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Abstract Evaluating the impact of climate change at river basin level has become essential for
proper management of the water resources. In the present study, Godavari River basin in India
is taken as study area to project the monthly monsoon precipitation using statistical downscal-
ing. The downscaling method used is a regression based downscaling termed as fuzzy
clustering with multiple regression. Among the atmospheric variables simulated by global
circulation/climate model (GCM) mean sea level pressure, specific humidity and 500 hPa
geopotential height are used as predictors. 1o × 1o gridded rainfall data over Godavari river
basin are collected from India Meteorological Department (IMD). A statistical relationship is
established between the predictors and predictand (monsoon rainfall) to project the monsoon
rainfall for the future using the Canadian Earth System Model (CanESM2) over IMD grid
points under the Representative Concentration Pathways 2.6, 4.5 and 8.5 (RCP 2.6, 4.5, 8.5)
scenarios of Fifth Coupled Model Inter-Comparison Project (CMIP 5). Downscaling proce-
dure is applied to all 25 IMD grid points over the basin to find out the spatial distribution of
monsoon rainfall for the future scenarios. For 2.6 and 4.5 scenarios results show an increasing
trend. For scenario 8.5 rainfall showed a mixed trend with rainfall decreasing in the first thirty
years of prediction and then increasing gradually over the next sixty years.

Keywords Climate change . Statistical downscaling . River Godavari . Monsoon precipitation

1 Introduction

Climate change is a global phenomenon having varying degree of regional impacts. Though
there are different schools of thought regarding the contribution of different driving forces of
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climate like greenhouse gases, aerosols etc., and also the sequence and pace of the phenomenon,
everybody agrees that climate change and global warming is a reality. The third assessment report of
the Intergovernmental Panel onClimate Change (IPCC 2001) revealed the impact of climate change
on water resources. The climate change causes intensification of some processes within the
hydrological cycle, affecting ground and surface water supply for irrigation, domestic and industrial
uses, water-based recreation and hydropower generation. The projections indicate that there would
be change in the variability of climate, and changes in the frequency and intensity of some
extreme climatic phenomenon. Therefore, it is necessary to evaluate the consequence
of climate change at river basin level. Xu (1999) discussed the existing gaps between
the GCM realizations and hydrological concern in spatial as well as temporal scale
and stated that the efficiency of the GCM to simulate at fine resolution decreases;
whereas, the importance of the hydrological processes increases at fine scale
(Kundzewicz et al. 2007). Furthermore, Chen et al. (2006) advocated that the coarser
scale GCM outputs cannot be considered directly in hydrological studies at finer scale
and will not be able to capture the circulation pattern causing the extreme events of
hydrology (Christensen and Christensen 2007). Therefore, GCM outputs are inade-
quate to assess the spatial and temporal variability of rainfall required for hydrologic
modelling (Wilby et al. 1999). Thus downscaling is used to link the large scale
climatic variability to the historical observations of the surface parameters of interest
to quantify the possible changes at the regional level. The method of modelling the
hydrologic variables at a regional scale based on large scale GCM outputs is known as
downscaling. Due to the lack of understanding of physical processes and vagueness
involved in different future representative scenarios the uncertainty level is high in GCM
simulated outputs (Mujumdar and Ghosh 2008). Additionally, Maraun et al. (2010) stated
that the mismatch in the scale can be tackled by downscaling of the GCM output with the
assumption that large scale global circulation has significant impact on the local scale
weather.

