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Abstract Advancements in data acquisition, storage and retrieval are progressing at an
extraordinary rate, whereas the same in the field of knowledge extraction from data is
yet to be accomplished. The challenges associated with hydrological datasets, includ-
ing complexity, non-linearity and multicollinearity, motivate the use of machine learning
to build hydrological models. Increasing global climate change and urbanization call for
better understanding of altered rainfall-runoff processes. There is a requirement that mod-
els are intelligible estimates of underlying physics, coupling explanatory and predictive
components, maintaining parsimony and accuracy. Genetic Programming, an evolutionary
computation technique has been used for short-term prediction and forecast in the field of
hydrology. Advancing data science in hydrology can be achieved by tapping the full poten-
tial of GP in defining an evolutionary flexible modelling framework that balances prior
information, simulation accuracy and strategy for future uncertainty. As a preliminary step,
GP is used in conjunction with a conceptual rainfall-runoff model to solve model configura-
tion problem. Two datasets belonging to a tropical catchment of Singapore and a temperate
catchment of South Island, New Zealand with contrasting characteristics are analyzed in this
study. The results indicate that proposed approach successfully combines the merits of evo-
lutionary algorithm and conceptual knowledge in the generation of optimal model structure
and associated parameters to capture runoff dynamics of catchments.
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1 Introduction

1.1 Conceptual Rainfall-Runoff Models

Mathematical modelling of hydrological systems includes time series analysis and stochas-
tic modelling, where the emphasis is on reproducing the characteristics of time series of
a hydrological variable of interest. On one extreme, hydrological models can be purely
emprical, black box models, such as Artificial Neural Networks, that match the input
and output variables of the catchment system without modelling the internal structure of
underlying physical processes. On the other extreme are deterministic models involving
complex systems of equations based on physical laws and theoretical concepts govern-
ing the hydrological processes (Refsgaard and Abbott 1996). Between the two extremes
one finds conceptual models that represent structure based on simple mathematical ele-
ments, such as linear or nonlinear reservoirs and channels that model processes within the
basin in an approximate way (Charizopoulos and Psilovikos 2016). The controlling ideas
of the conceptual models are based on basic requirements such as the water balance. For
example, the mass balance of soil moisture storage is one of the building blocks of most
conceptual water balance models. Such models use a limited number of parameters com-
pared to deterministic models which also require high spatial and temporal resolution input
data. Hydrological conceptual models have been successfully used in the past for various
applications, namely, rainfall-runoff modelling (Franchini and Pacciani 1991), estimation
of groundwater flow (Arnold et al. 1993), climate studies (Füssel 2007), etc. In general,
conceptual models can either be discrete models, described by difference equations or con-
tinuous models, formulated in terms of ordinary differential equations (spatially invariant)
or partial differential equations (spatially variant). The lumped form of such conceptual
models assumes even distribution of input-output data over the catchment surface. Cus-
tomary approach to the development of rainfall-runoff relationships consists of two distinct
steps:

– Determination of the volume of runoff as a result of rainfall during a given time period:
Partitioning of rainfall among evapotranspiration, infiltration and runoff.

– Distribution of volume of runoff in time: Accounting for travel time and attenuation of
the runoff wave due to storage and other effects (Flood routing).

Sugawara Tank model (Sugawara 1979) is used as an example of conceptual rainfall
runoff model in this study. It is a simple lumped model that represents catchment as an
assemblage of interconnected storages through which water flows, from rainfall (input) to
streamflow (output) at the outlet. The soil moisture storage is simulated by a series of tanks
arranged one below the other as shown in Fig. 1. Two types of water in Tank model are
confined water, namely soil moisture and free water that drains downwards and sideways.
The rainfall is assumed to enter the uppermost tank. Each tank has one outlet in the bottom
and one or two outlets on the side at some distance above the bottom. Water that leaves
any tank through the bottom enters the next lower tank, except for the lowermost tank. The
downflow from the lowermost tank forms a negligible part of total outflow. Water leaving
any tank through a side outlet is referred to as sideflow and becomes input to the channel
system. The number of tanks, the positions of outlets and coefficients of outflow are the
parameters of Tank model.

