
Obtaining Homogeneous Regions by Determining
the Generalized Fractal Dimensions of Validated Daily
Rainfall Data Sets

M. T. Medina-Cobo1 & A. P. García-Marín1
& J. Estévez1 &

F. J. Jiménez-Hornero2
& J. L. Ayuso-Muñoz1

Received: 20 April 2016 /Accepted: 29 March 2017 /
Published online: 5 April 2017
# Springer Science+Business Media Dordrecht 2017

Abstract Extreme rainfall data are widely used in several hydrological models and civil engineer-
ing design. Despite high temporal resolution rainfall data are not commonly available, daily rainfall
data series are easily found. When these available data series are short in length the Regional
Frequency Analysis (RFA) is a good tool to enlarge them by joining stations into homogeneous
regions. This is by far, the most complicated step in RFA. This work presents a newmethod to form
homogeneous regions of extreme annual daily rainfall data series. Daily rainfall data series from 53
weather stations in the Maule Region (Chile) have been used. Their fractal dimensions spectra have
been obtained by applying the box counting method. Each station has been characterized by the
fractal dimensions D1 and D2. A cluster analysis has been carried out based on these at-site
characteristics and three regions have been obtained. After performing a RFA of extreme daily
annual rainfall data series within each region they have shown as homogeneous. Only one of the
available stations has not been possible to be included into any homogeneous regions, being the
local frequency analysis the only suitable method to be applied at this location.

Keywords Regional frequency analysis . Homogeneous regions . Fractal dimensions

1 Introduction

The estimation of extreme events is a crucial problem in hydrology specially when dealing
with rainfall or flood, due to the impact that these events can have on society and economy
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(e.g. Shabri et al. 2011). A good solution for many hydrologic engineering problems is based
on the proper knowledge of extreme rainfall. For a certain place, rainfall intensity and its
duration affect the maximum discharge that can be expected. Thus, information on the
magnitude and frequencies of extreme rainfall is essential. Intensity-duration-frequency
(IDF) relationships allow to compute the design storm which is the expected rainfall value
for a given duration and a given occurrence probability (Di Baldassarre et al. 2006). When
extreme rainfall data series for different durations are available, there are many IDF models
that can be fitted to the rainfall quantiles. If the series are long enough, local frequency analysis
techniques can be applied to obtain the quantiles. Since reliable estimations require very long
station records that are not usually available, the regional frequency analysis appear as an
alternative technique to provide a framework for hazard characterization of the extreme events
(Norbiato et al. 2007).The RFA increases the data at the site of interest considering data from
other places that share the same probability distribution functions. The RFA leads to more
accurate quantile estimations than those from local frequency analysis (Lettenmaier and Potter
1985; Wallis and Wood 1985; Hosking and Wallis 1997) when working with rain (Hosking
and Wallis 1997). The improvement of the RFA over the local one depends on the regional
homogeneity, always considering that in cases of extreme regional heterogeneity, local
estimations could be better than those based on RFA (Lettenmaier and Potter 1985).

The regional frequency analysis method introduced by Hosking and Wallis (1993, 1997) is
widely used in rainfall studies over different climatic areas (Lee and Maeng 2005; Fowler and
Kilsby 2003; Di Baldassarre et al. 2006; Norbiato et al. 2007; Wallis et al. 2007; Castellarin
et al. 2009; Ngongondo et al. 2011; García-Marín et al. 2011, 2015a, b; Satyanarayana and
Srinivas 2011; Malekinezhad and Zare-Garizi 2014; Liu et al. 2015).This method is based on
lineal moments estimations (Hosking 1990, 1992) of the data series analyzed, and their values
are used in all its steps (Hosking and Wallis 1993; Hosking and Wallis 1995; Hosking and
Wallis 1997; Rao and Hamed 2000). Within all the steps on RFA the determination of
homogeneous regions is the most difficult task and it conditions the final results.

Two important aspects have to be considered in order to finally obtain homogeneous
regions: the grouping methodology used and the at-site characteristics to be considered in
the joining process. Different methodologies have been applied in rainfall regionalization
including spatial correlation analysis (Gadgil et al. 1993), principal component analysis
(García-Marín et al. 2011), cluster analysis (Easterling 1989; Bonell and Sumner 1992;
Venkatesh and Jose 2007), combination of principal component analysis and cluster analysis
(e.g. Dinpashoh et al. 2004), and clustering combined with artificial neuronal networks (Jingyi
and Hall 2004; Srinivas et al. 2008; Satyanarayana and Srinivas 2011), among others.