The relationships resulting from observed data is used in statistical downscaling
(Wigley et al. 1990; Hewitson and Crane 1996). In this method statistical relationship
is established between the predictors and predictand to downscale the global projection
to a regional level projection (Von Storch et al. 1993) and therefore, this method is considered as
prognosis downscaling (Kalnay 2003;Wilks 2006). Future precipitation was calculated using fuzzy
clustering from GCM projection over Orissa by Ghosh and Mujumdar (2006). Fuzzy clustering
combined with relevance vector machine is used to predict streamflow over Mahanadi River using
greenhouse emission scenarios by Mujumdar and Ghosh (2008). The statistical downscaling has
gained popularity in various aspects of hydrology such as projecting the river runoff (Rao 1995;
Simonovic and Li 2004; Samadi et al. 2013), low flows in river basin (Diaz-Nieto andWilby 2005),
to analyse the impact on temperature (Coulibaly et al. 2005; Chu et al. 2010), daily precipitation
(Coulibaly et al. 2005; Chen et al. 2006; Maraun et al. 2010), pan evaporation (Chu et al. 2010).
Furthermore, Wilby et al. (1998) performed more comprehensive analysis on hydrometeorological
variables through statistical downscaling using Hadley Centre coupled ocean-atmosphere model
through two GCM airflow scenarios. Bronstert et al. (2007) adopted a different approach, where
they have assessed the climate change impact on hydrology by developing the future climate
projection scenario based on the regional climate features and large scale future climate changes
provided by the GCMs. In the present study, a regression based statistical downscaling method is
used to evaluate the impact of climate change over a river basin, namely, River Godavari in India,
using RCP scenarios from CanESM2 GCM. The historical precipitation data is considered as
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dependent variable and the predictors obtained from the National Centers for Environmental
Predictions (NCEP) are treated as independent variables to establish the statistical relationship.

The paper is organized as follows. Details of the study area and data used in the study are
presented in section 2. Model formulation and synthesis of future events are described in
section 3. Comparison and analysis of the model output are summarized in section 4.
Summary and conclusion of the study is detailed in section 5.

2 Study Area and Data

The Godavari is considered to be the second largest basin in India, which extends over regions
of Maharashtra, Andhra Pradesh, Telangana, Odisha, Madhya Pradesh and Karnataka. The
geographical area of the basin is 302,065.10 km2, which is 9.5% of total geographical area of
India. The basin has tropical climate and about 85% of annual rainfall over the basin is
received during south-west monsoon. The annual rainfall depth varies from 600 mm to
3000 mm. The basin lies between 73°24′ to 83°4′ east longitudes and 16°19′ to 22°34′ north
latitudes. The location and basin map of the study area are shown in Fig. 1.

Data of the selected predictors for downscaling (a) mean sea level pressure (MSLP), (b)
specific humidity, (c) 500 hPa geopotential height are collected from the National Centre for
Environmental Prediction/National Centre for Atmospheric Research (NCEP/NCAR) official
website (http://www.cdc.noa.gov/cdc/reanalysis/reanalysis.html). The climate data are
extracted for the grid points covering the study area i.e. 40 (5 × 8) between latitudes 150 –
250N and longitudes 700–87.50 E.

A high resolution (10 × 10lat/long) gridded daily rainfall data for the Indian region
developed by Indian Meteorological Department (IMD) is used in this study (Rajeevan et al.
2008). Daily data for monsoon season is converted to monthly data for the long term baseline
period for the 25 grid points representing the study area.

For the future scenarios, RCP 2.6, 4.5 and 8.5, the climatic data are extracted from the
fourth generation global climate model (CanESM2) output of CMIP 5 and used to project the
future monsoon rainfall.

Fig. 1 Position and basin map of Godavari basin
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3 Model Formulation

The purpose of the study is to study the possible future rainfall variations on a river basin scale
using different scenarios of climate change as predicted by GCM. The regression based
statistical downscaling i.e. combination of fuzzy clustering and multiple regression is used
to project the future monsoon precipitation. The detailed model formulation and estimation of
the predictand is presented in the form of flow chart as shown in Fig. 2. The steps illustrating
the complete procedure are as follows:

Step 1: Regrid the GCM output at NCEP grid points. Perform Principal Component Analysis
(PCA) to remove interdependency between the predictors. The variability among the
data will be represented by the dimensionally reduced variables. Standardize the data
to remove bias.

Step 2: Find out the optimum number of clusters and fuzzification parameter on the basis of
Fuzziness Performance Index (FPI).

Step 3: Take the membership function along with the principal components as independent
components and perform multiple regression using rainfall as dependent variable.

Step 4: Use Equiprobability transformation to remove the model uncertainty for the simulated
historical data and make the correction for the simulated future data based on CDF.

The data obtained from the GCM are at atmospheric horizontal resolution of
2.81250 × 2.81250 and the NCEP data at a resolution of 2.50 × 2.50. Interpolation is carried

Fig. 2 Flow chart for estimation of future rainfall
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out to avoid the error associated with the mismatch of the grid resolution by re gridding the
GCM data on the NCEP grid points

The initial stage of correcting the bias is known as Standardization (Wilby et al. 2004).
Standardization is carried out by subtracting the long term mean (location parameter)
and dividing by the standard deviation (scale parameter) of the predictor variable to
reduce the systematic bias between the GCM and NCEP data set before downscaling
(Ghosh and Mujumdar 2008). The long term baseline period is taken from 1971 to
2007.

