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Abstract The Guanzhong Plain, as an important traditional agricultural area, is suffering from
high frequency droughts and a trend towards more serious drought. In this paper, eight factors,
precipitation, evapotranspiration, surface water availability, depth to groundwater, well yield
capacity, slope, potential water storage of soil, and GDP from agriculture, are integrated into an
index to represent drought vulnerability based on the overlay and index method. In this
approach, according to the internal connections between factors, precipitation and evapotrans-
piration are integrated into the moisture index, and depth to groundwater and well yield
capacity are integrated into groundwater availability. To improve the rationality and accuracy,
normalization is employed to assign rating values, and the analytic hierarchy process is
introduced into the weighting scheme. Two local drought monitoring datasets endorses the
results of the model. The map removal sensitivity analysis indicates the vulnerability index has
low sensitivity in removing each layer. The single-parameter sensitivity analysis indicates the
major contribution to the vulnerability index is meteorology followed by groundwater avail-
ability and surface water availability. The vulnerability map shows the low vulnerability
coincides roughly with irrigation districts on the terraces and floodplains. The northwest
tableland generally has moderate vulnerability, due largely to inefficient groundwater
withdrawal. The high vulnerability is concentrated at the peripheries of the plain, where
agriculture is generally rain-fed without irrigation and groundwater support, and land is
rugged with high slopes.

Keywords Drought vulnerability . Overlay and index . Analytic hierarchy process . The
Guanzhong plain . TheWei River

Water Resour Manage (2017) 31:1557–1574
DOI 10.1007/s11269-017-1594-9

* Hao Wu
wuhao@chd.edu.cn

1 School of Environmental Science and Engineering, Chang’an University, Xi’an, China
2 Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of

Education, Chang’an University, Xi’an, China

http://orcid.org/0000-0002-0066-2640
http://crossmark.crossref.org/dialog/?doi=10.1007/s11269-017-1594-9&domain=pdf


1 Introduction

Reports of severe droughts across the world imply a global vulnerability to drought. On the
continent of Asia, the drought occurrence takes up no more than 5% of all natural disasters,
with the population affected by drought account for about 30% of population affected by all
kinds of disasters (Wilhite and Knutson 2008). According to the statistics from 1970 to 2006,
China is one of the countries that have the most reported droughts and the highest number of
affected people (CRED 2006). Over the years, the impact of drought has increased signifi-
cantly (Wilhelmi and Wilhite 2002).

The definition, identification, assessment, mitigation, and management of drought have
been studied widely. Based on the different concepts and management objectives of drought,
drought is generally grouped into four basic types: meteorological drought, hydrological
drought, agricultural drought, and socio-economic drought (AMS 2003; Jha 2010). Various
drought indices have been devised to quantify a drought, such as the standardized precipitation
index (SPI; Mckee et al. 1993), Palmer drought severity index (PDSI; Palmer 1965), the
surface water supply index (SWSI; Shafer and Dezman 1982), the vegetation condition index
(VCI; Kogan 1995), and the crop moisture index (CMI; Palmer 1968).

Vulnerability is a complex concept, and there is no universally accepted definition. Initially,
vulnerability describes the susceptibility to harm of a physical system (Aller et al. 1987; van
Duijvenbooden and van Waegeningh 1987). Drought by itself is not a disaster, and it becomes
a disaster only when it has a negative impact on society, including people, economies, and
environment (Wilhelmi and Wilhite 2002; Wilhite 2009). Therefore, drought vulnerability is
an area’s susceptibility to suffer drought in both of its physical and social systems (Adger
2006; Lindoso et al. 2014; Naumann et al. 2014). Understanding drought vulnerability
provides information for drought preparedness and resource management, hence facilitating
disaster mitigation.