The more common characteristics that have been used in rainfall regionalization include
climatological and geographical information, statistical values and location attributes (García-
Marín et al. 2011) or even atmospheric variables (e.g. Satyanarayana and Srinivas 2011). Some
multifractal parameters of rainfall data series have been recently used with this aim with very
good results (García-Marín et al. 2015a; b). The multifractal character of rainfall has been
widely studied from a descriptive use (e.g. de Lima and Grasman 1999) to any application in
engineering models (García-Marín et al. 2013). Several methodologies exist to analyze the
multifractal behavior of rainfall. All of them have in common that the multifractal paremeters
are independent of the available data for the different scales, and that no probability distribution
function has to be assumed for the data set. The multifractal analysis based on the strange
attractor formalism (e.g. Hentschel and Procaccia 1983; Grassberger 1983; Halsey et al. 1986)
deals with the fractal dimensions of a data set.
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Thus, the objective of this work is to compound homogeneous regions of extreme annual
daily rainfall by using the fractal dimensions of the daily rainfall data sets available in the
Maule Region of Chile.

2 Materials and Methods

2.1 Rainfall Data

Daily precipitation data from 53 stations located in the Maule Region of Chile and supplied by
the BDirección General de Aguas^,DGA, were used to carry out this work. The geographical
distribution of the stations throughout the Region ofMaule is shown in Fig. 1. Site elevations
range from 10to 1058 m abovemeansealevel, longitude, from 70° 48′ 43^to72° 25′ 17″Wand
latitude, from34° 54′ 41″ to36° 21′ 29″S (Table 1).

Maule Region is located in the semiarid region of Chile (from 34°41′ to 36°33′ S latitude),
withannualaveragerainfallrangingbetween 600 and 2.300 mm. As central Chile, its physiogra-
phy is characterized by the Andes mountains at the Eastside (withaltitudesbordering the
4.000m.a.s.l.), followed by a central valleyof 40 kmwidth, the Coast mountains (withheightsof
300 and 1000 m), and the coastalplain, whichreaches a widthof 5 km and is interrupted by the
riversthatflowinto the Pacific Ocean. The Maule region is located in a transition area of Chile,
from the semi-arid zone and the wetzone, showing a north-south gradient in annualrainfall.
Besides, the orography lets an increase of precipitation from the coastto the Andes Mountains.

Validation procedures are part of the quality control systems and their purpose is to identify
erroneous data frommeteorological sensor measurements in order to make optimal use of them
(Estévez et al. 2011a). In the validation process, data of a doubtful quality must be detected and
appropriately flagged. Many methods exist to validate meteorological data (Feng et al. 2004;
Zahumensky 2004; Kunkel et al. 2005; Estévez et al. 2011b).The available data for Maule

Fig. 1 Study Area: The Maule Region, Chile
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Table 1 ID of the location, name, data time-period analysed, and coordinates of the weather stations used in this
study (Maule Region, Chile)

ID Name Time period Latitude (S) (S(N°) Longitude (W) Elevation (m)

