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Abstract Traditional approaches to the analysis of extreme hydrological series are based
on the stationarity assumption for the underlying processes, namely that the probability
distribution of the hydrological variable does not change with time. Over the last decade
however, a growing interest has arisen both from a scientific as well as engineering point of
view, toward the development of tools able to cope with the apparent non stationary features
(either natural or anthropogenic) observed in many hydrological processes. Though most
of the works deal with extreme precipitation and floods, less attention has been devoted
to modeling droughts under non stationarity paradigm. In the paper, a brief review of
the available tools for modeling non stationary series is presented. An extension of such
methodologies to drought lenght modeling is developed, taking into account the non station-
ary nature of the underlying series and/or of the threshold level used for drought definition.
An example of application of the developed methods to four precipitation series in Sicily,
Italy, exhibiting different degrees of trends is also presented.

Keywords Non stationarity · Probabilistic analysis · Extreme values · Droughts

1 Introduction

Traditional probabilistic methods applied in hydrology and water resources planning and
management studies assume that extreme hydrologic series are stationary and broadly inde-
pendent in time. The stationarity paradigm for hydrometeorological processes has been
questioned however under the push of several factors among which:

– evidence of long term variability in climate;
– changes in climate due to anthropogenic factors;
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– need to account for changes in hydrological response of watersheds (modification of
land use, hydrographic network, development of diversion structures, etc.);

Furthermore, there are many problems water engineers have to face for which non sta-
tionarity arises regardless of the stationary or non stationary features of hydrometeorological
processes. For example, assessment of drought risk for a water supply systems should take
into account the planned infrastructural changes of the system, as well as the variability
with time of water demands, due to expected changes in population, degree of agricultural
and/or industrial development, increasing awareness toward ecological flows.

In general, attention has been focussed by hydrologists and water resources engineers to
non-stationary flood frequency analysis, as clear violation of stationarity can be observed
in many river basins mainly due to human activities, which eventually affect flood-related
hydrologic variables, such as river discharge and stage, water storage capacity and runoff
coefficient, among others, leading to an increase in exposure to floods (Kundzewicz, 2011).

Several approaches have been proposed in literature to model extreme variables, such
as extreme floods exhibiting some kind of nonstationary feature. Usually they include
probabilistic and stochastic models whose parameters may vary according to some time
dependence structure, such as gradual or abrupt changes in the mean, variance or higher
order moments (e.g. Strupczewski et al. 2001; Sveinsson et al. 2005; Khaliq et al. 2006;
El Adlouni et al. 2007; Villarini et al. 2009; Cooley 2013; Katz 2013; Razmi et al. 2017;
Agilan and Umamahesh 2017). In addition, a covariate analysis can be carried out by mod-
elling the parameters of the probability distribution of non-stationary variables as a functios
of any physical factors that are recognized to exert an influence on the variables of interest,
such as climatic indices (i.e. AMO; NAO, etc.), anthropogenic factors or meteorological
variables (Coles et al. 2001; Griffis and Stedinger 2007; Villarini et al. 2010; López and
Francés 2013; Xiong et al. 2015).

While most works deal with extreme precipitation and floods, less attention has been
devoted to modeling droughts, in particular multiyear droughts, assuming non-stationarity
either with reference to the climatic forcings or to the adopted threshold level that takes into
account, implicitly, a demand level that may vary with time (Wang et al. 2015). Climatic
drivers, such as the ongoing warming of the atmosphere, can be considered as the leading
causes of increase in the intensity and occurrence of drought events in many regions of
the world (Solomon et al. 2007; Field et al. 2013). Recently non-stationary return period
of droughts, in terms of low-flow or drought index series, has been investigated by using
projections of climatic models, driven by various climatic scenarios (Du et al. 2015;
Mondal and Mujumdar 2015). Unfortunately, there are still too many sources of uncertainty
in projections, so that no uniform pattern of changes in drought events is observed across
the projections from different climate models; in addition existing climatic models are often
unsuitable to reproduce extremes at small spatial scales due to coarse spatial resolution.