Vulnerability assessment is popular in the field of groundwater contamination and food
security. Many countries and organizations have published vulnerability assessment methods
for specific regions (Aller et al. 1987; Ribeiro 2000; WFP 2009). The assessment of drought
vulnerability started late, but considerable research has been conducted in the last decade
(Simelton et al. 2009; Preziosi et al. 2013; Lindoso et al. 2014). This may be attributed to the
realization of importance of vulnerability assessment in resource planning and management.
Another reason is the emergence of geographic information system (GIS), which has made
data analysis easier (Wilhelmi andWilhite 2002). Nowadays, researchers tend to use integrated
assessment methods, as one type of drought does not necessarily lead to another type of
drought (Pelling et al. 2004).

Drought occurs in both high and low precipitation areas and virtually all climate regimes
(Wilhite 2009). Therefore, it must be considered as a relative phenomenon, and the vulnera-
bility to drought should hence be recognized as a relative measure (Downing and Bakker
2000). As a consequence, it is hard to reach an agreed standard for drought vulnerability
assessment. The overlay and index method, which selects factors based on regional conditions
and establishes a relative criterion, makes vulnerability assessment easy. This method has been
popular for vulnerability assessment in other fields (Shirazi et al. 2012; Pacheco and Sanches
Fernandes 2013), and some scholars tried to introduce it to assess drought vulnerability.
Wilhelmi and Wilhite (2002) selected four key biophysical and social factors to estimate
vulnerability to droughts in Nebraska, US. Pandey et al. (2010) integrated seven hydro-
meteorological and physiographic factors based on an experimental weighing scheme to

1558 Wu H. et al.



evaluate drought vulnerability in the Sonar Basin, India. Yuan et al. (2015) selected three
factors for exposure, sensitivity, and adaptive capacity indicators respectively to derive a
drought vulnerability index for eastern China.

Despite advantages of the overlay and index method for evaluating drought vulnerability,
there are still a few issues that need to be discussed and addressed. (1) Many researchers assign
all factors an equal weight despite the fact that different factors affect vulnerability to different
degrees. Some researchers improve the situation by giving weights based on experience, but
subjective weighting scheme leaves room for errors. (2) Many researchers assign rating values
to factors based on the criterion with crisp sets. After all, data in the same set are unequal and
should not be assigned to the same rating. Additionally, when a value is close to the boundary
of a set, a small measuring error may change the rating. (3) Many researchers set a country,
state or province, city, or county as an evaluation unit. However, factors may vary enormously
in an administrative district.

This paper aims to develop a model for assessing drought vulnerability in the Guanzhong
Plain in China. To settle the above issues, the overlay and index method is integrated with
normalization, analytic hierarchy process, and other techniques, which are expected to improve
rationality and accuracy of results.

2 Study Area

2.1 Geography and Climate

The Guanzhong Plain located in central China lies between 107°01′–110°36′E and 33°57′–
35°33′N (Fig. 1a). The plain, covering an area of 20,000 km2, extends south to north from the
Qinling Mountains to the Bei Mountains, and west to east from Baoji to the Yellow River. The
area mainly comprises floodplains, terraces, and loess tablelands (Fig. 1b). The loess tableland
is plateau ground formed by loess accumulation on the river terraces. The Guanzhong Plain is
dominated by a warm sub-humid continental climate. The mean annual temperature varies
from 7.2 °C to 15.2 °C (Wu and Sun 2016). The mean precipitation ranges from 543.6 mm to
863.0 mm per annum, with about half of the precipitation falls in July, August, and September.
The annual rate of evaporation is in the range of 900 mm to 1200 mm.

2.2 Irrigation and Historical Droughts

The Guanzhong Plain has more than 20 irrigation districts, accounting for 60% of the study area
(Fig. 1b). The fertile fields have been irrigated since the construction of the Zhengguo Canal in
246 BC. In the twentieth century, a large amount of modern hydraulic engineering was
constructed leading the nation. Nowadays, although there exist plenty of reservoirs, pumping,
and water transfer projects, droughts occur frequently. According to the statistics from 1949 to
1995, droughts occurred almost every year in the plain (DROSP and AMCSP 1999). In the
50 years of the latter half of the twentieth century, the Guanzhong Plain had seen 35 droughts
that exceed 20% of the area (Wang 2003). Droughts in theGuanzhong Plain are also particularly
long-lasting. In the recent 500 years, more than 10 severe droughts in the area lasted over 1 year.
The longest one is the severe or extreme drought from 1627 to 1641 that lasted for 15 years.

