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Abstract Water demand modelling is an active field of research. The modelling and forecast-
ing tools are useful to get the estimation of forecasted water demand for different forecast
horizons (e.g. 1 h to 10 years) in order to achieve more efficient and sustainable water
resources management systems. However, modelling and forecasting of accurate water de-
mand are challenging and difficult tasks. Several issues make the demand forecasting chal-
lenging such as the nature and quality of available data, numerous water demand variables,
diversity in forecast horizons and geographical differences in modelling catchments. These
issues have motivated a number of studies to be conducted to produce better water demand
modelling and forecasting tools in order to improve forecast reliability. A variety of techniques
have been adopted in water demand forecasting, however, application of independent compo-
nent regression (ICR) technique has not been investigated yet. Hence, this study explores, for
the first time, the use of the ICR technique in medium term urban water demand forecasting.
This uses data from the city of Aquidauana, Brazil. It also compares the performance of the
developed ICR model with two other commonly modeling methods, principal component
regression and multiple linear regression models. It has been found that ICR model perform
better than the other two models in modelling water demand with a higher performance indices
(i.e. R2, RMSE, NSE and MARE) for the independent validation period. The results indicate
that the ICR technique has the potential to develop water demand models successfully. The
methodology adopted in this paper can be applied to other countries to develop water demand
forecasting model.
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1 Introduction

Water is the vital resource to the living beings. Moreover, it is one of the most important
elements in urban developments including water supply, stormwater, rainwater and wastewater
systems. However, this invaluable resource is under stress at many locations around the globe
due to combination of factors such as rapid urbanisation, industrial development, population
growth and climate change. Consequently, water supply systems in many countries have
become severely stressed to supply adequate water to the communities. These water stress
conditions are likely to be exacerbated in already stressed countries and likely to be expanded
to other countries under changing climatic conditions (Adamowski et al. 2010; Pingale et al. 2014;
Proença de Oliveira et al. 2015; Haque et al. 2016). Therefore, an integrated, collaborative and
adapting water resources management system is necessary to manage water demand effectively
and sustainably. Forecasting water demand accurately is one of the means, amongmany others, to
achieve more efficient and sustainable water resources management system. It can assist in
achieving informed decisions to efficiently and effectively operate and manage water supply
systems, as well as to prepare better planning and design of water supply systems in the long run
(Bougadis et al. 2005).

Forecasting of water demand problem can be categorised into three types based on the
forecast horizon (i.e. the duration of future period for what water demand is to be predicted)
and periodicity (i.e. the time steps taken into the model), such as (i) short term forecasting, (ii)
medium term forecasting and (iii) long term forecasting (Billings and Jones 2011; Donkor
et al. 2012). There is no universal definition on the types of forecasting; however, some studies
have defined that if the demand forecast exceeds the time frame more than two years it would
be a ‘long term forecasting’, if the demand forecast lies between three months to two years it
can be considered as a ‘medium term forecasting’, and it would be a ‘short term forecasting’ if
the duration of forecasting period remains less than three months (Billings and Jones 2011).
Long term forecasting is useful for developing polices and strategies to ensure adequate water
supply in future. It assists in making decisions on the development, planning, and design of
new water supply system infrastructure and in determining the efficient water conservation
measures (Babel et al. 2007; Ghiassi et al. 2008; Firat et al. 2009; Herrera et al. 2010; Haque
et al. 2014a). Medium term forecasting is valuable for taking strategic decision on the
investment planning and the expansion of existing water infrastructures, while short term
forecasting is necessary for effective operation and maintenance of water supply systems (Jain
and Ormsbee 2002; Herrera et al. 2010). Therefore, it is apparent that all the water demand
forecast horizons (i.e. 1 h to 10–20 years) are needed by water authorities to enable them to
manage water supply systems effectively and efficiently.