Regardless of the causes of nonstationarity, either hydrological or climatic (due to natural
variability or to global warming), the need for the development of new probabilistic models
to deal with non-stationarity is largely recognized by the scientific community. Furthermore,
in a non-stationary context, the traditional concepts of return period and risk commonly
applied for operational purposes are no longer valid and need to be reformulated (Cooley
2013; Salas and Obeysekera 2014; Serinaldi 2015). The paper presents methods for non
stationary frequency analysis of extreme events, focussing in particular on droughts. More
specifically, concepts such as return period and risk are discussed within a non stationary
framework. Analytical approximations for moments, probability distributions and return
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period of drought characteristics are derived as a function of the underlying non stationary
distribution of hydrometeorological series. Finally, an application to annual precipitation
series in Sicily is presented.

2 Frequency Analysis for Non Stationary Processes

2.1 General

From a time series analysis point of view, the term stationary refers to a process whose
probabilistic features are not dependent with time. For instance, with reference to a time
series Xt , where t is time, strict stationarity implies that the vector (X1, X2, . . . , Xn) has
the same multivariate distribution of (X1+h,X2+h, . . . , Xn+h) for all integers h and n > 0
(Brockwell and Davis 2002). In a broad sense, strict stationarity means that the probability
distribution of Xt does not depend with time. Stationarity can also be defined in weak sense
by limiting the condition to the first and second order moments. Then, Xt is said to be
weakly stationary if its expected value and covariance function do not depend with time.
Obviously, strict stationarity implies weak stationarity but not vice-versa.

Relaxing the stationarity assumption for a time series affects several aspects, including
the modeling of the non stationary component, of the probability distribution as well as the need
to revise traditional concept such as return period and risk (Salas and Obeysekera 2014).

Most of the proposed approaches for non stationary modeling of probability distributions
are based on assuming a parametric Probability Density Function (pdf), whose parameters
vary with time according to prespecified parametric funtional forms (Strupczewski et al.
2001; Delgado et al. 2010; Delgado et al. 2014; Stedinger and Griffis 2011). Alternatively,
trends in the moments of the distribution are assumed (Strupczewski et al. 2001) In some
cases, climatic indices such as El Nino Southern Oscillation (ENSO), North Atlantic Oscil-
lation (NAO), etc., or other hydrometeorological data are adopted as covariates for the
parameters in order to take into account interannual or interdecadal variability of climate (Li
et al. 2015; Prosdocimi et al. 2014). Also sometimes other covariates that reflect changes
due to urbanization and/or land use in the watershed are employed to model non stationary
streamflow series.

Then, fitting a non stationary probability distribution to observed (nonstationary) data
involves estimating the parameters of the functional forms expressing the variability with
the covariates (either time or others) of the pdf. Alternative and more traditional approaches
include the removal of a deterministic trend from the time series, fitting a pdf to the resulting
stationary residuals and adding back the trend component to the estimated quantiles of the
residuals. Sometimes, parametric trends are incorporated in the first few moments of the
distributions (Strupczewski et al. 2001).

Regardless of the way past apparent non stationarities observed in hydrometeorological
series are incorporated in the modelling of the pdf, yet the problem with time varying distri-
bution parameters is that they implicitly assume that they would continue to change in the
future according to the same pattern observed in the past. Thus, some approaches are based
on employing only a limited set of recent observed data (e.g. 30 years) for frequency anal-
ysis, implicitly assuming that hydrometeorological variables are representative of a given
climate state (Raff et al. 2009).

In what follows, some of the most widely adopted methods for modelling probability
distribution, return period and risk in a non stationary context are illustrated in some details.
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2.2 Modeling Probability Distributions

In general terms, incorporating time variability in a probability distribution involves assum-
ing a time varying form for one or more of its parameters. With reference to a generic
cumulative distribution function with parameter vector � this entails assuming the latter as
a function of time t , thus the distribution of the random variable Xt becomes FXt (x; �t).