The configurations shown in Fig. 1 are typical representations of rainfall-runoff pro-
cesses of small basins in humid regions. More complex arrangements that consist of
multiple series of many reservoirs are more suitable for large basins with strong seasonality,
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Fig. 1 Sugawara Tank model (Sugawara 1979)

deep and permeable soil column. The meteorological variables, say, precipitation (rain-
fall/snowfall) and potential evapotranspiration are inputs to Tank model. The basic form of
equation of sideflows used in this study is,

Qt =
{

A(St − H), if St > H

0, otherwise
(1)

where, Qt denotes sideflow, St the storage, H the height of the outlet above the bottom of
the tank, A the discharge coefficient. The basic form of equation of downflows is,

It = B(St ) (2)

where, It represents downflow, B the infiltration coefficient. There are numerous evidences
of the successful implementation of Tank model in hydrological studies at various places
(Basri 2013) which in turn requires the selection of appropriate model configuration. The
traditional practice of extending the models’ application to different geographical areas is to
presume a model structure based on prior experience and determine the associated param-
eters using manual trial and error or automated calibration algorithms. This work presents
an evolutionary data driven approach to select an optimal model configuration from model
space consisting of multiple model structure hypotheses and parameter sets, in the absence
of prior knowledge of interactions amongst observed data and catchment characteristics.
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1.2 System Identification in Hydrology using Genetic Programming

System identification is a methodology for building mathematical models of dynamic phys-
ical systems that require measurements of system’s inputs and output responses (Winkler
et al. 2012). Genetic Programming (GP) (Koza 1992; Babovic 1996) evolves grey box mod-
els as opposed to black box models where no definite model form is returned and white box
models that are purely phenomenological, based on first principles. GP is an approach that
copy evolutionary mechanisms for finding functional relationships between input-output
variables of the system and generating mathematically meaningful solutions (Babovic and
Keijzer 2000). The terminal set of GP consists of independent variables (causative variables
of hydrological process of training dataset), and numerical constants (model parameters).
The GP’s function set can include basic arithmetic operators, trigonometric functions,
boolean operators, logical expressions and other user defined domain specific functions.
The performance of GP depends on selection of primitive set (functions, terminals) and
fitness metrics that measure the predictive capability of the evolved model. The first step
in GP implementation is the random creation of initial population, providing satisfactory
coverage of the search space. The population for the next generation involves selecting bet-
ter individuals (represented as syntax trees), focusing on worthwhile regions of the search
space. Crossover and mutation are the two main genetic operators used in the transforma-
tion of best individuals into new generation individuals. Elitism is introduced so that few
(best-so-far) individuals in the mating pool are directly included in the next generation. The
evolutionary process continues over successive generations until the termination criterion is
met, which is usually set as the maximum number of generations. As GP is a randomized
search process, several independent GP runs are carried out for a given list of settings. Per-
formance evaluation of all GP runs is carried out followed by the selection of the model that
best reproduces the observed response. A comprehensive list of applications of Genetic Pro-
gramming in various fields of hydrological modelling can be found in Wang et al. (2009)
and Oyebode and Adeyemo (2014), which includes, rainfall-runoff modelling (Khu et al.
2001; Whigham and Crapper 2001; Liong et al. 2002; Dorado et al. 2003; Meshgi et al.
2015), streamflow forecasting (Londhe and Charhate 2010; Whigham and Crapper 2001),
sediment transport modelling (Babovic 2000), daily prediction of algal blooms (Muttil and
Lee 2005), weather prediction (Bautu and Bautu 2006), deep percolation model (Selle and
Muttil 2011), groundwater modelling (Fallah-Mehdipour et al. 2014) etc.