Forecasting of accurate water demand is a challenging and difficult task. Several issues in
combination make the demand forecasting challenging such as the nature and quality of
available data, numerous water demand variables, diversity in forecasting horizons, geograph-
ical differences in the forecast areas and presence of various demographic conditions. These
issues have motivated a number of studies to come up with better water demand modelling and
forecasting tools in order to improve the overall forecast reliability. A variety of techniques
have been adopted in water demand forecasting such as regression analysis (Hoffmann et al.
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2006; Babel et al. 2007; Dziegielewski and Chowdhury 2011; Haque et al. 2014b), time-series
modelling (Smith 1988; Zhou et al. 2000; Gato et al. 2007) and artificial neural networks
(Diamantopoulou et al. 2005; Al-Zahrani and Abo-Monasar 2015; Perea et al. 2015;
Mouatadid and Adamowski 2016). Some of the studies have also explored hybrid modelling
by taking into account of two methods in combinations (Pulido-Calvo and Gutiérrez-Estrada
2009). Among these techniques, multiple linear regression is one of the most widely used
techniques for water demand forecasting (Adamowski and Karapataki 2010) as the technique
is comparatively simple and can be easily understood. Several forms of MLR techniques have
been adopted such as linear, log-linear and log-log in water demand modelling. In those MLR
models, the variables that are likely to influence water demand are taken into the model with or
without log transformation.

Few studies have adopted the principles of MLR technique but used some modified water
demand variables instead of original variables. For example, Haque et al. (2013) used principal
component regression (PCR) technique to model and forecast water demand in the Blue
Mountains area in Sydney, Australia. They adopted principal component analysis (PCA)
technique to derive the principal components (PCs), which are the linear combination of the
original variables, and thereafter incorporated those PCs into the MLR model to develop PCR
model. They found that PCR model performed better than the MLR model in simulating the
water demand. It should however be mentioned that PCR is not a new technique; it has been
adopted in many water and environmental problems (e.g. Sousa et al. 2007; Rajab et al. 2013;
Viswanath et al. 2015; Gulgundi and Shetty 2016). Of relevance, applications of PCR in water
demand modelling is limited. For example Haque et al. (2013) and Koo et al. (2005) and Choi
et al. (2010) have adopted PCR in the application of water demand forecasting among limited
applications of PCR. Hence, it is important to explore the applicability of PCR in water
demand forecasting, which will form the basis of a new tool in improving forecast reliability.

In PCA analysis, it is often needed to do rotation of the axes to identify the influential
variables and to interpret underlying structures of the modelling variables. However,
statistically independent structures are not always guaranteed in PCA due to the use of
variance as objective function. As a further development of PCA, independent component
analysis (ICA) has drawn attention to the researchers due to its potential to extract mutually
independent components from explanatory variables (Comon 1994; Hyvärinen et al. 2004).
It has been greatly developed in recent years as a potential statistical technique for blind
source separation (Hyvärinen and Oja 2000; De Lathauwer et al. 2000). It can competently
extract the independent components from the observed mixture of signals without any prior
knowledge of the source signals by adopting the high order statistical characteristics of the
source, that is, the fourth-order central moment. ICA has been widely adopted in signal
processing arenas, such as image processing, financial analysis and biomedical signals
(Vigário 1997; Hyvärinen 1999; Stone 2002; Makeig et al. 2002). Its application in speech
recognition, telecommunication, spectroscopy and process monitoring has also been ex-
plored by several researchers (Westad and Kermit 2003; Yoo et al. 2004). Similar to PCR
method (where PCs are incorporated into the MLR model), Independent Component
Regression (ICR) method (where ICs are incorporated into the MLR model) were proposed
by Chen and Wang (2001). Subsequently, ICR has been explored and adopted by several
studies in various fields of engineering; for example, Westad (2005) applied ICR on
sensory data, Kaneko et al. (2008) applied the technique to model aqueous solubility,
and Lu et al. (2009) adopted ICR in financial forecasting. However, to the best of authors
knowledge, application of ICR has not been explored in water demand forecasting.
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Therefore, the present study is sought to explore, for the first time, the use of the ICR
method for medium term urban water demand forecasting. It also compares the performance of
developed ICR model with two other commonly adopted techniques, PCR and MLR model.
The main innovation of this paper is in the adaptation of the powerful features of ICR method
to water demand forecasting problems by extracting the independent components from the
observed mixture of water demand related variables through the fourth-order central moment.
It is expected that many future water resources forecasting studies will explore the applicability
of ICR to enhance prediction accuracy of the models.