Most of the proposed applications in hydrology deal with floods and precipitation, and
therefore several methods have been developed with reference to extreme value distribu-
tions. On the other hand, less attention has been devoted to other distributions, generally
employed for other types of extreme events such as droughts.

As an example, with reference to a three parameters Generalized Extreme Value (GEV)
distribution with cumulative distribution function:

FXt (x;μ, α, κ) = exp

{
−

[
1 − κ

(x − μ)

α

]1/κ
}

(1)

by modeling the parameters μ, α, κ as a function of time, different types of non sta-
tionarities can be taken into account. For instance, a linear trend in the location parameter
μ can be implemented by assuming μ(t) = μ0 + μ1t . Sometimes non linear dependence
with time is considered for the scale parameter α as ln α(t) = α0 + α1t (Šraj et al. 2016).
Shape parameter is generally assumed to be constant as its value is not easy to be estimated
reliably (Coles et al. 2001; Salas and Obeysekera 2014).

Russo et al. (2013) adopted a non stationary gamma distribution with fixed shape param-
eter r and a time varying scale parameter βt to analyze changes in probability of future
precipitation over Europe:

fXt (x) = 1

βt�(r)
exp

(
x

βt

) (
x

βt

)r−1

(2)

where and a linear trend with time was assumed for βt = α0 + α1t . Note that since the
expected value of Xt is E[Xt ] = rβt while the variance is Var[Xt ] = rβ2

t this is equivalent
to assume a linear trend in the mean and a constant coefficient of variation.

Several methods have been proposed to estimate the non stationary parameters among
which the Maximum likelihood (MLE) method is the one generally employed (Katz et al.
2002; Salas and Obeysekera 2014). Alternative methods include generalized maximum
likelihood method (GMLE) (El Adlouni et al. 2007; Gül et al. 2014) or Markov chain Mon-
tecarlo approach (Šraj et al. 2016). A detailed illustration of the above methods can be found
in Coles et al. (2001).

Furthermore, many software packages implementing non stationary estimation of
extreme values distributions have been developed (for a review see Gilleland et al. (2013)).

2.3 Modeling Return Period and Risk

Return period (Fuller 1914) and risk concepts have been commonly employed in hydrolog-
ical practice assuming an underlying stationary distribution for the extreme events. Under
the hypothesis of an indipendent and identically distributed annual hydrometeorological
variable X, the return period of a given x0 value can be computed as the expected value
of the interarrival time between two occurrences X > x0. Since under the i.i.d. hypothesis



Non Stationary Analysis of Extreme Events 3101

the interarrival time T will be distributed as a geometric random variable with parameter
p = P [X > x0], the return period will be the expected value of T , namely (Mood et al.
1974):

T = 1

p
= 1

P [X > x0] (3)

Recently Volpi et al. (2015) showed that the Eq. 3 is valid also in the case of dependent
or serially correlated values, but not in the case of non-stationary series.

Extensions of Eq. 3 to the non stationary case have been proposed by Salas and
Obeysekera (2014), Cooley (2013). More specifically, assuming the exceedence probability
pt = P [Xt > x0] changing with time t , the return period of T becomes:

T = 1 +
∞∑

x=1

x∏
t=1

(1 − pt ) (4)

Risk is defined as the probability of observing at least one event X > x0 in an n-year
period. For instance, risk expresses the probability that a given hydraulic structure may
fail at least once during its n-year lifetime. Under the i.i.d. hypothesis for X, risk can be
easily computed by observing that the number Z of occurrences X > x0 in n-year period
is distributed according to a binomial distribution with parameters (n, p) and therefore the
probability of observing at least one occurrence will be:

R = P [Z ≥ 1] = 1−P [Z = 0] = 1−
(

N

0

)
p0(1−p)n −0 = 1− (1−P [X > x0])n (5)

Salas and Obeysekera (2014) proposed an extension of the above equation for the non
stationary case as:

R = 1 −
n∏

t=1

(1 − pt ) (6)

In Eqs. 4 and 6, time varying exceedence probabilities can be modeled by means of a
non stationary probability distribution.