In all previous studies, GP has been successfully used as a symbolic regression tool that
uses the given inputs and evolves optimal models in the form of mathematical formulae
that offer a good compromise between accuracy and complexity. Adding hydrological con-
cepts into GP framework to evolve physically interpretable models for advancing system
identification in the field of hydrology is gaining interest and momentum. For example, in
Havlicek et al. (2013), a combined approach of hydrological concepts and GP automati-
cally determines the input (rainfall) memory through the process of optimization, resulting
in faster convergence and improved runoff forecasts. In this study, GP is equipped with
generic components of Sugawara Tank model (lumped conceptual rainfall-runoff model) to
evolve the optimal model configuration for the given data using single and combined sta-
tistical criteria for evaluating the fit between observed and simulated values. The resultant
GP Tank model configurations vary in terms of number of reservoir units and connec-
tions, number and type of outflows, governing functions and parameters, thereby accounting
for diversity of climate and geomorphology of catchments. Thus, this approach can be
regarded as a fully unsupervised solution to model configuration problem. The purpose of
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choosing evolutionary data driven technique is its potential to evolve novel model develop-
ment strategies which will be exploited in the further work. The authors believe that this
work will promote widespread use of GP in the process of scientific discovery in the field of
hydrology.

2 Materials and Methods

2.1 Description of Datasets

2.1.1 Kent-Ridge Catchment Dataset

A monitoring programme was established to collect dense hydrological data in the Kent-
Ridge catchment, National University Singapore (Deng et al. 2013; Meshgi et al. 2015).
This tropical catchment contains main landuse types of Singapore that includes impervious
surfaces (i.e. roofs, roads, paved car parks), grasses on steep slopes, mixed grasses and trees
and natural vegetation. The elevation varies from 14.04 m to 75.84 m above sea level and the
topography is characterized by steep slopes. The pattern of rainfall varies over the year due
to two monsoons: Northeast (mid November to early March) and southwest monsoon (mid
June to September). Rainfall is an everyday phenomenon in this tropical catchment even
during the non-monsoon period. Due to its geographical location and maritime exposure,
Singapore’s climate is characterized by uniform temperature and pressure, high humidity
and abundant rainfall. The mean annual precipitation is 2340 mm. The average temperature
is between 25 ◦C and 31 ◦C. Thunderstorms occur on 40% of all days. Relative humidity
is in the range of 70%–80% and mean annual wind velocity is 15 km/h. The rain gauge
installed on one of the roof tops of Kent-Ridge catchment recorded precipitation data at
one minute interval with an accuracy of 0.2 mm. Water level measurements recorded at
5 monitoring locations at the same temporal resolution are converted into discharge using
appropriate stage-discharge relationships. The high resolution data (one minute resolution)
collected over a period of 9 months from September 2011 to May 2012 is used for this
study. The data includes time series of catchment averaged rainfall intensity (P in mm)
and Discharge at the catchment outlet (Q in mm) Potential evapotranspiration (E in mm)
computed using Penman-Monteith equation (Monteith 1965).

2.1.2 Maimai Catchment Dataset

Maimai catchment of South island, New zealand was established as hydrological experi-
mental site in late 1974 and is one of the most researched catchments (McGlynn et al. 2002).
The climate is mainly humid with mean monthly relative humidity of 87%, microthermal
with mean annual temperature of 1.1 ◦C and adequate rainfall in all seasons with 2450 mm
as mean annual rainfall. Maimai is a forested catchment with short, steep slopes and topo-
graphical variation between 100 and 150 m. The soils are within 10% saturation through
most of the year with poorly permeable sub soils. The hourly data of precipitation (P in
mm) recorded with a rain gauge located within the catchment, potential evaporation (E in
mm) estimated as described in Rowe et al. (1994) and discharge (Q in mm), recorded over
a period of two years from January 1985 to December 1987 are used for this study.

Table 1 shows the geographical location and area of the two datasets used in this study. A
split-sample scheme is used for the selection of calibration and validation intervals so that
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Table 1 Location and area
catchments used in this study Catchments Area(Km2) Latitude Longitude

Kentridge 0.085 1◦17’45.3”N 103◦46’28.0”E
Maimai 0.038 42◦05’S 171◦48’E

they represent different volumes of runoff formations (high, medium or low flows). Half of
each type of events is considered for training and the remaining for validation, All GP runs
follow same scheme of partitioning.

2.2 Genetic Programming Framework for Automatic Model Generation

This section presents the GP algorithm developed in R (Team R Core 2014), a free soft-
ware environment for automatic conceptual model generation, which is a refinement of a
standard syntax tree GP method SORD. SORD has already been used in improving rainfall-
runoff forecasts (Havlicek et al. 2013) and estimating runoff at ungauged catchments by
regionalization (Hermanovsky et al. 2017).