2 Study Area and Data

The study uses data from Aquidauana city in Brazil. Aquiduana is located in the south of the
Midwest Brazilian region, in the Pantanal of South Mato Grosso (wetlands), which is a micro-
region of Aquidauana. It is located at latitude 20°28′15″ South and longitude 55 ° 47′13″West,
at an altitude of 149 m. It is situated between the Piraputanga and the Maracaju mountain
ranges. Its territory is divided into two parts: the low one (two-thirds of the town) and the high
one (in the mountain ranges).

The tropical climate of the region, with an annual average temperature of 27 °C, features
two opposing characteristics, namely the period between October and April is marked by
floods and high temperatures, while from mid-July to end of September, is represented by a
period of drought, with frosts and milder temperatures of approximately 15 °C. It occupies an
area of 16 958 km2.

Monthly maximum temperature, relative humidity, wind speeds, rain, number of
water consumers and water consumption data from January 2005 to 2014 were
obtained from SANESUL System (Water Systems of South Mato Grosso). The
meteorological data were obtained from the Water Resources Monitoring Center of
South Mato Grosso – CEMTEC.

3 Methods

3.1 Multiple Linear Regression

Multiple linear regression attempts to model the relationship between two or more independent
variables with a dependent variable by fitting a linear equation to the observed data. The
general model form in MLR can be expressed as below:

Y ¼ a0 þ a1x1 þ a2x2 þ…þ anxn ð1Þ
where Y is dependent variable, ai(i = 0,…, n) are the regression coefficients generally estimated
by least squares method and xi(i = 0,…, n) are the independent variables.

The following assumptions are associated with MLR model (fiited by least squares
method):

(i) There is a linear relationship between dependent and independent variables;
(ii) The error term ϵ is a random variable that follows normal distribution;
(iii) The mathematical excpection of error term, ϵ is zero (i.e. E(ϵ) = 0);
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(iv) Variance of error term is constant (i.e. homoscedastic assumption); and
(v) There is no presence of high multicollinearity between any independent variables.

3.2 Principal Component Regression

Principal component analysis transforms the original data set of n variables, which are
correlated to various degrees to a new data set containing n numbers of uncorrelated variables.
These new variables are called principal components (PCs). The PCs are linear functions of the
original variables in a way that the sums of the variances are equal for both the original and
new variables. The PCs are sequenced from the highest variance to the lowest variance i.e. the
first PC explains the highest proportion of variance in the data. The next highest variance is
explained by the second PC and so on for all n PCs. The values of sPCs can be obtained by
equations such as Eqs. 1 and 2. Although, the number of PCs and original variables are equal,
normally most of the variance in the data set is explained by the first few PCs, which can be
used to represent the original observations to a sufficient degree (Olsen et al. 2012). This helps
in reducing the dimensionality of the original data set.

PC1 ¼ a11x1 þ a12x2 þ…þ a1nxn ¼
Xn

j¼1

a1 jx j ð2Þ

PC2 ¼ a21x1 þ a22x2 þ…þ a2nxn ¼
Xn

j¼1

a2 jx j ð3Þ

Where x1, x2,… xn are the original variables in the data set and ajj are the eigenvectors.
The eigenvalues are the variances of the PCs and the coefficients ajj are the eigenvectors

extracted from the covariance or correlation matrix of the data set. The eigenvalues of the data
matrix can be calculated by Eq. 4, as shown below:

C−λIj j ¼ 0 ð4Þ
Where C is the correlation/covariance matrix, λ is the eigenvalue and I is the identity
matrix.