3 Modeling Drought in a Non Stationary Context

3.1 General

Probabilistic characterization of droughts has been the subject of a significant amount of
research in the last 30 years (e.g. Rossi et al. 1992; Sharma 1997; Tsakiris et al. 2007;
Nalbantis and Tsakiris 2009; Vangelis et al. 2010; Cancelliere and Salas 2010; Bonaccorso
et al. 2013, 2015; Tsakiris et al. 2016), also with reference to water supply system oper-
ational aspects (e.g. Bowles et al. 1987; Rossi and Cancelliere 2013; Tsakiris et al. 2013;
Haro et al. 2014). While most works deal with stationary conditions, less attention has been
devoted to modeling droughts assuming non stationarity either with reference to the cli-
matic forcings or to the implicit demand levels (Duan and Mei 2014; Zargar et al. 2014;
Mohammed et al. 2017).

In general terms, non stationarity in drought modeling may arise because there is a
change in time of the probabilities related to the underlying hydrological variables (due
to anthropogenic or natural causes) or because the demand level, usually represented by a
threshold, changes in time, which in turn will cause non stationarity in the corresponding
deficits. To better clarify this concept, in Fig. 1a the time series of a non stationary fictitious
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Fig. 1 Changes of probabilities of deficits in a non stationary series with a constant threshold x0 (left) and in
a stationary series with a non constant threshold x0. The continuous line represents the threshold, the dashed
line (left) is the time varying mean

hydrometeorological variable is plotted where for illustrative purposes, a very strong trend
in the mean has been assumed. In the same plot, the continuous horizontal line represents
the threshold value, assumed equal to the long term mean, while the dashed line represents
the time varying mean. Furthermore, the non stationary probability distribution functions
at three time instants are also plotted, along with the corresponding probabilities of deficit
pt (yellow areas), namely the probability of observing a value less than the threshold. As
clearly indicated by the figure, as a consequence of the time variability of the mean, the
probability of deficits also varies with time, and in particular it increases since the mean
decreases with time.

In Fig. 1b, a similar plot is shown, where this time a stationary series is considered but
a increasing threshold with time is assumed. Such time varying threshold may correspond
to a time varying demand level. For instance, with reference to rainfed agriculture and a
stationary precipitation series, non stationarity in temperature, e.g. increasing with time,
may lead to increase in potential evapotranspiration, thus leading to an increase of water
demand, despite the stationary nature of the precipitation series. Also in this case, the time
variability of the threshold level will lead to time varying probabilities of deficits, which in
turn will lead to non stationary probabilities of drought occurrence.

Regardless of the causes of nonstationarity in the deficit series, and without loss of gen-
erality, in what follows we will assume that the probability of a deficit, namely that the
hydrological variable is lower than a fixed threshold, is time dependent:

pt = P [Xt ≤ x0t ] (7)

where again the time dependent structure may be due to changes of the underlying prob-
ability function of the hydrological variable Xt or to modifications in the threshold level
x0t .

In what follows, analytical expressions for the probability of drought length will be
derived, based on assuming a non stationary probability distribution for the underlying
series.

3.2 Drought Length Modelling

With reference to a generic time interval t, the interest lies here in determining the proba-
bility of observing a drought beginning at time t and lasting l intervals. By definition, such
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event will be a sequence of l deficits Xt+τ ≤ x0t+τ , τ = 0, 2, , l − 1 preceeded and fol-
lowed by the two surpluses Xt−1 > x0t−1 and Xt+l > x0t+l . The corresponding probability
will be:

P [Xt−1 > x0t−1, Xt ≤ x0t , Xt+1 ≤ x0t+1, ..., Xt+l−1 ≤ x0t+l−1, Xt+l > x0t+l] (8)