Prior knowledge of the physical system is not required but useful in the definition of
potential components of the function set. In Table 2, R2T and R4T are functions represent-
ing Tank models with fixed structure consisting of a series of two and four reservoir units
respectively as illustrated in Fig. 1. TANK is a function with varying argument size repre-
senting the flexible Tank model. TANK function can represent Tank model configurations
with one or more series of reservoirs (depends on the tree depth), variable number of reser-
voirs up to a maximum of 4 in each series, variable number of outflows from each reservoir
capped at 3 (2 sideflows and 1 downflows) and associated parameters. TANK function has
restricted/bounded arguments which can only be constants within a user specified range,
representing model parameters representing heights of outlets of reservoirs (range: 0-100)
and discharge coefficients (range: 0-10). The terminal set of GP consists of reservoir inputs
(independent variables) and random constants. The GP individual is represented as a lin-
earised syntax tree array. The total number of columns of the GP individual array depends on
the maximum arity value of the functions used. The first column can be a function/terminal.
In case of function, other columns are pointers to arguments of that particular function or
are empty in case of terminal. The total number of rows depends on the tree depth. The
evaluation of the GP individual is processed and returned as a symbolic expression. The
model configuration is evolved by GP using objective functions (single or combined) that
measure the deviation between model and system responses. The fitness functions used here
are Madsen metric (Madsen 2000) which is a combination of four numerical performance
statistics (3) and (4) and Nash Sutcliffe Efficiency (NSE) measure (7). The performance of
GP results are evaluated visually by comparing observed and simulated hydrographs and
by calculating Kling-Gupta Efficiency (KGE) (Gupta et al. 2009) (8) in addition to Madsen
and NSE metrics.

V olume Error = ∣∣
nj∑
i=1

(Qobs,i − Qsim,i(θ))

nj

∣∣, j = all (3)

Overall, H igh, Low RMSE =

√√√√√√
nj∑
i=1

(Qobs,i − Qsim,i(θ))2

nj

, j = all, h, l (4)
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Table 2 Genetic Programming
function set used in this study Functions Arity Remarks

+, −, *, / 2 Basic Algebraic Functions

R2T 7 Two Tanks Model function (Fig. 1)

R4T 13 Four Tanks Model function (Fig. 1)

TANK Variable arity Flexible Tank model function

where, nall represents the total length of data, nh and nl are the number of time steps
corresponding to high and low flows respectively, Qobs,i and Qsim,i denote observed and
simulated flows respectively, θ denotes the set of model parameters restricted to parameter
space �, defined by upper and lower limits on each parameter.

Madsen =
√

(F1 + A1)2 + (F2 + A2)2 + (F3 + A3)2 + (F4 + A4)2 (5)

Ai = Max[Fj,min, j = 1 to 4] − Fi,min, i = 1 to 4 (6)

where, F1 represents volume error, F2, F3, F4 denote overall, high, low RMSE respectively,
A1 to A4 are transformation constants such that all Fi +Ai , i = 1 to 4 have the same distance
to the ideal point (0). The minimum values of Fi (Fi,min) are estimated from initial GP
population.

NSE = 1 −

n∑
i=1

(Qobs,i − Qsim,i(θ))2

n∑
i=1

(Qobs,i − Qobs,i)2
, NS0 = 1 − NSE (7)

where, Qobs,i denotes mean value of observed discharges,

KGE =
√

(r − 1)2 + (α − 1)2 + (β − 1)2, KG0 = 1 − KGE (8)

where, r represents Pearson correlation coefficient, α is equal to the ratio of standard devi-
ation of simulated discharges to the standard deviation of observed discharges and β equals
the ratio of mean of simulated discharges to the mean of observed discharges. The output of
the proposed framework consists of symbolic expressions of evolved model configurations.
The simplification of resultant expressions is carried out using Yet Another Computer Alge-
bra System (YACAS) (Pinkus and Winitzki 2002). The constant parameters in GP evolved
model configurations can be optionally fine tuned using another calibration algorithm, for
example, Differential Evolution (Storn and Price 1995). Complexity is used along with per-
formance on training and testing datasets as criteria for model selection. Wide variety of
measures, say, number of variables, model length (tree length), expressional complexity
(visitation length) (Keijzer and Foster 2007), functional complexity (order of nonlinearity)
(Vanneschi et al. 2010), measure accounting for model semantics (Kommenda et al. 2015),
have been successfully used in the earlier studies to determine complexity. A simple struc-
tural complexity metric is used in this study that denotes the number of tanks/reservoirs
present in the GP evolved model configuration.