The PC coefficients or the weights of the variables in the PC are then calculated by Eq. 5:

C−λIj jaj j ¼ 0 ð5Þ
In the PCR analysis, MLR and PCA are combined together to establish a relationship

between the dependent variable and the selected PCs of the input variables (Pires et al. 2008).
Mainly principal component scores obtained from the PCA are taken as the independent
variable in the multiple linear regression equations to perform the PCR analysis. The general
form of PCR model is as follows:

Y ¼ αþ β1PC1 þ β2PC2þ⋯þβnPCn ð6Þ

where Y is the dependent variable, α is the model intercept, β ' s are the regression coefficients
and PC’s are the principal components.
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3.3 Independent Component Regression

ICA is a statistical technique for decomposing observed multivariate data into statistically
independent components expressed as the linear combinations of observed variables with
minimum loss of information. The ICA bilinear model can be represented by the following
equation (Parastar et al. 2012):

X ¼ AS þ E ð7Þ

where X is the observed data matrix, S and A represent the independent components and the
coefficient matrix, respectively, this may be called as the mixing matrix of the ICs, and E is the
error matrix.

The two main assumptions associated with ICA are as follows:

(i) The independent components are statistically independent, and
(ii) The independent components must have non-Gaussian distributions.

The objective of ICA is to identify a proper linear representation of non-Gaussian
vectors in order to have the estimated vectors as independent as possible and to
represent the mixed data as a linear combination of the independent components. The
ICA model is quite similar to the PCA model where the multivariate data are
represented by the linear combination of some orthogonal PCs. The difference is in
the way of linear representations; ICA seeks to find ICs whereas PCA seeks to find
orthogonal PCs. Independence is a much stronger condition than orthogonality be-
cause of its characteristics as high order statistics; therefore, ICA is generally consid-
ered to be more powerful than PCA in analysing multivariate data sets, as it can
imitate the inherent properties of the original data sets in a better way (Hyvärinen
et al. 2004).

ICR modelling is a combination of two statistical techniques, ICA and MLR. When ICA
produces ICs from the original observed data sets then these ICs are incorporated into the
MLR model as a replacement of the original variables to develop ICR model, which can be
represented by the following equation:

Y ¼ αþ β1IC1 þ β2IC2þ⋯þβnICn ð8Þ

where Y is the dependent variable, α is the model intercept, β ' s are the regression coefficients
and IC’s are the independent components.

3.4 Performance Indices

The relative performance of the developed models were evaluated using four statistical criteria:
the coefficient of determination (R2), root mean square error (RMSE), mean absolute relative
error (MARE) and the Nash-Sutcliffe efficiency (NSE), as defined below:

(i) Coefficient of determination (R2) measures the degree of colleation between the
ovsereved and modelled values, and varies from 0 to 1. It indicates the strength of the
model in developing a relationship among the dependent and independent variables. The
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higher the R2 value, the better is the performance of the developed model. R2 can be
calculated by the following equation:

R2 ¼
X n

1
Oi−O

� �
Pi−P

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX n

1
Oi−O

� �2
r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX n

1
Pi−P

� �2
r

2
664

3
775
2

ð9Þ

where, n is the number of observations, Oi and Pi are the observed and modelled water

demand values at time i, respectively, and Ō and P are the mean of observed and
modelled values, respectively.