The predictors for downscaling are extracted at each points of NCEP. Therefore the
total number of the data attributes is 120 i.e. 40 grids and 3 predictors. The most
important thing is that the predictors are also correlated among themselves hence it is
very difficult to handle high dimensional correlated data. PCA is a tool used to
remove the interdependency among the variables and reduce the dimentionality
(Hannachi et al. 2007). PCA uses an orthogonal transformation to convert a set of
correlated observations into a set of values of linearly uncorrelated variables called
principal components (Huth 1999). In this study, the first 6 principal components
explain 96% of the information (variability) of the original predictors. The obtained
Eigen values vector, which acts as principal direction and preserves the variability of
the observed series, is multiplied with the GCM data to get the principal components
of GCM data.

3.1 Fuzzy Clustering and Multiple Linear Regression

A fuzzy clustering based downscaling technique developed by Ghosh and Mujumdar
(2006) is used in the present study for downscaling the monsoon precipitation. Grouping
of dataset into a number of classes is known as clustering. Membership function is
calculated based on the Euclidean distance between the cluster centre and the data points.
Membership value ranges between 0 and 1 (Raju and Nagesh 2007). Dataset, which are
closer to the centre of the cluster will get membership function close to 1 and vice versa.
In the present study the fuzzy clustering analysis is carried out with the dataset contain-
ing six principal components obtained from the atmospheric predictors (i.e. pc1t, pc2t,
pc3t, pc4t, pc5t, pc6t) for different time periods. Optimum numbers of clusters are
determined based on Fuzzy Performance Index (FPI). Fuzzification parameter (m) and
number of clusters (c) are the two important parameters of the fuzzy clustering algorithm.
The values of these two parameters are determined based on Fuzzy Performance Index
(FPI). FPI is calculated using Eqs. 1 and 2.

F ¼ 1

N

Xc

i¼1

XN

t¼1

u2it ð1Þ

FPI ¼ 1−
cF−1ð Þ
c−1ð Þ ð2Þ

Where, μit is the membership in cluster of the principal components, c is number of clusters,
t is the time in month (i.e. June, July, August and September). Fuzzification parameter is varied
from 1.2 to 3.0 and number of clusters is varied between 2 and 5. FPI value of about 0.25 is
recommended for the purpose of selecting the parameters m and c (Guler and Thyne 2004;
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Ghosh and Mujumdar 2008). The results for the selection of the optimum number of cluster
and corresponding fuzzification parameter are shown in Table. 1.

Membership value of the principal components and the principal components itself are
taken as the independent variables to fit a statistical relationship with the monsoon rainfall
(dependent variable) in multiple linear regression.

Raint ¼ C1 � μ1t þ C2 � μ2t þ……::þ Cn � μnt þ B1 � PC1t þ………þ B6 � PC6t ð3Þ
Where, C1 to Cn and B1 to B6 are coefficients for membership function and principal

component respectively.

4 Results and Discussions

Membership function and principal components are used to fit the monsoon rainfall at each
grid points of IMD falling over the study area. R2 (coefficient of determination) is calculated
for every grid point as shown in Table 2. The result indicates that the regression model fits well
at all the grid points.

4.1 Bias Correction after Downscaling

Ghosh and Mujumdar (2008) stated that the regression based downscaling generally will not
be able to capture the entire variance of the predictand, which results in the form of bias near
extreme events. Hence, the uncorrected bias should be taken care of; otherwise it will
propagate in the computations of subsequent years. One method for the bias correction after
downscaling is Equiprobability transformation. To remove such bias from a given downscaled
output, for all the scenarios, the following methodology (Ghosh and Mujumdar 2008; Ghosh
and Mujumdar 2007) is used.

1. Initially the probability density function (PDF) for the observed data is computed for all
the grid points. Based on the PDF the probability plotting position is decided (e.g.
Gringorten for the extreme value distribution, Weibull for the Gumbel distribution) to
obtain the Cumulative Distribution Function (CDF).