1 Agua Fría 1993–2013 35° 18′ 47^ 71° 05′ 54^ 560
2 Ancoa Embalse 1957–2013 35° 54′ 38^ 71° 17′ 45^ 421
3 Armerillo 1948–2013 35° 42′ 04^ 71° 04′ 38^ 492
4 Bullileo Embalse 1930–2013 36° 17′ 06^ 71° 24′ 51^ 600
5 Colbún Maule Sur 1961–2013 35° 37′ 27^ 71° 24′ 08^ 280
6 Colorado 1963–2013 35° 38′ 17^ 71° 15′ 38^ 420
7 Constitución 1992–2013 35° 19′ 27^ 72° 24′ 32^ 10
8 Curicó 1971–2013 34° 58′ 52^ 71° 14′ 10^ 195
9 Digua Embalse 1956–2013 36° 15′ 21^ 71° 32′ 53^ 390
10 El Álamo 1994–2013 36° 06′ 46^ 72° 25′ 17^ 180
11 El Durazno 1992–2013 35° 29′ 33^ 71° 19′ 06^ 275
12 El Guindo 1964–2013 35° 15′ 28^ 71° 19′ 26^ 250
13 El Manzano 1976–2013 34° 57′ 48^ 70° 55′ 04^ 574
14 Fundo El Peral 1966–1986 35° 24′ 02^ 71° 47′ 00^ 110
15 Fundo El Radal 1992–2013 35° 25′ 08^ 71° 02′ 35^ 685
16 Gualleco 1961–2013 35° 14′ 38^ 71° 58′ 48^ 100
17 Hornillo 1962–2013 35° 52′ 02^ 71° 07′ 02^ 810
18 Huapi 1969–2013 35° 29′ 11^ 71° 17′ 35^ 250
19 Huerta Maule 1992–2013 35° 39′ 41^ 71° 56′ 46^ 218
20 Juan Amigo 1992–2013 36° 04′ 33^ 71° 23′ 27^ 460
21 La Estrella 1992–2013 35° 46′ 57^ 72° 11′ 13^ 200
22 La Sexta 1992–2013 36° 06′ 46^ 71° 36′ 56^ 229
23 Liguay 1975–2013 35° 56′ 52^ 71° 41′ 03^ 104
24 Linares 1979–2013 35° 50′ 17^ 71° 35′ 43^ 157
25 Lontue 1976–2013 35° 02′ 32^ 71° 17′ 26^ 199
26 Los Queñes 1931–2013 35° 00′ 03^ 70° 48′ 43^ 663
27 Melozal 1951–2013 35° 47′ 08^ 71° 45′ 59^ 96
28 Monte Oscuro 1994–2013 35° 07′ 27^ 70° 58′ 29^ 632
29 Nirivilo 1961–2013 35° 32′ 20^ 72° 05′ 29^ 200
30 Parral 1964–2013 36° 11′ 16^ 71° 49′ 42^ 175
31 Pencahue 1987–2013 35° 22′ 21^ 71° 49′ 57^ 55
32 Potrero Grande 1975–2013 35° 11′ 00^ 71° 05′ 52^ 445
33 Putú 1992–2013 35° 13′ 06^ 72° 17′ 00^ 36
34 Quella 1961–2013 36° 03′ 26^ 72° 05′ 21^ 130
35 Río Ancoa Morro 1999–2013 35° 54′ 31^ 71° 17′ 53^ 402
36 Río Claro Rauquén 1999–2013 35° 27′ 09^ 71° 43′ 60^ 64
37 Río Loncomilla 2001–2013 35° 37′ 01^ 71° 46′ 04^ 68
38 Río Longavi 2001–2013 36° 13′ 49^ 71° 27′ 25^ 449
39 Río Mataquito 2001–2013 34° 59′ 04^ 72° 00′ 36^ 20
40 Río Maule Armerillo 2001–2013 35° 42′ 22^ 71° 06′ 50^ 470
41 Río Maule Salto 2003–2013 35° 53′ 03^ 71° 01′ 09^ 730
42 Río Maule Forel 2001–2013 35° 24′ 25^ 72° 12′ 30^ 30
43 Río Palos 2001–2013 35° 16′ 28^ 71° 00′ 56^ 600
44 Río Teno 1999–2013 34° 59′ 46^ 70° 49′ 14^ 647
45 San Javier 1970–2013 35° 35′ 42^ 71° 39′ 26^ 135
46 San Manuel 1956–2013 36° 21′ 29^ 71° 38′ 58^ 270
47 San Rafael 1992–2013 35° 18′ 23^ 71° 31′ 24^ 152
48 Santa Susana 1985–2013 34° 54′ 41^ 71° 02′ 07^ 410
49 Talca 1964–1982 35° 25′ 10^ 71° 39′ 38^ 110
50 Talca UC 1982–2013 35° 26′ 09^ 71° 37′ 11^ 130
51 Tutuvén 1978–2013 35° 53′ 48^ 72° 22′ 25^ 179
52 Vilches Alto 1992–2013 35° 35′ 35^ 71° 05′ 13^ 1058
53 Villa Prat 1992–2013 35° 05′ 49^ 71° 36′ 50^ 90
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Region were previously validated (García-Marín et al. 2015a). For this validation, Range
(Estévez et al. 2011b) and Persistence (e.g. Hubbard et al. 2005) tests were applied.

2.2 Multifractal Analysis Based on the Strange Attractor Formalism

Multifractal formalisms find their origin in the theory of measures. Multifractal measures are
related to the study of the distribution of a quantity over a geometric support (De Bartolo et al.
2000). The strange attractor (Hentschel and Procaccia 1983; Grassberger 1983; Halsey et al.
1986) formalism is used here to perform the multifractal analysis on daily rainfall data sets
with the aim of obtaining homogeneous regions. This formalism deals with the fractal
dimensions of the geometric sets associated with singularities of the measure.

The fractal dimension of a set is defined as the scaling exponent D0

N rð Þ ¼ A
rd0

r→∞ð Þ ð1Þ

Where N(r) is the number of boxes of length or size r, that are necessary to cover the set, and A
is a constant (Mandelbrot 1982; Feder 1988). Suppose the set is represented by a large number
of points. If these points are uniformly distributed across the set, then the fractal dimension
completely characterizes the dimension of the set. If the points are not distributed uniformly it
is possible that the mass distribution of the points varies. Then, at a given box length r, it is
possible to identify regions of the same masses μ (Feeny 2000). The mass can be estimated
within a box of size r asμi = ni/n, where ni is the number of points in the box, and n the total
number of points. Then a measure can be constructed as follows,

Md q; rð Þ ¼ ∑
N

i¼1
μq
i r

d ð2Þ

Where N is the number of boxes that cover the set; d = τq is called the mass exponent. Defining

Z q; rð Þ ¼ ∑
N

i¼1
μq
i as the partition function (i.e. Feder 1988), then Z q; rð Þ∼r−τqand thus,

τq ¼ lim
r→0

logZ q; rð Þ
logr

ð3Þ

τq can be obtained as the slope of the linear segment of a log-log plot of Z(q, r) versus r. For q> > 1,
the value of Z(q, r) is mainly determined by the high data values, while the influence of the loB55w
data values contributes most to the partition function for q < < −1 (Kravchenko et al. 1999).