(ii) Root mean square error (RMSE) measures the variance of errors independently of the
sample size and provides a good measure of model performance across the entire range
of the data set. The smaller the value of RMSE, the better is the performance of the model
with a perfect RMSE value of zero. RMSE is expressed by the following equation:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X n

i¼1
Oi−Pið Þ2

r
ð10Þ

(iii) The mean absolute relative error (MARE) indicates overall agreement between observed
and modelled values. It considers all deviation from the observed values to the modelled
values equally without considering the sign of the error (i.e. it takes absolute values into
account). Therefore, it is always a position number and the smaller the MARE value, the
better is the model performance. MARE value equal to zero indicate a perfect model. It
can be expressed by the following equation:

MARE ¼ 1

n

X n

i¼1
Oi−Pij j ð11Þ

(iv) The Nash-Sutcliffe coefficient of efficiency is a normalized measure (−∞ to 1), that
estimates the relative magnitude of the residual variance compared to the observed data
variance (Nash and Sutcliffe 1970). An ideal value of NSE is one, which indicates a
perfect model. A NSE value of zero indicates that the model results are as accurate as the
mean of the observation. It can be calculated by the following equation:

NSE ¼ 1−

X n

1
Oi−Pið Þ2X n

1
Oi−O

� �2

2
64

3
75 ð12Þ

4 Results and Discussion

The correlation plot of the independent variables and dependent variables (i.e. water consumption)
is presented in Fig. 1. It can be seen that water consumption is positively correlatedwith temperature
and number of consumers, thus indicating that water consumption is higher if these two variables
increase. Water consumption is found to be negatively correlated with humidity, indicating that if
humidity increases water consumption would decrease. Water consumption shows no correlation
with wind speed as shown in Fig. 1. It has somewhat positive correlation with rain, which means
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that if rain increases, water consumption will also increase. But in practical situation, it should be
opposite, as rain reduces the need for watering in the garden, and hence reduces water demand.
From the rain histogram, it can be seen that rain amount is not significant in the study area. In
addition, relation of water consumption with rain would be better captured in a daily time steps
rather than monthly time steps. These two might be the reason for showing unusual correlation of
rain with water consumptions, which is left for future research.

Correlations among the independent variables indicate that temperature is negatively and
positively correlated with humidity and wind speed, respectively. It shows no significant
correlation with rain. All the correlations are mentioned in this section are statistically
significant at 10 % level. Humidity shows negative correlation with wind speed and positive
correlation with rain. Wind speed shows no relation with rain. Furthermore, number of
consumer is found to be uncorrelated to any of the climate variables (i.e. temperature, rain,
wind speed and humidity), which is assumed to be reasonable. These correlations among the
independent variables are found to follow the natural processes.

The developed water demand forecasting models by MLR, PCR, and ICR techniques are
presented in Table 1. In those models, water consumption is modelled using independent
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variables, and all the selected variables are statistically significant at 10 % significance level. It
can be seen in Table 1 that model results are comparable to each other as the R2 and
standard error of estimate values are similar for all of them. The calculated values of
R2, NSE and MARE of the developed models are found to be quite satisfactory,
which indicate that water demand data has been fitted sufficiently by the models. The
normal probability plot of the residuals (as shown in Fig. 2a–c) adopting the MLR,
PCR and ICR show that most of the points are clustered around the blue line
indicating that error terms are approximately normally distributed. In addition, the
plots of fitted values vs. the standardised residuals for the MLR, PCR and ICR are
presented in Fig. 3a–c, which show that for all the cases half of the data points are
above the zero line and half of them are below zero line indicating that the error term
has the zero mean value, which satisfy the regression assumption. Moreover, these
plots indicate that the developed models satisfy the assumption of independence of
error as no pattern for residuals has been detected.

The validation results of the developed water demand forecasting models using an inde-
pendent data set are presented in Table 2. It can be seen that NSE values are negative for MLR
and PCR models indicating that these two models have performed poorly in simulating the
water demand for the independent period though the models have performed well in simulat-
ing the water demand for the model development period covering the data set. Of significance,
the ICR model shows better accuracy than the MLR and PCR models as the NSE value is
found to be 0.6, which can be deemed to be satisfactory. The MARE and RMSE results also
indicate that ICR is better model than the other two.