There are several hydrologic, socio-economic, and geographic reasons for the drought
phenomenon in the Guanzhong Plain. (1) River runoff has decreased seriously. Take the
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example of Linjia County Hydrological Station, where the Wei River enters the plain — the
annual runoff has decreased from 3 × 109 m3 in the 1960s to 1 × 109 m3 in the 2010s. (2) With
growth of economy and population, water demand has been rapidly increasing. Nowadays, the
water deficient ratio is about 25% and still on the rise (Wang 2003). (3) It is difficult to develop
water resource. In the south of the Wei River, reservoirs are usually small due to the big
gradients. In the tablelands, it is hard to pump groundwater because of weak water yield and
great depth to groundwater.

2.3 Precipitation Characteristics

2.3.1 Spatial Characteristics of Precipitation

The average annual precipitation in the Guanzhong Plain varies extensively (Fig. 2). The
maximum (863.0 mm) is about 1.6 times larger than the minimum (543.6 mm). The south has
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more precipitation than the north, and the west has more precipitation than the east. The
tendency in the direction of latitude is much more prominent than that of longitude.

2.3.2 Multi-Year Characteristics of SPI

The SPI is employed to detect the temporal extents and severity of drought occurrences for
multi-timescales. For example, at the National Reference Climatological Station in Xi’an
(34°18′N, 108°56′E), which is in the center of the plain, the SPIs for 1-, 3-, 6-, 9-, 12-, 18-,
21-, 24-month timescales are calculated based on monthly precipitation time series (Fig. 3a). In
order to keep confidence of the results, the precipitation series is analyzed from the period of
records (Jan. 1951) to station transfer (Dec. 2005).

The results show a remarkable trend towards drought. The linear fittings of 1-, 6-, and 12-
month SPIs (Fig. 3b, c, d) show a significant decreased trend (p < 0.025). The trend is clearer
in 6-month or larger timescales SPIs. According to the definition of drought (SPI < −1), the
average drought frequency is 26.6% on 1-month timescale before 1977, while the percentage
has risen to 32.2% after 1977. Moreover, Fig. 3a implies that droughts in the region have
turned longer-lasting, especially evident on larger timescales.

3 Data and Methodology

3.1 Data

The moisture index, soil texture, and GDP from agriculture are raster maps with 1-km
spatial resolution. The depth to groundwater is investigated from almost 2000 wells in
August 2013, and the grid map was produced by interpolation using kriging with
Gaussian variogram model, the optimal method for the case determined by cross-
validation. Data of the well yield capacity are obtained from the hydrogeological map
made by the First Party of Hydrogeology, Shaanxi Bureau of Geology. The DEM is
from ASTER GDEM produced with 30-m postings.
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Fig. 2 Average annual precipitation map in the Guanzhong Plain
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3.2 Drought Vulnerability Model

The key steps of drought vulnerability model can be described as follows.

(1) Selection of factors

According to available data and natural and social conditions associated with
drought, 8 key factors (precipitation, potential evapotranspiration, surface water avail-
ability, depth to groundwater, well yield capacity, slope, potential water storage of
soil, and GDP from agriculture) are singled out to represent meteorology, water
availability, geographic feature, and economic indicator. The correlations between
factors are considered weak, as 64% of the correlation coefficients are less than
0.20, and the maximum correlation coefficient is 0.35 (between precipitation and
surface water availability).