2.3 Implementation

The basic statistical characteristics of Rainfall and Discharge series of training and vali-
dation datasets of Kentridge and Maimai catchments used in this study are presented in
Table 3. In the case of Kentridge catchment, one-minute rainfall (P) data are aggregated to
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five-minute data. Similarly, the discharge (Q) and potential evaporation (E) are averaged
to five-minute data. In this study, two types of simulations are conducted using GP based
model generation framework to model rainfall-runoff processes.

– Simulations using synthetic Kentridge discharge data, two preselected Tank model
configurations R2T and R4T and NS0 as optimization objective.

– Simulations using real/observed datasets of Kentridge and Maimai catchments, TANK
function, Madsen and NS0 as optimization objectives.

The purpose for structuring experimentation as presented below is to firstly establish
whether GP is capable of finding the relationship for which there is a proof that the opti-
mal solution exists. Only after satisfactory results using synthetic data are achieved, a more
challenging second set of simulations using real data are pursued. Table 4 shows GP set-
tings for both synthetic and real data simulations. Fifty independent GP runs are carried
out for each list of settings which are evaluated for the selection of optimal model config-
uration for the given dataset. The best model is the one that offers a good compromise of
training, testing fitness values and complexity. Feasible non dominated model configura-
tions (Pareto optimal) are derived based on training and testing fitness values from which
one best configuration is chosen based on structural complexity.

3 Results and Discussions

3.1 Simulations using Synthetic Data

The results of simulations conducted using synthetic discharge data of Kentridge catchment
and settings given in Table 4 are presented in this section. The aim of this exercise is to
highlight the efficiency of GP in retrieving the model used to generate the synthetic data.
Qsyn2T represents the synthetic discharge data generated using R2T function and observed
P, E of Kentridge catchment. The symbolic representation of R2T function is given in (10).

RI = maximum((P − E), 0) (9)

Qsyn2T = R2T (RI,H1, A1, H2, A2, A0, B1) (10)

where, RI represents input to the top most reservoir unit of the structure, H1 and H2 repre-
sent heights of sideflow outlets, A1, A2 and B1 represent coefficients of sideflows and A0
represent coefficient of downflow.

Figure 2 is the pictorial representation of GP evolved two tanks model to estimateQsyn2T
that has the best fitness value (NSE). The symbolic expressions of the target and the best
GP evolved two tanks model are given in Table 5. GP two tanks model (Fig. 2) indicates
that surface discharge is the only contributor to the total runoff and the base discharge is
predicted as zero. This is in good agreement with the target model which is associated with
very low base flow coefficient (B1=8.6e-05).

QGPsyn2T represents the simulated discharge of the best GP two tanks model. The
GP function set used for this exercise includes R2T, R4T, +, −, *, / (Table 4). The GP
evolved and target models have similar structures (R2T) but differ in terms of model param-
eters. Fine tuning of model parameters evolved by GP can be optionally carried out using
Differential Evolution or any suitable constant optimization algorithm. The performance
evaluation of the resultant GP two tanks model is presented in Table 6. GP simulated
response is in good agreement with the target indicated by high values of hydrological effi-
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Table 4 Settings for simulations using GP based model generation framework

Parameter Value

Independent Runs 50

Population Size 500

Number of Generations 100

Initialization Ramped Half and half

Tree Depth - Initial/Max Synthetic data simulations: 1/1, Real data simulations: 1/2

Fitness Function Synthetic data simulations: NS0

Real data simulations: Madsen, NS0

Function Set Synthetic data simulations: R2T, R4T, +,−,*,/

Real data simulations: TANK, +,−,*,/

Terminals Independent Variables:

Synthetic data simulations: P, E of Kentridge dataset

Real data simulations: P, E of Kentridge, Maimai datasets

Random constants, Normalised model parameters: Range: 0 to 1

Dependent Variables Synthetic data simulations: Qsyn2T

Real data simulations: Q of Kentridge and Maimai datasets

Simplification Yacas (Pinkus and Winitzki 2002)

Selection Method Tournament (Size=4)

Probability of Crossover and Replication 0.7 and 0.05

Probability of Mutation
(Constant/Node/Separation/Tree)

0.5/0.3/0.3/0.5

Complexity Computation Structural Complexity (Number of Reservoirs)

ciency measures (NSE and KGE). Figure 3 shows the plot of synthetic Qsyn2T and GP
simulated discharge time series QGPsyn2T .

Figure 3 shows that target and simulated hydrographs are well correlated (r=0.998). The
peaks are well approximated whereas considerable deviation is observed with respect to
very low flows. This is because the fitness function NS0 is sensitive to high flows and masks

Fig. 2 Best GP evolved two
tanks model
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Table 5 Equation of the best GP two tanks model

Model Equation

Target two tanks model Qsyn2T = R2T(RI,1.37,0.17,11.25,0.02,0.14,8.6e-05)

GP two tanks model QGPsyn2T = R2T (RI,14.8,0.13,4.5,0.05,0.15,0)

good performance for others. Hence for the simulations using real data presented in the
sequel, two objective functions NS0 and Madsen that focus on different parts of hydrograph
are used and the outcomes are compared in order to select the most suitable configuration.

3.2 Simulations using Real Data

This section explores the ability of the proposed framework in evolving the structure
and parameters of Tank model that best suit the hydrometeorological field data collected
from Kentridge and Maimai catchments. The symbolic representations of a few possible
configurations that can be evolved by GP using TANK function are given below.

QGP = T ANK(RI,H1, A1, H2, A2, A0) (11)

QGP = T ANK(RI,H1, A1, H2, A2, A0, H3, B1, H4, B2, B0) (12)

QGP = T ANK(T ANK(RI,H1, A1, H2, A2, A0, H3, B1, H4, B2, B0),

H5, C1, H6, C2, C0, H7, D1, H8,D2, D0) (13)

In Equations 11, 12 and 13, QGP represents the discharge simulated by GP evolved con-
figurations. Equations 11 and 12 represent Tank model with one reservoir and two reservoir
units in a series respectively with maximum number of outflows restricted to 3 per unit.
Equation 13 represents a more complex structure that consists of a pair of two serial cas-
caded reservoirs each representing a zone of the catchment. The total discharge of the first
set forms the input to the second set which is the closest to catchment outlet. RI repre-
sents input to the topmost reservoir unit of the first set, H1 to H8 denote heights of the
sideflow outlets, A1, A2, B1, B2, C1 and C2 denote the coefficients of sideflows, A0,
B0, C0 and D0 are coefficients of downflows. Fifty independent GP runs are carried out
using settings in Table 4 for Kentrdige and Maimai catchments. The best out of fifty resul-
tant models is chosen based on Fig. 4. Figure 4 shows Pareto optimal GP evolved model
configurations representing the trade off between training and testing fitnesses. The labels
of Pareto optimal points represent GP run indices (varying between 1 and 50) with struc-
tural complexity values (number of reservoir units) in the brackets. The best model that
is less complex and offers a good compromise between performance on training and test-
ing datasets is selected (highlighted in red). The equations of the best model configurations
for Kentridge and Maimai catchments evolved using NS0 and Madsen fitness metrics are
presented in Table 7.

Figure 4 shows that Tank models with two and three reservoir units have been found as
optimal configurations for both Kentridge and Maimai catchments based on Madsen and

Table 6 Performance of the best GP two tanks models

High RMSE Low RMSE Overall RMSE Volume Error NSE KGE r

0.055 0.022 0.05 0.041 0.986 0.772 0.998
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Fig. 3 Target and simulated hydrographs of synthetic Kentridge dataset

NS0 respectively. Visual selection of the best model becomes a challenging task if models
on the Pareto front have similar complexity as encountered in the case of simulations using
Kentridge data and NS0 as optimization objective. The performance of selected Pareto opti-
mal models (highlighted in red) on respective testing datasets is evaluated using accuracy
metrics and hydrological efficiency measures (Table 8). Table 8 shows that GP evolved
configuration with model ID 47 has superior performance as compared to the other with
model ID 26 for Kentridge dataset using NS0 as fitness function.