The above probability can be interpreted as the joint probability of the two events “a
drought starts at time t” and “it has length l”. Alternatively, one may be interested in the
event “a drought has length l given it started at time t”. In the latter case, since in order
for a drought to start a surplus must be preceded by a deficit (namely the event {Xt−1 >

x0t−1, Xt ≤ x0t }, the probability becomes:

P [Xt+1 ≤ x0t+1, ..., Xt+l−1 ≤ x0t+l−1, Xt+L > x0t+l |Xt−1 > x0t−1, Xt ≤ x0t ] = fLt (l)

(9)
and it represents the pdf fLt (l) of the length Lt = l of a drought that already started at

time t (Cancelliere and Salas 2004). If we assume serial independence for the underlying
hydrological variable Xt , the joint probability in Eq. 9 can be split into the product of the
probabilities, and therefore the the pdf of drought length given by Eq. 9 becomes:

fLt (l) = P [Xt+1 ≤ xt+1] . . . P [Xt+l−1 ≤ x0t+l−1]P [Xt+l > x0t+l] = (1−pt+l )

l−1∏
τ=1

pt+τ

(10)
where the conditioning clearly disappears since serial independence is assumed.

The above (10) enables to compute the probability of a drought of length l starting at
time t under the assumption that the probability of observing a deficit pt varies with time t .

Equation 10 simplifies somewhat if we assume that pt is a linear function of time t , e.g.:

pt+τ = pt + δτ (11)

Substitution of Eqs. 11 into 10 yields:

fLt (l) = (1 − pt − δl)

l−1∏
τ=1

(pt + δτ) (12)

Rearranging terms, letting α = pt

δ
one can write:

fLt (l) = (1 − pt − δl)δl−1
l−1∏
τ=1

[α + τ ] (13)

Note that by letting δ = 0 in Eq. 11, stationary conditions are assumed for Xt and Eq. 13
reduces to the well known geometric distribution for drought length (Llamas and Siddiqui
1969)

fLt (l) = (1 − pt )p
l−1
t (14)

Equation 13 can be further modified observing that:

l−1∏
τ=1

(α + τ) = �(α + l)

α�(α)
(15)

where in usual notation �() is the complete gamma function (Abramowitz and Stegun
1965). Substituting:

fLt (l) = (1 − pt − δl)δl−1 �(α + l)

α�(α)
(16)
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The above (16) enables to compute the probability of a drought of length l starting at
time t under the assumption of a linear dependence of pt with time.

The expected value of drought length can be computed making use of the pdf expressed
by Eq. 10:

E [Lt ] =
∞∑
l=1

lfLt (l) =
∞∑
l=1

l(1 − pt+l )

l−1∏
τ=1

pt+τ (17)

which in the case of linear dependence of pt with time specialises into:

E [Lt ] =
∞∑
l=1

lfLt (l) =
∞∑
l=1

l(1 − pt − δl)δl−1 �(α + l)

α�(α)
(18)

Deriving closed form solutions for Eqs. 17 and 18 may be combersome and therefore it
is preferable to resort to numerical solutions. Alternatively, in order to compute an approx-
imate expression for the mean drought length, one can assume that during the drought the
probability of deficit (and conversely of surplus) do not change with time. This may be a
reasonable assumption if the rate of change of pt with time is moderate, considering also
that in the infinite sums in Eqs. 17 and 18, the pdf generally exhibit a fast decay with length.
Then, an analytical approximation to the expected value of drought length is:

E [Lt ] = 1

pt+1
(19)

In practice, as shown in Section 2.2, non stationary conditions are generally assumed for
the parameters of the distribution of Xt , which are assumed to vary with time according
to prespecified functional forms, either linear or not linear. Even in this case, the closed
form expression for drought lenght pdf given by Eq. 16, based on assuming that pt evolves
linearly with time (11), may still find practical application. Indeed, let us assume that Xt

is distributed according to a generic non stationary cumulative density function FXt (x; �t)

where �t is a vector of time varying parameters. It follows that pt = FXt (x0;�t). Then,
expanding in Taylor series pt+τ around pt , it follows:

pt+tau ≈ pt + dFXt (x0;�t)

dt
(t + τ) (20)

Comparing (20) with Eq. 11, it follows that, as an approximation, we can assume δ =
dFXt (x0;�t )

dt
.