The generalized fractal dimension, Dq, of moment order q is defined as,

Dq ¼ lim
r→0

logZ q; rð Þ
q−1ð Þlogr ð4Þ

In the limit as q→ 1Eq. 4 reduces to

D1 ¼ lim
r→0

∑
N

i¼1
μilogμi

logr
ð5Þ

Among the generalized fractal dimensions, D0, D1 and D2 are frquently used to describe the
measure. Thus, D0 is the fractal dimension of the set over which the measure is carried out.D1

Obtaining homogeneous regions 2337



is the information dimension that describes the degree of heterogeneity in the distribution of
the measure. In addition, according to Davis et al. (1994), D1 characterizes the distribution and
intensity of singularities with respect to the mean. IfD1 becomes smaller, the distribution of the
singularities will be sparse. On the contrary, if D1 increases, the singularities will have lower
values that exhibit a more uniform distribution.D2 is the correlation fractal dimension, which is
associated with the correlation function, and it determines the average distribution of the
measure (Grassberger 1983; Grassberger and Procaccia 1983).Dq is a decreasing function with
respect to q for a multifractally distributed measure (e.g., Saa et al. 2007) where D0 > D1 > D2.

The relation between the spectrum of generalised fractal dimensions (Rényi spectrum), Dq,
and multifractal spectrum, f(α), with α being the Lipschitz–Hölder exponent (that quantifies
the strength of the measured singularities), is given through the sequence of mass exponents τq
(Hentschel and Procaccia 1983) according to the expression:

τq ¼ q−1ð ÞDq ð6Þ
The multifractal or singularity spectrum f(α) can be obtained through (4) by means of the

Legendre transform (Halsey et al. 1986) (Eq. 7). The spectrum is an inverted parabola for measures
multifractally distributed. For monofractal measures, α value is identical for all the regions of the
same size and f(α) consists of a single point (Kravchenko et al. 1999). Multifractal spectrum highest
value,f(α0), corresponds to the fractal dimension D0 of the support of the measure.

αq ¼ −
dτq
dq

f αq
� � ¼ qαq þ τq

ð7Þ

2.3 The Homogeneous Regions in Regional Frequency Analysis

The delimitation of homogeneous regions is usually themost difficult and important stage of the RFA
(e.g Greis and Wood 1981; Hosking et al. 1985a, Lettenmaier and Potter 1985). If the available data
cannot be joined into one homogeneous region or more, the RFA cannot be carried out. Several
methodologies exist to group stations into potential homogeneous regions (e.g. Bonell and Sumner
1992;García-Marín et al. 2011; Jingyi andHall 2004; Srinivas et al. 2008; Satyanarayana andSrinivas
2011; Yürekli andModarres 2007) being cluster analysis of site characteristics the most practical one
(Hosking andWallis 1997). This technique has been widely used in hydrology (e.g. Burn 1989; Hall
andMinns 1999; Lecce 2000; Jingyi and Hall 2004; Kyselý et al. 2007; Srinivas et al. 2008; Meshgi
and Khalili 2009; Satyanarayana and Srinivas 2011; García-Marín et al. 2015a; b).

Once the potential regions have been determined, the quality of the following steps of RFA is
conditioned by the degree of homogeneity found for the regions. In this work, the RFA
proposed by Hosking and Wallis (1997) is followed. This methodology is based on L-
Moments which are linear functions of the probability weighted moments (Greenwood et al.
1979) and were introduced by Hosking (1990, 1992). The L-Moments methodology includes
from the probability distribution function characterization to the fitting of these functions to the
data. For any distribution, the first four L-moments (λ1 , λ2,λ3,λ4) and their ratios have to be
obtained (Hosking 1990),

τ ¼ λ2

λ1
τ ¼ λ2

λ1
; τ3 ¼ λ3

λ2
τ3 ¼ λ3

λ2
; and τ4 ¼ λ4

λ2
τ4 ¼ λ4

λ2
ð8Þ
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Where τ, τ3 and τ4are the L-coefficient of variation (L-Cv), L-coefficient of skewness (L-Cs) and
L-coefficient of kurtosis (L-Ck), respectively. The first L-moment λ1 is equal to the mean, hence it is
a measure of location, and, τ, τ3 and τ4are measures of a distribution’s scale, skewness and kurtosis,
respectively, which is analogous to the ordinary moments σ, γandκ, respectively (Hosking 1990).