The observed water demand vs. the simulated water demand values by the models are
presented in Fig. 4, it can be seen that the MLR and PCR model results are similar and they
have overestimated the demand for all of the months. On the other hand, ICR model perform

3210-1-2-3-4

99.9

99

95

90

80
70
60
50
40
30
20

10

5

1

0.1

Standardized Residual

Pe
rc
en

t

43210-1-2-3-4

99.9

99

95

90

80
70
60
50
40
30
20

10

5

1

0.1

Standardized Residual

Pe
rc

en
t

43210-1-2-3-4

99.9

99

95

90

80
70
60
50
40
30
20

10

5

1

0.1

Standardized Residual

Pe
rc

en
t

(a) (b)

(c)

Fig. 2 Normal probability of the residuals, a MLR, b PCR and c ICR

308 M.M. Haque et al.



better than the MLR and PCR models as the simulated values are found to be close to the
observed water demand values. However, the ICR model also shows overestimation bias in the
results in most of the cases indicating that that there is a room for improvement, which may be
done by including more water demand variables (e.g. water price, income and evaporation) in
the models. This issue has not been investigated in this study as this is beyond the scope of this
study; rather the focus of this study is to compare the performance of the models based on the
available water demand variables.

In a water demand modelling study, Haque et al. (2013) found that PCR model
outperformed the MLR model in modelling water demand in the Blue Mountains region in
Sydney, Australia. In this current study, it is found that PCR and MLR have performed in a
similar manner but ICR has outperformed them. In the MLR, the water demand variables have
taken as it is, without undertaking any transformation assuming that there is a linear relation
existing between the water demand and the variables. In the PCR, all the variables are included
in the principal components (PC), where PC1 accounts for the highest variance in data, then
PC2 and so on. Generally the first few PCs are significant to explain most of the variance in the
data. In the developed PCR model, PC1 and PC3 come as the significant variables among the
5 PCs. If PC2 is included in the model, it gives poorer results, and PC2 comes as statistically

Table 2 Validation results of the developed water demand forecasting models

Models NSE MARE (%) RMSE (m3)

Multiple Linear Regression (MLR) −0.42 9.56 13464

Principal Component Regression (PCR) −0.17 7.88 12226

Independent Component Regression (ICR) 0.60 4.26 7128
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Fig. 3 Plots of the fitted value vs. standardised residuals, a MLR, b PCR and c ICR
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insignificant (p-value comes as 0.5). Therefore, PC2 has not been included in the model. In the
ICR, the generated independent components (IC) have been taken into the model. The IC’s are
independent to each other i.e. they generally have no relation among themselves, as by ICA the
variables are transformed to equal number of separate components, which are independent to
each other. Since ICs are free from collineartiy and sovereign variables, the ICR model
performs better than the other two models (MLR and PCR). However, the results are based
on a limited quantity of data, which need to be extended with data from other cities in Brazil
and around the world to make a better comparison of the ICR and PCR in water demand
modelling and forecasting.

5 Conclusion

In this paper, a relatively new water demand forecasting modelling technique known as
Independent Component Regression (ICR) technique is introduced. The ICR model is
compared with two other commonly applied statistical models, Principal Component
Regression (PCR) and Multiple Linear Regression (MLR) models. The modelling is
done using data from the city of Aquidauana in Brazil. It has been found that the model
results from the three techniques are generally comparable to each other. The validation
results based on an independent data set indicate that the MLR and PCR models have
performed poorly in simulating the water demand for the independent period.
Interestingly, the ICR model is found to produce better accuracy than the MLR and
PCR model as the NSE value is found to be 0.6, which can be viewed as satisfactory.
The MARE and RMSE results also indicate that ICR is a relatively better model than
the other two. Overall, it is concluded that ICR technique has the potential to develop
successful water demand forecast models. However, some overestimation bias has been
found in the results produced by the ICR model, which indicate that there is a room for
further improvement, which may be achieved by incorporating additional water demand
variables (e.g. water price, income and evaporation) into the models. The developed
method can easily be adapted to other countries.
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