1953 1958 1963 1968 1973 1978 1983 1988 1993 1998 2003

1953 1958 1963 1968 1973 1978 1983 1988 1993 1998 2003

-2

0

2

4

-2

0

2

-4

-2

0

2

0

6

12

18

24

T
im

e
-
s
c
a
le

s

(a)

(b)

(c)

(d)

6
-
m

o
n
th

 S
P

I
1
-
m

o
n
th

 S
P

I
1
8
-
m

o
n
th

 S
P

I

Years

-2.5 -2 -1.5 -1 -0.5 0.5 1 1.5 2 2.5

Near normal dliMdliM

WetDry

ylereveSylereveSExtremely Extremely

Fig. 3 Time series of SPI for a multi-time scale, b 1-month time scale, c 6-month time scale, d 18-month time
scale at National Reference Climatological Station in Xi’an

1562 Wu H. et al.



(2) Rating and normalization

Dissecting the area by grids generates thousands of assessment cells. A numerical drought
vulnerability index (DVI) derived from ratings and weights assigned to each factor are
obtained to represent the drought vulnerability for each cell. The factor ratings are assigned
to values to reflect their relative contribution to drought vulnerability. Instead of conventional
rating with crisp sets, normalization, a continuous-form classification system, is employed to
ensure a continuous DVI that generates precise results. The normalization formula is expressed
as follows:

XNi ¼
10 X i−Xminð Þ
Xmax−Xmin

positive factors

10 Xmax−X ið Þ
Xmax−Xmin

negative factors

8>><
>>: ð1Þ

The higher the value of a positive factor, the more vulnerable the area, and vice versa. Only
slope is a positive factor in this case. After normalizing, the ratings are within the range of 0 to
10, with 0 considered to be least vulnerable to drought, and 10 considered to be most
vulnerable.

(3) Calculation of DVI

Factors are integrated by different ways (Fig. 4) according to their internal connections.
Precipitation and potential evapotranspiration are integrated into the moisture index. The
ratings of the depth to groundwater and well yield capacity are compared cell to cell to choose
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Fig. 4 Modeling framework for calculating DVI

Assessment of agricultural drought vulnerability 1563



a high rating as groundwater availability. Then, the DVI is derived from a weighted sum of
ratings cell by cell as follows:

DVI ¼ MωMR þ SAωSAR þ GAωGAR þ SωSR þ PωPR þ GωGR ð2Þ

where, M, SA, GA, S, P, and G are respectively acronyms of meteorology, surface water
availability, groundwater availability, slope, potential water storage of soil, and GDP
from agriculture, and the subscripts ω and R denote the corresponding ratings and
weights, respectively.

3.3 Determination of Weights

The weights, indicating the relative importance of factors, play a crucial role in vulner-
ability calculation (Qian et al. 2012). In this paper, the analytic hierarchy process (AHP)
is used to derive weights from experiential judgments of relative importance of factors.
The AHP is a powerful tool to solve multiple criteria decision-making issues. In this
approach, problem is decomposed by construction of a hierarchy which places a set of
criteria (Sun 2010; Saaty and Shang 2011). The pairwise comparisons, determined by the
knowledge and experience of experts, are generated to convey the relative importance of
factors. In the present study, 14 experts were surveyed. They are local administrative
managers, hydrogeologists, hydrologists or engineers of water resources planning, and
are familiar with the Guanzhong Plain. In the pairwise comparison matrix, aij = 1 when
the importance of factor i and j are the same, aij > 1 when factor i is more important
than factor j, aji is the reciprocal of aij. The greater the value of aij, the more
important the factor i is than j. The weight ωi is derived from pairwise comparisons
aij by formula as follows:

ωi ¼ ωi= ∑
n

i¼1
ωi; ωi ¼

ffiffiffiffiffiffiffiffiffiffiffi
∏
n

j¼1
aij

n

s
ð3Þ

where ωi is the weight of factor i and n is the number of factors. To reduce the bias
of judgments, the consistency of a comparison matrix must be checked. The consis-
tency ratio for consistency check can be consulted in Saaty (2004) and Saaty and
Vargas (2012).