For any step in RFA, L-Moments and their corresponding L-Moments ratios (L-CV, L-Cs

and L-Ck) have to be previously obtained for all the data series used in the analysis. Each data
series will be considered as a site or station that could be potentially joined with other stations
into a homogeneous region. The sample L-Moments ratios of a certain site is firstly considered
as a point in a three-dimensional space. A group of sites will then yield a cloud of such points.
Any point that is far from de centre of the cloud is considered as discordant. Mathematically,
the discordance can be measured with the statistic Di (Hosking and Wallis 1993, 1997),

Di ¼ 1

3
N ui−u
� �T

A−1 ui−u
� �

ð9Þ

being, A ¼ ∑
N

i¼1
ui−uð Þ ui−uð Þ ; u ¼ N−1 ∑

N

i¼1
ui; ui ¼ LCi

v; LC
i
s; LC

i
k

� �
and N = the number of

stations. Hosking andWallis (1997) suggested some critical values for the discordancy test which
are dependent on the number of sites in the study region. Di is used to identify unusual sites in a
potential region. If any discordant site is identified, it has to be removed from the region.

In order to asses if a proposed region is homogeneous, the heterogeneity measureH-statistic
can be used. It is used to compare the between-site variation in sample L-moments for a group
of sites with what would be expected for a homogeneous region (Hosking and Wallis
1997).There are three measures of the H-statistic, H1, H2, H3, defined as

Hi ¼
Vobsi−μvi

� �
σvi

i ¼ 1; 2; 3 ð10Þ

Where μv and σv are the mean and standard deviation of the simulated values of V while
Vobs is calculated from the regional data and is based on a corresponding V-statistic, defined as
(Hosking and Wallis 1997)

V1 ¼ ∑
N

i¼1
ni t ið Þ−tR
� �2

= ∑
N

i¼1
ni

� 	1=2

V2 ¼ ∑
N

i¼1
ni t ið Þ−tR

� �2
þ t ið Þ

3 −tR3
� �� 	1=2

= ∑
N

i¼1
ni

V3 ¼ ∑
N

i¼1
ni t ið Þ

3 −tR3
� �2

þ t ið Þ
4 −tR4

� �2
� 	1=2

= ∑
N

i¼1
ni

9>>>>>>>>=
>>>>>>>>;

ð11Þ

where V1 is the standard deviation, weighted according to records length, of the at-site L-CVs. V2
and V3 are the average distances from the site coordinates to the regional averages on a plot of L-

CV versus L-skewness and a plot of L-skewness versus L-kurtosis, respectively; t ið Þ; t ið Þ
3 and t ið Þ

4 are

the sample L-moment ratios at site i; tR, tR3 and t
R
4 are the regional averages of the L-moment ratios;

ni is the record length at site i; and N is the number of sites in the region.The realization of at least
500 simulations let to obtain the mean and standard deviation values μvi and σvi .

The H-statistics (Eq. 10) indicate that the region under consideration is acceptably homoge-
neous when H < 1; possibly heterogeneous when 1 < H < 2 and definitely heterogeneous when
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H > 2. The statistic H1, based on V1 measurements, is the most decisive when discriminating
between homogeneous or heterogeneous regions (Hosking and Wallis 1993; Castellarin et al.
2001), whereas H2 has no power as a heterogeneity measurement (Viglione et al. 2007).

For any region that can be catalogued as homogeneous, the following steps of RFA can be
successfully performed.

3 Results and Discussion

3.1 Aplication of Strange Attractor Formalism for Multifractal Analysis of Rainfall
Data

No data from the stations were flagged by range test and very few with the persistence one
(García-Marín et al. 2015a). After de validation proccess of the 53 available daily rainfall data
series in the Maule region, the fractal behaviour was studied through their fractal dimensions.
The strange attractor formalism was applied and the Rényi dimensions (Eqs. 4 and 5) obtained
at each site. Figure 2 shows the generalized fractal dimensions Dq for q values from −10 to 10
for a selection of 4 sites: Agua Fría, Bullileo, Liguay and San Rafael. The expected decreasing
behaviour of Dq function can be observed for all the stations with a strong dependence of Dq
on the values of q, confirming the multifractal nature of the series analysed. The values of D0

