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Abstract Predicting the dynamics of water-level in lakes plays a vital role in navigation, water
resources planning and catchment management. In this paper, the Extreme Learning Machine
(ELM) approach was used to predict the daily water-level in the Urmia Lake. Daily water-level
data from the Urmia Lake in northwest of Iran were used to train, test and validate the
employed models. Results showed that the ELM approach can accurately forecast the water-
level in the Urmia Lake. Outcomes from the ELM model were also compared with those of
genetic programming (GP) and artificial neural networks (ANNs). It was found that the ELM
technique outperforms GP and ANN in predicting water-level in the Urmia Lake. It also can
learn the relation between the water-level and its influential variables much faster than the GP
and ANN. Overall, the results show that the ELM approach can be used to predict dynamics of
water-level in lakes.
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1 Introduction

Lakes typically provide water for various domestic, industrial and agricultural applica-
tions (Vuglinskiy 2009). Forecasting the water-level in lakes is necessary for water
resources planning and management, lake navigation, management of tidal irrigation
and agricultural drainage canals, etc. The water-level in lakes is a complex phenomenon,
which is mainly controlled by the natural water exchange between the lake and its
watershed, and thus the level reflects the hydrological changes in the watershed
(Karimi et al. 2012; Altunkaynak 2007). For many practical applications, it is necessary
to have a model to predict the water-level fluctuations based on previously recorded
levels (Karimi et al. 2012). Numerous studies have been performed to predict water level
fluctuations in lakes using neural networks, neuro-fuzzy, and genetic programming
models (Kisi et al. 2015; Buyukyildiz et al. 2014; Karimi et al. 2012, 2013; Kisi et al.
2012; Shiri et al. 2011; Sulaiman et al. 2011).

Using the measured data from the Urmia lake in northwest of Iran, we use the Extreme
Learning Machine (ELM) approach to predict its daily water-level for different prediction
intervals.

Soft computing approaches have been used in many disciplines. Neural network (NN), as a
well-known soft computing approach, has been employed in many water resources engineer-
ing problems. NN is able to solve complex nonlinear problems which may be difficultly solved
by classic parametric approaches. There are many algorithms for training NNs, e.g. back
propagation (BP), support vector machine (SVM), and hidden Markov model (HMM). One of
the shortcomings of NN is its relatively large learning time. Huang et al. (2004) introduced an
algorithm (which is known as Extreme Learning Machine (ELM)) for training the single layer
feed forward NN. This algorithm is able to solve problems caused by ANNs’ gradient descent
based algorithms e.g. back propagation. ELM significantly reduces the training time of NN
and generates accurate results (Huang et al. 2003). A number of studies have successfully
employed the ELM algorithm in different problems (e.g.Yu et al. 2014; Wang and Han 2014;
Ghouti et al. 2013; Sajjadi et al. 2016; Nian et al. 2014; Shamshirband et al. 2015).

In general, ELM is a robust algorithm with faster learning speed and a better performance
compared to traditional algorithms such as back-propagation (BP), where it tries to get the
smallest training error and norm of weights. To the our knowledge, there is not any published
paper that applies the ELM for lake level prediction.

In this study, the ELM algorithm is used to predict the daily water-level in the Urmia Lake.
Results indicate that the proposed algorithm can adequately predict the water level in the
Urmia Lake for different prediction intervals. ELM results were also compared with those of
the genetic programing (GP) and ANN-BP techniques.

This paper is organized as follows: Section 2 explains the Urmia Lake and the collected
data. Section 3 presents the description of ELM algorithm and GP and ANN used as
benchmark methods. The obtained results are presented in Section 4. Finally, the conclusions
are given in Section 5.

2 The Urmia Lake

The Urmia Lake is the second largest saline lake in the world. Daily water-level data in the
Urmia Lake in northwest of Iran were used in this study. Table 1 shows the statistical metrics
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of daily water-level (WL) in the Urmia lake. It can be seen from Table 1 that the train and test
data present a more skewed distribution than the validation data.

3 Soft Computing Algorithms

3.1 Extreme Learning Machine

(ELM was introduced by Huang et al. (2004) for the single layer feed-forward neural
networks (SLFN) (Annema et al. 1994; Huang et al. 2006). This algorithm chooses the
input weights of SLFN randomly, but determines the output weights analytically. The
ELM algorithm is most robust with faster learning speed. ELM does not involve too
much human intervention, because it determines all the network parameters analytically,
and can be run much faster than the conventional algorithms.

3.1.1 Single Hidden Layer Feed-Forward Neural Network

The SLFN function with L hidden nodes might be presented as a network incorporating
both additive and RBF hidden nodes in an unified way given (Huang et al. 2006; Liang
et al. 2006):

f L xð Þ ¼
XL
i¼1

βiG ai; bi; xð Þ; x∈Rn; ai∈Rn ð1Þ

where ai and bi denote the learning parameters of hidden nodes, and βi stands for the
weight connecting the ith hidden node to the output node. The output of the ith hidden
node with respect to the input x may be shown by G(ai, bi, x). The additive hidden node
with the activation function g(x) :R→R (e.g., sigmoid and threshold), G(ai, bi, x) is
(Huang et al. 2006):

G ai; bi; xð Þ ¼ g ai:xþ bið Þ; bi∈R ð2Þ

where x is the inner product of vector ai and x in Rn. G(ai, bi, x) can be determined for
RBF hidden node with activation function g(x) :R→R (e.g., Gaussian), G(ai, bi, x) as
(Huang et al. 2006):

G ai; bi; xð Þ ¼ g bi x−aik kð Þ; bi∈Rþ ð3Þ

Table 1 Statistical metrics of the utilized data during the study period

WLmean WLmax WLmin Standard
deviation

Coefficient
of variation

Skewness
coefficient

Training set 1275.5 1277.0 1273.5 0.93 0.001 −0.93
Testing set 1275.7 1277.0 1275.0 0.40 0.001 0.89

Validation set 1276.6 1278.4 1275.0 0.98 0.001 0.07

whole dataset 1276.0 1278.4 1273.5 0.94 0.001 −0.13
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ai and bi represent the center and impact factor of ith RBF node. The set of all positive real values
is indicated by R+. Further details about RBF might be found in e.g. Huang et al. (2006).