In order to better illustrate the above point, let’s assume Xt distributed according to a non
stationary log-normal distribution with a linear dependence of the location parameter with
time (Aissaoui-Fqayeh et al. 2009):

fXt (x) = 1√
2πσ

e
1
2 (

logx−μ0−μ1 t

σ
)2

(21)

where σ , μ0 and μ1 are parameters.
It follows:

δ = d

dt

∫ logx0−μ0−μ1 t

σ

−∞
1√

2πσ
e

1
2 y2

dy (22)

The derivative with respect to t in the above equation can be computed recalling Leibnitz
rule as:

δ = −μ1
1√

2πσ
e

1
2 (

logx0−μ0−μ1 t

σ
)2

(23)

Following a similar line of reasoning, the parameter δ can be derived on the basis of any
underlying non stationary pdf for the Xt .
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4 Application

In order to better illustrate the above mathematical development, an application to annual
precipitation series exhibiting different degrees of trend has been carried out. In particular,
four precipitation stations in Sicily have been selected namely Trapani, Agrigento, Petralia
Sottana and Caltanissetta, for which relatively long series of monthly precipitation data are
available.

Figure 2 shows the time series of annual precipitation series at four rain gauges in
Sicily (Italy), namely Trapani, Agrigento, Petralia Sottana and Caltanissetta along with the
corresponding linear trend lines.

Preliminarly, the significance of the trends has been verified for all the four series, by
means of the Student-t test (tS) and the Mann-Kendall test (MK).

In Table 1 the results of the application of both tests are reported, as well as the rate
of change in precipitation series assuming a linear trend. From the table it can be inferred
that three of the investigated rain gauges exhibit trends, statistically significant at 5% level.
In particular, the test statistics agree in detecting a significant negative trend for Trapani
and Caltanissetta and a significant positive trend for Petralia Sottana, whereas no trend is
inferred for Agrigento. In addition, the rate of change in mean precipitation ranges from
about −1 mm per year for Trapani to 1 mm per year for Petralia Sottana. In order to model
the probability of deficit, a non stationary approach has been adopted for fitting probability
distributions to the series. More specifically a log normal distribution with a linear depen-
dence of the location parameter with time has been selected for all the stations (see Eq. 21).

Fitting of the parameters σ , μ0 and μ1 has been carried out through Maximum
Likelihood Method.

Trapani 1881-2010 Agrigento 1886-2009 

Petralia Sottana 1881-2010 Caltanissetta 1879-2009 

Fig. 2 Time series of investigated annual precipitation series (solid line) and corresponding linear trend
(dashed line)
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Table 1 Trend test results

rain gauge Observation period tS MK Variation [mm/year]

Trapani 1881-2010 −2.931(0.004) −2.733(0.006) −0.903

Agrigento 1886-2009 0.008(0.994) −0.389(0.698) 0.003

Petralia Sottana 1881-2010 2.115(0.036) 1.972(0.05) 0.900

Caltanissetta 1879-2010 −2.074(0.040) −2.060(0.040) −0.744

Significant test statistic values (at 5% significance level) and related p-values in bracket are marked in italic

Then, the probability of deficit at time t has been computed as the non exceedence
probability of the long term mean, assumed as a constant threshold, by means of the
non-stationary lognormal pdf in Eq. 21.

Furthermore the probabilities of drought of given length l have been computed using
Eq. 4. The results are shown in Fig. 3, where for each rain gauge, the probabilities of deficit
pt and the probabilities of drought length l = 1, l = 3 and l = 5 years are plotted as a
function of time.