are 1 for all the sites which shows a full fill in the entire 1D domain. For lower and higher q
values, different values of Dq are obtained, with D0 > D1 > D2. For q values lower than 0 the
highest Dq values are obtained for Agua Fria station, followed by San Rafael and Liguay,
being the lowest values those from Bullileo Station. An opposite behaviour is found for q
values higher than 0, being Bullileos’ Dq values the highest ones, followed by Liguay and San
Rafael, being Agua Fria’s the lowestDq. Table 2 shows the values ofD1 andD2 for all the data
series analysed. The information dimension D1 provides a measure of the degree of heteroge-
neity (Davis et al. 1994) and characterize the distribution and intensity of singularities with
respect to the mean (Ariza-Villaverde et al. 2013).The lowest value of D1 is the one obtained
for Rio Maule Salto (0.877382) showing a more sparse distribution of singularities than in the
rest data series, for which greater D1 values were obtained (Table 2) and a more homogeneous
distribution of singularities can be expected. The highest D1 value is the one of La Sexta
station (0.984788). Correlation dimension values (D2) are also shown in Table 2 with the
lowest and highest values obtained for the same stations as D1, being 0.793721 and 0.969889
for Rio Maule Salto and La Sexta, respectively. The correlation dimension describes the
probability of finding data belonging to the set within a given distance when starting on a
data belonging to the set (Ariza-Villaverde et al. 2013).

Once the multiscaling of the rainfall data series were detected and analysed from the Dq

function, the multifractal spectrums f(α) (Eq. 7) were obtained for all of them. For the same
stations of Fig. 2, the multifractal spectrums are shown in Fig. 3. For all of them, the spectrum
show as an inverted parabola. The singularity spectrum quantifies in details the long- range
correlation properties of a series. It gives information about the relative importance of various
fractal exponents present in the series. It is a measure of howwide the range of fractal exponents
found in the signal is and, thus, it measures the multifractality degree (MD) of the series (Telesca
and Lovallo 2011). Greater the value of the width, greater will be the multifractality of the
spectrum. For a monofractal set, the width will be zero (Maity et al. 2015). According to Telesca
et al. (2004) the width of the spectrum can be obtained from the Dq function, being the
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difference between D-5 and D5 values. The higher the MD value the larger the heterogeneity.
For all the stations, Table 2 shows the values of theMD for all the stations, with the minimum
and maximum values of 0.137865 for La Sexta station and 1.481674 for Rio Ancoa station,
respectively. If we focus on the sites shown in Fig. 2, the highest multifractal degree is found for
Agua Fria (0.920359), followed by San Rafael (0.822637) and Liguay (0.632138). The lowest
multifractal degree corresponds to Bullileo (0.468812).Some information can also be obtained
from the shape of the multifractal spectra (Fig. 3) (Serrano et al. 2013). Rounder and wider
spectra correspond to higher variability in the distribution of the values. Agua Fria and Bullileo
stations’ spectra are different in shape, being Agua Fria’s rounder and wider than Bullileo’s. The
different behaviour between rainfall data series for both stations were previously detected by
García-Marín et al. (2015a) being related to the percentage of no-rain days and with the
presence of rare and extreme events in the time series.

3.2 RFA: Looking for Homogeneous Regions

As the objective is to test if the available stations in the Maule region can be grouped into
regions according to the extreme annual daily rainfall, 53 extreme daily annual rainfall data
series were obtained from the validated daily rainfall data series. Each site was characterized
by its L-moments values and ratios (L-Cv, L-Cs and L-Ck) (Table 3). With all the L-moments
data from Table 3 a region called Maule was firstly tested and a RFA of extreme annual daily
rainfall was performed. Considering Hosking and Wallis’ (1997) criteria for regions with more
than 15 sites, all the stations showing Di values (Eq. 9) higher than 3.00 had to be removed

Fig. 2 The generalized fractal
dimension function Dq for the
stations Agua Fria, Bullileo,
Liguay and San Rafael
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from the region. Thus, five stations showed discordance and were eliminated: Agua Fria
(Di = 3.35), Quella (Di = 3.01), Río Ancoa (Di = 3.96), Río Loncomilla (Di = 5.04) and San
Rafael (Di = 4.66). The values of the H-statistic (Eq. 10) for the region (now composed by 48
sites) were 2.35, 1.17 and 1.38, for H1, H2 and H3, respectively (Table 4). H1, the most
restrictive heterogeneity measurement, shows the heterogeneity of the Maule Region and new
groups of stations (Sub-regions) had to be composed.

Since different values of the Rénji spectrum were obtained at each site, these differences
were used as the basis of the joining criteria. Thus, with the D1 and D2 values as the at-site
vector characterization (Table 2) a cluster analysis was performed and two sub regions were
obtained, composed by 19 and 34 sites, respectively. For the first sub regions, only one station
showed as discordant and was removed (San Rafael station, Di = 3.45). The H-statistic values
for the group were 0.33, −0.34, and 0.44, for H1, H2 and H3, respectively (Table 4). The group
with 34 sites showed as possibly heterogeneous, with a final value of H1 of 1.89 after
removing the discordant stations (Liguay, Los Queñes, Quella and Talca) from the analysis.