3.4 Sensitivity Analysis

Many factors have a great impact on the final vulnerability map. In the first instance, a high
degree of interdependence of factors may increase the probability of misadjustment (Rosen
1994; Rahman 2008). In addition, the imposed errors or uncertainties of a number of input
layers (factors) may also have an impact on the final output map (Saha and Alam 2014).
Unavoidable subjectivity in the ratings and weights of factors has also raised concerns for
accurancy (Kazakis and Voudouris 2015; Wu et al. 2016).

To address these issues, two sensitivity tests are carried out. The first test is the
map removal sensitivity analysis introduced by Lodwick et al. (1990). The test
identifies the sensitivity of vulnerability map by removing one or more layer maps.

1564 Wu H. et al.



Thus, the sensitivity index reflects the variability of each layer (Gogu and Dassargues
2000). It is calculated as follows:

Si ¼ Vi=Nð Þ− vi=nð Þj j
Vi

� 100 ð4Þ

where Si is the sensitivity index of ith cell, Vi is the DVI of ith cell, vi is the DVI
that excludes one or more input layers, and N and n are the number of layers used to
compute Vi and vi.

The single-parameter sensitivity analysis, introduced by Napolitano and Fabbri (1996),
indicates the contribution of individual layers on the resultant vulnerability map (Pacheco et al.
2015). It compares the real or Beffective^ weight of each input layer with the Btheoretical^
weight assigned by the AHP model (Rahman 2008; Brindha and Elango 2015). Thus, the test
provides helpful information about the impact of weights and ratings assigned to each
layer and assists the analyst in determining the significance of subjectivity elements
(Huan et al. 2012). The effective weight of an individual factor in an assessment cell
is calculated as follows:

W ¼ PrPw

V
� 100 ð5Þ

where W is the effective weight, Pr and Pw are the rating and weight of each input
layer, and V is the overall DVI.

4 Factors

4.1 Meteorology

The precipitation, which is the primary cause responsible for a drought occurrence, is the only
or core parameter in many meteorological drought indices, e.g. SPI, reconnaissance drought
index (RDI; Tigkas and Tsakiris 2015), and percentage of precipitation anomalies (Pa; Xu et al.
2016). In consideration of the broad range of average annual temperature in the plain (7.2–
15.2 °C), the effects of evapotranspiration cannot be neglected. The moisture index recom-
mended by the China Meteorological Administration is chosen as the meteorological factor
(CMA 2006). The index with a simple calculation represents the balance between precipitation
and evapotranspiration. It can be expressed as (CMA 2006; de Carvalho et al. 2013)

Im ¼ 100
P
PE

−1
� �

ð6Þ

where Im is the moisture index, and P and PE are the precipitation (mm) and potential
evapotranspiration (mm) of a certain period respectively. The PE is estimated by the
Thornthwaite method (Thornthwaite 1948). The average annual moisture index ranges from
−17.5 to 63.89 (Fig. 5a), but the values are negative in 81% of the study area. Compared with
the precipitation (Fig. 2), the moisture index has a narrower variation between the north and
south, and between the east and west.
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4.2 Water Availability

4.2.1 Surface Water Availability

Except a negligible quantity of collected rainwater and treated wastewater, irrigation water is
from rivers and groundwater. Benefiting from the construction boom of modern hydraulic
engineering in the twentieth century, about two-thirds of farmland is irrigated by rivers
diverted by canals. The irrigation is an effective drought mitigation measure to cope with
short-term drought conditions (Wilhelmi and Wilhite 2002; Jain et al. 2015). Therefore, the
irrigation districts are assigned with a low vulnerability with a rating of 2, while the non-
irrigation districts have a high vulnerability with a rating of 8 (Fig. 5b).
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4.2.2 Groundwater Availability

According to the Water Statistical Yearbook of Shaanxi from 2008 to 2010, groundwater
accounts for, on average, about 40% of irrigation water. From the aspects of space and time,
groundwater can be withdrawn almost anywhere at any time, while canals only work in
particular areas and at particular times. The easy availability and accessibility of groundwater
give it a vital role in coping with drought in the study area.