Inspection of Fig. 3 reveals that, as expected, the probability of deficit increases in the
cases of decreasing trends of precipitation (Trapani and Caltanissetta), decreases for increas-
ing trend (Petralia Sottana) while is constant for Agrigento, which does not exhibit trend.
This is consistent with the fact that as the series tends to exhibit smaller values, the probabil-
ity of observing values below a fixed threshold increases, vice versa for the opposite case.
From the figure it can also be inferred that in the case of decreasing trend (Trapani and Cal-
tanissetta), the probability of drought length l = 1 exhibits a decreasing pattern with time,

Fig. 3 Probabilities of single deficit pt and probabilities of a drought length equal to 1 year (fL(1)), 3 years
(fL(3)) and 5 years (fL(5)) vs. time for the 4 investigated series
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Fig. 4 Non-stationary expected values E[L] of drought length (years) computed with reference to different
years for the 4 investigated series

whereas the probabilities of longer droughts (l = 3 and l = 5), show an increasing shape.
Such apparent contrasting behaviour finds an explanation in the fact that as the values tend
to be smaller, short droughts tends to be less frequent, while more longer droughts are to be
expected.

Figure 3 also indicates a fairly linear behaviour of deficits pt with time. This confirms
the validity of the proposed linearization approach expressed in Eq. 20, which enables to
make use of the closed form Eq. 16 to derive the non stationary pdf of drought length.

Finally the expected value of drought length E [L] has been computed with reference to
different years, namely 1900, 1950 and 1990 by means of Eq. 17. The results are reported
in Fig. 4, from which it can be inferred that, as expected, the mean value of drought length
tends to increase with time for series exhibiting decreasing trend (Trapani and Caltanissetta).
Conversely, series with increasing trend (Petralia Sottana), tends to exhibit shorter droughts
as time progresses. On the other hand, Agrigento (no trend) does not exhibit any significant
changes in mean drought length.

5 Conclusive Remarks

Probabilistic characterization of extreme events in a non stationary setting requires the
developments of new tools, able to overcome the limitations of more traditional stationary
approaches. Besides variability of climate (either natural or anthropogenic), non stationarity
may arise in many water resources problems, due to anthropogenic effects on hydrological
cycle, modification in water demand levels as well as infrastructural changes. Thus there is
a growing need of new methods able to incorporate and take into account non stationarities
in hydrometeorological variables and/or other factors.

The bulk of recent literature on the subject reveals that most of the attention has been
devoted to the analysis of floods and extreme precipitation in a non stationary context, gen-
erally adopting a time varying structure for the underlying probability distribution, whose
variability may also be linked to external covariates representing physical factors exerting
an influence on the variables of interest. Within such a framework, traditional concepts
widely applied in engineering practice such as return period and risk have been revised
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to take into account the non stationary nature of the underlying variables. However less
attention has been devoted to the non stationary analysis of droughts, which still present sev-
eral challenges. Indeed, the multiyear nature of the drought phenomenon, the fact that non
stationarity may arise because of changes either of the underlying variable, of the demand
level or both, as well as the need to take into account jointly several characteristics (length,
severity, areal extension, etc.) poses several problems, some of which still are not solved.

The methodology presented here for characterizing drought length assuming non sta-
tionarity either in the hydrological variable or in the demand level (threshold) enables to
compute the probability of a drought of length l starting at time t under the assumption that
the probability of observing a deficit pt varies with time t . Furthermore, the expected value
of the length of a drought starting at a given time t has also been derived.

Application of the methodology to four long annual precipitation series in Sicily exhibit-
ing different degrees of trend in the mean has highlighted the feasibility of the derived
expression to characterize drought length in the presence of non stationarity. Further, the
derived methodology is flexible enough to accomodate for virtually any type of stationarity
in the series, provided it is modeled adequately.

Ongoing research is oriented to extend the results to other drought characteristics (e.g.
severity, intensity), as well as to better take into account the inevitable uncertainty related
to the assessment of non stationarity in hydrological series.
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