A new cluster analysis was then performed with all the stations that were not included in the
first homogeneous region (Region 1 in Table 4). Two groups were obtained, with 20 stations
and 15 stations respectively. The stations Liguay (Di = 3.23), San Rafael (Di = 3.55) and Talca
(Di = 3.03), showed as discordant in the first new group. The rest of stations (17) behaved as a
homogeneous region, with H-statistic values of 0.76, −0.33, and 0.60, for H1, H2 and H3,
respectively (Region 2 in Table 4).The sub-region with the 15 stations had no discordant sites
and the value of H1 was 1.00. This last value is the lowest value to classify a region as a

Table 2 Values of fractal dimensions D1 and D2, and the multifractal degree (MD) for the available sites (ID) in
the Maule Region

ID D1 D2 MD ID D1 D2 MD

1 0.889615 0.820564 0.920359 28 0.937466 0.893687 0.584380
2 0.955456 0.925041 0.507552 29 0.974909 0.955247 0.299732
3 0.942059 0.905053 0.725544 30 0.955529 0.925813 0.477947
4 0.960375 0.933376 0.468767 31 0.956797 0.923613 0.413641
5 0.974106 0.954068 0.272129 32 0.953460 0.914992 0.377158
6 0.980991 0.965033 0.204177 33 0.951121 0.911541 0.416012
7 0.879698 0.802271 1.224827 34 0.978045 0.959457 0.236557
8 0.959815 0.926981 0.336645 35 0.883600 0.822819 1.481674
9 0.958850 0.930099 0.392157 36 0.919515 0.872760 0.994822
10 0.919259 0.864137 0.574581 37 0.913781 0.857483 0.899522
11 0.951433 0.913196 0.451888 38 0.918115 0.860271 0.833337
12 0.973490 0.953580 0.321003 39 0.892489 0.823538 1.143640
13 0.920847 0.873019 0.834535 40 0.909142 0.859638 0.951834
14 0.950020 0.901733 0.390810 41 0.945099 0.901751 0.500260
15 0.954170 0.919747 0.398820 42 0.877382 0.793721 1.108003
16 0.982265 0.966985 0.197977 43 0.918266 0.867041 0.823724
17 0.972172 0.948569 0.263800 44 0.955153 0.918287 0.437054
18 0.970621 0.945680 0.359593 45 0.961036 0.931249 0.376100
19 0.966911 0.942063 0.345346 46 0.980835 0.964870 0.199753
20 0.978528 0.962984 0.290351 47 0.911176 0.860429 0.822637
21 0.916204 0.864462 0.862946 48 0.977476 0.960844 0.279331
22 0.984788 0.969899 0.137865 49 0.958848 0.925689 0.430586
23 0.938829 0.900063 0.632138 50 0.929421 0.883229 0.554809
24 0.938470 0.901135 0.608994 51 0.930459 0.890896 0.767668
25 0.921801 0.874771 0.864936 52 0.899884 0.833084 0.759191
26 0.966235 0.941503 0.396674 53 0.899037 0.840771 0.958326
27 0.972364 0.949774 0.317954
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possibly heterogeneous. Since some spare stations were available (those removed from Region
2 for being discordant), a new group or region was formed by adding them to the sub-region
with the 15 stations. Thus, an 18-site region was available and its homogeneity was tested.
Only one station was discordant (San Rafael station, Di = 3.18), but the 17 stations left,
behaved as an homogeneous region (Region 3 in Table 4) with H-statistic values of 0.80, 0.46,
and 1.17, for H1, H2 and H3, respectively.

Figure 4 shows the three homogeneous regions obtained by colouring each station with the
reference colour of the region: red for Region 1, blue for Region 2, and green for Region 3. Only
one station (San Rafael) stays in black in Fig. 4 because it was not possible to include it in any of
the three homogeneous regions detected (Table 4). For this station, only the local frequency
analysis of extreme annual daily rainfall is then possible. Moreover, if the results that the
authors present in this work are compared to those in García-Marín et al. (2015a), the latter let
five spare sites that could not be included into any homogeneous region. This fact shows a clear
improvement in the process of forming homogeneous regions. Thus themethodology presented
in this work is the easiest and most direct when looking for homogeneous regions.

4 Summary and Conclusions

This paper presents a new methodology for grouping stations into regions when performing a
RFA of extreme daily annual rainfall data. According to the results, grouping daily rainfall data
series into homogeneous regions using the generalized fractal dimensions (also known as
Rénji spectrum) of daily rainfall data is a useful method. The novelty of this work is that only

Fig. 3 The multifractal spectrum
f(α) for the stations Agua Fria,
Bullileo, Liguay and San Rafael
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with two fractal dimensions, D1 and D2, from the Rénji spectrum, homogeneous regions in
RFA are easily obtained.