Well yield and depth to groundwater have an impact on the development of well
irrigation (Foster et al. 2015). Under small-scale farming, individuals bear the cost of
drilling and pumping, thus the depth to groundwater is closely bound up with the
number of wells. Accordingly, the two factors are integrated into account. Each grid
cell is assigned the maximum rating of the two factors to get an integrated factor
representing the groundwater availability.

According to the investigation of almost 2000 wells in the study area, there are few wells in
the area with depth to groundwater exceeding 60 m.Wells are widespread in the area where the
depth to groundwater is less than 40 m. The shallower the depth to groundwater is, the lower
the costs are, and the more wells there are at that depth. The yield capacity of pumping wells
ranges from 0.1 m3/h·m to 40 m3/h·m. In general, wells in the floodplains and terraces have
good yield capacities (>1 m3/h·m), while in the loess tableland, the yield capacity is low
(<0.5 m3/h·m).

The ratings assigned to the depth to groundwater and well yield capacity are given in
Table 1. The maps of depth to groundwater, well yield capacity, and groundwater availability
are shown in Fig. 5c–5e. The groundwater availability map shows a close similarity with the
well yield capacity map, which is consistent with the research of Foster et al. (2015) that found
that well yield capacity has a greater impact on agriculture.

4.3 Geographic Feature

4.3.1 Slope

The slope accelerates runoff of surface and subsurface flows, which leads to a fast delivery of
water (Woo 2012; Şen 2015). Therefore, it is adverse to water infiltration, storage, and soil
moisture retention. Soil moisture is available for a longer time in an area with mild slopes than
steep slopes (Jain et al. 2015). Thus, steep slope areas are considered highly prone to drought
followed by gentle slope areas and flat areas. The slopes are calculated from the DEM data
using ArcGIS 10. The map (Fig. 5f) shows that slopes range between 0 and 15.2% in the study

Table 1 Ranges and ratings for
depth to groundwater and well yield
capacity

Depth to groundwater Well yield capacity

Range (m) Rating Range (m3/h·m) Rating

<10 0 20–40 0
10–20 1 10–20 1
20–30 3 5–10 2
30–40 5 1–5 5
40–50 8 0.5–1 8
50–60 9 0.1–0.5 9
>60 10 bedrock 10
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area. However, slopes are less than 0.5% over half of the area (52.9%), and less than 3.0% in
most area (90.4%). A gentle slope may lead to significant water loss (Zehetner and Miller
2006; Hounsell 2015), so the maximum slope for normalization is set to 3%, and any slope
exceeding 3% is assigned a rating value of 10.

4.3.2 Potential Water Storage of Soil

The soil root zone can retain moisture and supply it to crops, which is critical to plant growth
during periods of deficient water. The water holding capacity of soil is mainly determined by
soil texture (Parry et al. 1988; Wilhelmi and Wilhite 2002). For example, sand loses water fast
due to high porosity, and is therefore considered vulnerable to drought. The water storage
capacity of soil (Webb and Rosenzweig 1993) can be estimated as

2� sand½ � þ 7� clay½ � þ 10� slit½ � ð7Þ

where [·] is the relative percentage of sand (0.05–2 mm), silt (0.002–0.05 mm) or clay
(<0.002 mm). The results (Fig. 5g) indicate soil texture is considered relatively low vulnerable
to drought, except in the small-scale sand in the east.

4.4 Economic Indicator

Economic status is closely related to hazard severity or adaptive capacity of many disasters,
e.g. flood, earthquake, and tropical cyclone (Pelling et al. 2004). With respect to drought,
Simelton et al. (2009) demonstrated that GDP is consistently correlated with drought vulner-
ability across China. It is believed that government institutions or farmers are able to provide
powerful investments to reduce risk in rich areas (Yang et al. 2007; Simelton et al. 2009).
However, in an area with a low GDP, a small economic loss is critically important (Pelling
et al. 2004). Thus, an area with a high GDP has a high adaptive capacity, hence low
vulnerability to drought. GDP from agriculture (Fig. 5h) is employed as an assessment factor,
as it has an intimate relationship with agriculture.

