
models are found to track most of the variation of the observed hydrograph.

5 Conclusions

The study was conducted to evaluate the effect of feedforward neural network type on
the performance of wavelet coupled neural network models. The rainfall-runoff data from
four catchments located in two hydrologically different conditions is utilized in the study.
The six data driven models, namely, MLR, MLPNN, GFFNN, MNN, RBFNN and
CANFIS were used in the study. The input rainfall data transformed using DWT and
db8 wavelet function was employed. Decomposition at level nine was selected to
decompose the input rainfall data. The study found that the wavelet coupled data driven
models outperformed their counterpart simple models which do not use DWT. The
MLPNN, GFFNN and MNN models have superior performance among the six selected
data driven models tested in the current study. Moreover, the performance of the three
superior models resembled one another and thus GFFNN and MNN models can be
considered as an alternative to the most commonly used MLPNN models. It is also
found that the performance of the SNN and WNN models is dependent on the selection
of input vector. The SNN models are found to perform superior with input vector
containing more and more lagged rainfall data while the wavelet coupled models
outperformed only with the parsimonious input vector. The enhanced performance of
wavelet coupled models with parsimonious input vector may be attributed to the fact that
the WT provided the information regarding the hydrological signature of the watershed.
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