2. Then the CDFs are calculated for the downscaled GCM and historical data for the years
1977–2007.

3. For a given GCM simulated precipitation the corresponding CDF (CDFGCM) is computed.
4. Corresponding to the CDFGCM the observed value is estimated from the observed CDF.
5. Then the GCM generated rainfall is replaced by the estimated rainfall with same CDF.
6. The correction factor is calculated for the reference period (1977–2007) and applied to the

GCM generated future precipitation.

Table 1 Fuzziness performance index result

No. of clusters Fuzzification parameter FPI Value

CanESM2 (RCP 2.6) 5 1.4 0.27

CanESM2 (RCP 4.5) 3 1.4 0.27

CanESM2 (RCP 8.5) 4 1.4 0.26
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The main assumption in this method of bias correction is that the correction factor will
remain the same when the model is used to predict the future scenarios.

Figure 3 shows the spatial pattern of average annual monsoon rainfall for historical as well
as future projections under RCP 2.6 scenario. The spatial pattern is quite similar to the
historical. Pattern shows that the eastern part of the basin receives more rainfall during
monsoon and average monsoon rainfall decreases as we move towards the west side of the
basin. The projections for future monsoon rainfall over the basin under RCP 2.6 scenario
indicates that a significant increase of monsoon rainfall is observed in the lower reaches than
middle and upper reaches of the river. However there is a decrease in the rainfall depth over the
upper reach.

Future projections under RCP 4.5 scenarios, shown in Fig. 4, indicate that the
monsoon precipitation pattern is increasing. The precipitation pattern is moving from
the lower reaches towards the middle reaches. Average monsoon rainfall pattern in
2070–2100 shows almost all sub-basins are getting more rainfall except the upper
reaches.

Figure 5 shows the average projected monsoon rainfall for the periods 2008–2038, 2039–
2069 and 2070–2100 simulated under RCP 8.5 scenario. The spatially plotted long-term
average total monsoon rainfall indicates that the depth of monsoon rainfall is going to increase

Table 2 Goodness of fit for dif-
ferent grid points Grid Point (Lat, Long) R2

17.5,80.5 0.89

17.5,81.5 0.89

18.5,76.5 0.89

18.5,77.5 0.87

18.5,78.5 0.88

18.5,79.5 0.86

18.5,80.5 0.89

18.5,81.5 0.91

18.5,82.5 0.89

19.5,74.5 0.83

19.5,75.5 0.88

19.5,76.5 0.88

19.5,77.5 0.87

19.5,78.5 0.89

19.5,79.5 0.88

19.5,80.5 0.90

19.5,81.5 0.90

19.5,82.5 0.90

20.5,77.5 0.89

20.5,78.5 0.90

20.5,79.5 0.89

20.5,80.5 0.89

21.5,78.5 0.90

21.5,79.5 0.90

21.5,80.5 0.87
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in the future over coastal region; whereas, the upper reaches will experience the low rainfall
depth. Moreover, there is no significant change in the precipitation pattern as compared to the
historical observations.

All the sub-basins under the study area are divided into two groups. Group 1 includes
Indravati, Weinganga, Wardha and Pranhita. Similarly group 2 includes Godavari lower,
Godavari middle, Manjra and Godavari upper. Average annual monsoon rainfalls for both

Fig. 3 RCP 2.6 scenario generated annual average monsoon rainfall

Fig. 4 RCP 4.5 scenario generated annual average monsoon rainfall
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groups are plotted in the form of box-plot for different durations. Figure 6 shows the box-plot
for group 1. The lower and extreme value of average annual monsoon rainfall is increased
under RCP 2.6 and 4.5 scenarios for all the sub-basins. High extreme values are observed in
RCP 4.5 and the trend is increasing for both the scenarios. RCP 8.5 shows mixed trend with
rainfall decreasing in the first thirty years of prediction and then increasing gradually over the
next sixty years.

The group-2 sub-basins are plotted in Fig. 7. Godavari lower, Godavari middle and Manjra
show an increasing trend for RCP 2.6 and 4.5 scenarios. Godavari upper is showing a
decreasing trend for all the scenarios and the highest extreme observed for Godavari upper

Fig. 5 RCP 8.5 scenario generated annual average monsoon rainfall

Fig. 6 Box-plot of annual average monsoon rainfall for group-1 sub-basins
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is under RCP 8.5 scenario. Sub-basins, Weinganga, Wardha, and Indravati, are falling in the
zone of major rainfall and the interannual variation of anomaly of these sub-basins is
performed for the downscaled future monsoon rainfall.