Table 3 L-Moment Ratios for the 53 stations

ID L-Cv L-Cs L-Ck

1 0.17021 0.02470 0.02980
2 0.19991 0.16800 0.18040
3 0.17742 0.03650 0.07030
4 0.16041 0.06240 0.10440
5 0.20386 0.24130 0.22860
6 0.15524 0.09070 0.20070
7 0.16360 0.02740 0.11080
8 0.18376 0.10180 0.14270
9 0.16922 0.16470 0.15940
10 0.23922 0.24720 0.11410
11 0.13473 0.09070 0.05050
12 0.17035 0.21500 0.15470
13 0.18315 0.15410 0.20060
14 0.22194 0.17490 0.06870
15 0.19496 0.12300 −0.00780
16 0.21462 0.21770 0.16540
17 0.22309 0.16160 0.12500
18 0.17780 0.24470 0.14250
19 0.14048 0.03500 0.23520
20 0.16596 0.15820 0.18680
21 0.12567 0.02960 0.11540
22 0.22131 0.27010 0.10090
23 0.16202 0.38420 0.33930
24 0.15056 0.11300 0.08560
25 0.19731 0.21080 0.21990
26 0.23472 0.25290 0.28920
27 0.21118 0.23650 0.17940
28 0.17386 0.06220 0.09350
29 0.22222 0.24950 0.12030
30 0.19221 0.18550 0.11790
31 0.14389 0.14170 0.16590
32 0.15280 0.05750 0.11810
33 0.19044 0.23040 0.11650
34 0.18842 0.36920 0.42320
35 0.18862 −0.00410 0.23530
36 0.13467 0.09730 0.28580
37 0.12764 −0.08870 0.31450
38 0.20819 0.16120 0.00810
39 0.15165 0.01650 −0.03490
40 0.21089 0.29450 0.20090
41 0.19334 −0.01480 0.01010
42 0.19528 0.02530 −0.00380
43 0.18205 0.01940 −0.07320
44 0.20574 0.07030 0.05610
45 0.16841 0.11990 0.13870
46 0.16179 0.08170 0.06450
47 0.07668 0.07870 0.08400
48 0.18966 −0.01380 0.06250
49 0.14436 0.20050 0.32820
50 0.15721 0.07360 0.09140
51 0.16742 0.10020 0.12600
52 0.18563 0.15510 0.28900
53 0.23550 0.27310 0.28130
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The Regional Frequency Analysis methodology used in this work was the one proposed by
Hosking and Wallis (1997). This method is widely used in hydrology and is based on the L-
moments of the data series analysed. Thus, the main L-moments and L-moments ratios of
extreme annual daily rainfall data series from 53 sites in the Maule region (Chile) were
obtained. Considering each station characterized by it L-moments, a first RFA was made
considering a region composed by the whole sites. This region showed heterogeneous and had
to be divided into new sub-regions potentially homogeneous.

Cluster analysis was performed in order to divide the whole region into new sub-regions.
For this purpose, each station was characterized by two fractal dimensions from the Rénji
Spectrum. The spectrum was obtained by applying the box counting method to each daily
rainfall data (previously validated). The differences between the Rénji spectrums indicated that
some of their fractal dimensions could be used as site characteristics in the cluster analysis.

Table 4 Results of the homogeneity tests for the regions formed by using cluster analysis

Region Initial Sites Discordant sites H1 H2 H3

Maule All 23,34,35,37,47 2.35 1.17 1.38
Region 1 1, 7, 10, 13, 21, 25, 35, 36, 37, 38, 39,

40, 42, 43, 47, 50, 51, 52, 53.
47 0.33 −0.34 0.44

Region 2 2, 3, 4, 8, 9, 11, 14, 15, 23, 24, 28,
30, 31, 32, 33, 41, 44, 45, 47, 49

23, 47, 49 0.76 −0.33 −0.60

Region3 5, 6, 12, 16, 17, 18, 19, 20, 22, 23,
26, 27, 29, 34, 46, 47, 48, 49

47 0.80 0.46 1.17

Fig. 4 The final regions obtained (red, blue and green sites) and the sparse station (black)
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Two representative dimensions in fractal analysis,D1 andD2, were then used. D1 characterizes
the distribution of the rainfall data series and D2 is related to the correlation function.

The fractal dimension-based cluster analysis led to form three fully homogeneous regions of 17,
18 and 17 stations respectively. Only one site stayed out of these homogeneous regions being the
local frequency analysis the only option when dealing with its extreme annual daily rainfall data.
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