5 Results and Discussion

5.1 Weights and Vulnerability Map

Precipitation, rivers, and groundwater are the direct sources for irrigation water. Hence
meteorology, surface water availability, and groundwater availability are considered to be
the most important factors. The geographic factors (slope and potential water storage of soil),
which have an effect on diversion and storage of water, are of secondary importance. The
economic indicator works only if drought occurs, so it is considered of marginal importance.
The AHP with the 1–3 scale is used to decide weights. Accordingly, the pairwise comparisons,
showing the relative importance of factors, are constructed as formula (8). The last column of
formula (8) lists the weights of the six factors calculated by formula (3). The consistency ratio
of the comparison matrix is 0.002 (less than the threshold 0.1), thus the matrix is considered to
be reliable. The resultant vulnerability is shown by a color map with grids of 1 × 1 km (Fig. 6).
The DVI varies from 1.24 to 8.55, with an average of 5.00 and a standard deviation (SD) of
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1.13. To highlight the extreme values, the standard deviation stretch is applied to produce the
vulnerability map. More specifically, the map applies a linear stretch between two SDs of the
average and pushes values falling outside the range to the ends (Freedman et al. 2007; ESRI
2016). The frequency of DVI and operation of the SD stretch refer to Fig. 7.

5.2 Validation of Drought Vulnerability

It is difficult to evaluate the reliability of the drought vulnerability map due to a lack of a well-
established monitoring system. Nevertheless, two datasets from local monitoring can be used
for validation. The first dataset refers to Jia (2015). It calculated mean drought-affected
rates from 1990 to 2007, but confined to the northwest of the study area. The second
dataset was obtained from the China Meteorological Data Service Center, which
provided drought information every ten days from 1991 to 2011. Likewise, average
drought-affected rates are employed.

The first dataset shows, in the northwest tableland, the west is less likely to be affected by
droughts than the east. Correspondingly, the vulnerability map shows the west has moderate to
low vulnerability, while the east almost always has moderate vulnerability. The dataset also
implies terraces are less affected by droughts than the tableland, which coincides with the

LLegend

DVI 8.551.24

Average drought-affected rate

Statistics from first dataset

Statistics from second dataset

0 25 50 km

N

Fig. 6 Drought vulnerability map and historical drought statistics used for validation. Red, yellow, and blue
stand for high, moderate, and low vulnerability, respectively

ð8Þ
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vulnerability map. The second dataset also corresponds to the vulnerability map, which further
endorses the vulnerability map.

5.3 Sensitivity Analysis of Vulnerability Index

The variations of the DVI as a result of removing one layer at a time are presented in Table 2.
The table shows the mean variation indices are less than 5%, which indicates a minor variation
of the DVI is expected upon the removal of each layer. The DVI seems to be most sensitive to
the removal of the meteorology layer as the mean variation index is 4.9%. The vulnerability
variation index seems to be moderately sensitive to the removal of the slope (3.0%), potential
water storage of soil (2.7%), and groundwater availability layers (2.3%). The smallest variation
index was seen after removing the surface water availability (1.8%) and the GDP from
agriculture layers (1.3%).