The interannual variation of the anomaly (defined as the actual value in any year minus the
mean value) of these sub-basins is computed as a percentage of the mean value during 1977–
2007. The years in which the rainfall is above mean by more than one standard deviation are
considered as excess years, while the years in which the rainfall is below mean by more than
one standard deviation are considered as deficit years.

Interannual variation of anomaly for Weinganga sub-basin is shown in Fig. 8. For
Weinganga variation above 20.5% is considered as excess, while variation below −20.5% is

Fig. 7 Box-plot of annual average monsoon rainfall for group-2 sub-basins

Fig. 8 Interannual variation of anomaly (as % of the mean) of Weinganga for different scenarios
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considered as deficit. The historical anomaly is plotted from 1977 to 2007 and it shows that
frequency for the deficit is 3 in 18 years (1987–2004). The future downscaled anomaly for
different scenarios is plotted from 2020 to 2100. For scenario RCP 2.6 frequency of deficit is
very less i.e. 4 in 81 years but the excess rainfall frequency is quite high with respect to the
historical. The excess events are occurring in cluster form. For the scenario RCP 4.5 the
interesting observation is that there is no deficit period and the excess frequency is very high
and magnitude is also very large with reference to the mean. In RCP 8.5 the frequency of
excess is higher in between 2090 and 2100 i.e. 9 in 11 years.

Interannual variation for Wardha sub-basin (Fig. 9) shows that the frequency of deficit in
RCP 2.6 is very less than the historical observation. Frequency of excess is quite high as well
as the magnitude. RCP 4.5 interannual variation indicates that the frequency of the deficit is
zero and the frequency of the excess precipitation is very high. RCP 8.5 is showing the

Fig. 9 Interannual variation of anomaly (as % of the mean) of Wardha for different scenarios

Fig. 10 Interannual variation of anomaly (as % of the mean) of Indravati for different scenarios
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frequency of deficit period as 7 in 20 years which is higher than the historical observation and
the excess periods are lesser than RCP 2.6 and RCP 4.5 scenario variability.

Indravati historical interannual variability of anomaly (Fig. 10) shows the frequency of
excess is higher than the other two sub-basins. The excess rainfall is more frequent in RCP 2.6
and RCP 4.5 than other two sub-basins. No deficit period is observed in RCP 4.5 which is very
much similar to the others. In RCP 8.5 more frequent excess rainfall anomaly is observed in
the last decade i.e. 2090–2100

5 Conclusions

A multiple linear regression model built with principal components and fuzzy clusters is used
to downscale the monsoon rainfall over river Godavari to evaluate the impact of climate
change using GCM simulated atmospheric variables. The Spatial distribution of total monsoon
rainfall is plotted over the study area from 2008 to 2100 using CANESM2 global climate
model and the critical findings are as follows.

The statistical relationship between the GCM output and monsoon rainfall is modelled by
fuzzy clustering based multiple linear regression. The variations in the spatial distribution
indicate that the zone under the high magnitude of monsoon rainfall (lower and middle
reaches) according to the historical observation will get more rainfall and the zone under the
less rainfall amount (upper reaches) will get less precipitation. Furthermore, there is a
significant change in the spatial pattern under RCP2.6 and 4.5 where the middle reaches are
going to get more monsoon rainfall as compared to the past. The highest amount of precip-
itation is observed in RCP 4.5 scenarios. Interannual variability of anomaly for sub-basins
under the monsoon zone shows the frequency of deficit rainfall is very less in all the scenarios.
RCP 4.5 scenario has no deficit period and magnitude with respect to mean is also very high.
A sudden increase in the precipitation is observed for different temporal scales in RCP 2.6 and
4.5. There is a gradual increase in the rainfall for RCP 8.5 i.e. highest rainfall is observed
during 2070–2100. Predictors selected for the downscaling show a positive feedback for the
radiative forcing 2.6 w/m2 and 4.5 w/m2. The forcing 8.5 w/m2 is showing a negative feedback
for the period 2008–2038 and positive feedback for next 60 years.
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