Fig. 4 Best Model selection for Kentridge and Maimai catchments
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Fig. 5 Optimal Tankmodel configurations evolved based onMadsenmetric for Kentridge andMaimai catchments

The model configurations evolved based on NS0 show slightly better performance with
respect to high flows evident by lower high RMSE value in comparison to the results of
simulations based on Madsen for both Kentridge and Maimai catchments. Taking different
aspects of flows into account (Table 8), the configurations evolved based on Madsen can
be considered optimal both in terms of accuracy and complexity for the two catchments
considered in this study. The pictorial representation of thus selected configurations are pre-
sented in Fig. 5. Combined fitness functions such as Madsen that enable better performance
across a range of flow characteristics can be more preferred as optimization objectives of
data driven algorithms. GP results indicate that the processes contributing to the total runoff
of both Kentridge and Maimai catchments are predominantly surface flows, low percolation
and very little unconfined groundwater flows occurring close to ground surface. In Meshgi
et al. (2015), it is established that overland flow, shallow sub-surface and baseflow con-
tribute to total runoff of Kentridge catchment. As per (Euser et al. 2013), the best performing
configuration of Maimai catchment consists of riparian, unsaturated and fast reservoirs rep-
resenting surface, shallow subsurface runoff with negligible/no baseflow. Also, it is to be
noted that Kentridge is a urban catchment and Maimai is a forested catchment with shallow
soil column and poorly permeable subsoil with a low deep percolation rate. The result of
GP is found to be in good agreement with field observations and earlier studies (Fig. 5).

Figure 6 show the observed and simulated hydrographs of Kentridge and Maimai catch-
ments. Time steps representative of low, medium and high flows are selected from respective

Fig. 6 Observed and Simulated real data hydrographs
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testing datasets for the plot. The peaks are slightly underestimated. The deviation from the
observed is the greatest with respect to medium flows.

The overall trend is well captured by GP evolved models with high correlation (r >

0.94) and hydrologic efficiency (NSE > 0.88, KGE > 0.90) for both Kentridge and Maimai
catchments.

4 Summary and Future Work

Genetic Programming (GP) framework for automatic conceptual hydrological modelling
is introduced in this paper. The proposed GP framework has a customized function set
which contains generic components of Sugawara Tank model in addition to the basic alge-
braic functions. GP evolves the most suitable Tank model configuration by deciding on
model components and operational rules which include, number of series of tanks, num-
ber of reservoir units in each series, number and functions of outflows from each reservoir
unit, other associated constant parameters. In this study, GP framework evolves optimal
Tank model configurations to represent Rainfall-Runoff processes of two catchments with
contrasting characteristics namely, Kent Ridge of Singapore and Maimai of New Zealand.
Fifty independent GP runs are performed for each case and the best model that offers a
good compromise between accuracy and complexity is selected. GP exhibits better perfor-
mance in evolving the model structure in comparison to estimating the constant parameters.
Therefore, GP can be optionally coupled with a suitable constant optimization algorithm to
improve parameter optimization, which is not presented in this study. GP simulations based
on NS0 andMadsen metrics suggest that combined fitness metrics (Madsen) as optimization
objectives contribute to better performance of GP framework and result in configurations
that perform well across multiple flow characteristics. GP models with two reservoir units
evolved based on Madsen are found to be the optimal configurations for Kentridge and
Maimai datasets that rightly account for dominant processes and geology of the catchments.

Overall, GP based conceptual modelling approach is promising and can be used in
building hydrological models and evolving modelling strategies for catchments of varying
sizes, locations and climatic conditions. The future work will focus on testing the pro-
posed methodology on large basins, using different optimization objectives and inclusion of
sophisticated model components (Fenicia et al. 2011) into GP framework, in place of simple
linear reservoir elements used in the presented work.
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