Table 2 also shows the results of the single-parameter sensitivity analysis. The analysis
reveals the meteorology layer dominates the DVI, as its average effective weight is the
maximum, reaching as high as 41.1%. This is partly caused by its high theoretical weight
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Fig. 7 Frequency of DVI. The polyline shows the operation of the standard deviation stretch

Table 2 Statistics of map removal sensitivity analysis and single-parameter sensitivity analysis

Factor Map removal sensitivity analysis (%) Single-parameter sensitivity analysis (%)

Mean SD Theoretical weight Effective weight

Mean SD

M 4.9 2.2 23 41.1 10.5
SA 1.8 1.1 23 19.5 10.8
GA 2.3 1.7 23 24.2 10.3
S 3.0 0.5 12 1.6 1.9
P 2.7 0.8 12 3.3 4.5
G 1.3 0.7 7 10.5 3.5
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(23.0%), and partly caused by widespread high ratings of the meteorology layer, whose
average value is 8.5. The high rating also results in larger effective weights than its theoretical
weight. The groundwater availability and surface water availability also tend to be fairly
effective factors in the vulnerability assessment, as their average effective weights are 24.2%
and 19.5%, respectively. They are not much different than their theoretical weights (23.0%).
This would imply that the theoretical weights are the principal cause of their high effective
weights. The least effective factors are the slope and potential water storage of soil, as their
effective weights are 1.6% and 3.3%, respectively. The smaller influence could be attributed to
their low theoretical weights (12.0%), but it is likely rather due to their low ratings. The mean
ratings for the slope and potential water storage of soil layers are 0.75 and 1.43, respectively,
implying geography is in favor of tolerating drought.

5.4 Discussion

The low vulnerability coincides roughly with irrigation districts on the river terraces and
floodplains. In these areas, irrigation water supply is generally guaranteed during the irrigation
periods; even during the non-working periods of canals, crops can be watered by groundwater.
A small area in the southeast, where precipitation is more abundant than other areas, has
extremely low vulnerability.

The moderate vulnerability is mainly concentrated in the northwest tableland. In contrast to
the irrigation districts of low vulnerability, it is hard to pump groundwater there. One of the
reasons for this is the considerable depth to groundwater due to the thick loess covering river
terraces. More importantly, the well yield is too poor to utilize. Thus, water diversion and
reservoirs play a crucial role in coping with drought. The west of the tableland is less
vulnerable than the eastern part, due largely to its higher precipitation.

The dominance of high vulnerability areas is on the peripheries of the Guanzhong Plain,
including proluvial fans, hills, Mount Li and its adjacent tablelands, and tablelands in the
northeast. The geography is generally unfavorable for farming due to rugged landscape and
precipitous slopes. In the northeast tablelands, groundwater withdrawal is also tough, and
canals are not built in the second tableland. As a result, precipitation is an important water
resource; however, it is scarce. In the tablelands adjacent to Mount Li (south center),
precipitation is relatively abundant. However, the land is rather rugged, canals are not built,
and groundwater cannot be pumped.

6 Conclusions

The overlay and index method, which is popular in assessing vulnerability of groundwater and
food security, were employed to assess the drought vulnerability of the Guanzhong Plain. The
developed model involves meteorological, hydrologic and geohydrologic, geographic, and
economic indicators, including eight factors. Two datasets of historical droughts endorsed the
reliability of the drought vulnerability map.

The map removal sensitivity analysis showed that the DVI has a low sensitivity to
the removal of each layer. The single-parameter sensitivity analysis revealed that the
meteorological factor is the leading contributor (41.1%) on the DVI. The availability
of groundwater and surface water also make significant contributions to the DVI
(24.2% and 19.5%, respectively).
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The vulnerability map reveals that the irrigation districts on the river terraces and flood-
plains have low vulnerability, while the irrigation districts on the northwestern loess tableland
have moderate vulnerability, as thick loess make it hard to pump groundwater, which might be
pivotal resource in withstanding droughts during the non-working periods of canals. The high
vulnerability areas are mainly on the peripheries of the Guanzhong Plain. In the northeast
tablelands, groundwater withdrawal is tough, there is no irrigation support in the second
tableland, and precipitation is relatively scarce. In the tablelands adjacent to Mount Li, despite
relatively abundant precipitation, it is hard to tolerate drought due to rugged land and rain-fed
agriculture without irrigation and groundwater support.
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