3.1.2 Principle of ELM

Theorem 1: (Liang et al. 2006) Let an SLFN with L additive or RBF hidden nodes and
an activation function g(x) which is infinitely differentiable in any interval
o f R be g iven . Then fo r a rb i t r a ry L d is t inc t inpu t vec to r s
{xi|xi ∈Rn, i= 1,…, L} and {(ai, bi)}i = 1

L randomly produced by any continu-
ous probability distribution, respectively, the hidden layer output matrix is
invertible with probability one, the hidden layer output matrix H of the
SLFN is invertible and ‖Hβ − T‖ = 0.

Theorem 2: (Liang et al. 2006) Given any small positive value ε>0 and activation function
g(x) :R→R which is infinitely differentiable in any interval, there exists L≤N
such that for N arbitrary distinct input vectors {xi|xi∈Rn, i=1,…,L} for any
{(ai, bi)}i=1

L randomly produced based upon any continuous probability distri-
bution ‖HN × LβL ×m−TN ×m‖< ε with probability one.

Since the hidden node parameters of ELM should not be tuned throughout training and
because they are easily assigned with random values, Eq. (5) becomes a linear system and the
output weights can be estimated as (Huang et al. 2006):

β ¼ HþT ð4Þ

where H+ is the Moore-Penrose generalized inverse (Singh and Balasundaram 2007) of the
hidden layer output matrix H which can be computed via several approaches consisting
orthogonal projection, orthogonalization, iterative, singular value decomposition (SVD), etc.
(Singh and Balasundaram 2007). The orthogonal projection method can be utilized only when
HTT is non-singular and H+ = (HTT)− 1HT. Owing to the use of searching and iterations,
orthogonalization method and iterative method have limitations. Implementations of ELM
uses SVD to compute the Moore-Penrose generalized inverse of H, because it can be utilized
in all situations. ELM is thus a batch learning method.

3.2 Artificial Neural Networks

The multilayer feed forward network with a backpropagation learning algorithm is one of
the most popular neural network architectures; it has been deeply studied and widely used
in many fields (Yu et al. 2014). One of the most commonly used functions is the sigmoid
function, which is monotonic increasing and ranges from zero to one. Details on ANNs
can be found in e.g. Karunanithi et al. (1994). The parameters used for ANN are
determined iteratively (see Table 2).

3.3 Genetic Programming

GP is an evolutionary algorithm based on Darwinian theories of natural selection and
survival to approximate the equation, in symbolic form, that best describes how the
output can relate to the input variables. The algorithm considers an initial population of
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randomly generated programs (equations), derived from the random combination of input
variables, and random numbers and functions. The population of potential solutions is
then subjected to an evolutionary process, then the ‘fitness’ (a measure of to which degree
they can solve the problem) of the evolved programs is assessed. Then, the individual
programs which produce the most accurate fit of data are selected from the initial
population. The programs which gives the best fit are then selected to exchange part of
the information between them to produce better programs through ‘crossover’ and
‘mutation’, which mimics the natural world’s reproduction process. More details on GP
can be found in e.g. Koza (1992). Table 3 summarizes the parameters used per run of GP.

4 Results and Discussion

Predictive models of water levels were established for 1- as well as 7-days ahead time
intervals. The utilized input parameters consist of previous water levels from 1 to 6 days
in the past. When developing multi-step ahead prediction models, two approaches are
possible:

& Iterated prediction approach,
& Direct prediction approach.

Table 3 Parameters employed in GP modelling

Population size 512

Function set +,−, *,/, √, x2, ln(x), ex, ax

Head size 5–9

Chromosomes 20–30

Linking functions Addition, 2subtraction,
arithmetic, Trigonometric,
Multiplication

Number of genes 2–3

Mutation rate 91.46

One-point recombination rate 0.2

Two-point recombination rate 0.2

Homologues crossover rate 98.46

Crossover rate 30.56

Fitness function error type RMSE

Inversion rate 108.53

Gene transposition rate 0.1

Gene recombination rate 0.1

Table 2 User-defined parameters for ANN

ANN parameters

Learning rate Momentum Hidden node Number of iteration Activation function

0.2 0.1 3,6,10 1000 Continuous Log-Sigmoid Function
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In the iterated prediction scheme, one step ahead prediction is used for building the
subsequent predictions (i.e. for p steps ahead), while in direct prediction approach,
separate (direct) prediction models are developed for each prediction horizon.

The advantages/shortcomings of each approach have been extensively discussed in
literature (e.g. Martin 1989; Farmer et al. 1987; Marcellino et al. 2006). In the present
paper, direct approach is employed. The main advantage of this approach is its intuitive
manner (Chevillon and Hendry 2005), where there is no accumulation of forecasting
error, in contrary to the iterated scheme. Nevertheless, the superiority of direct approach
has been confirmed in electricity load forecasting (McSharry et al. 2005; Ramanathan
et al. 1997; Fan and Hyndman 2012), where the domain is quite similar to one discussed
here.

4.1 Input Variables for Model Building

The whole data set, comprising the observations for the period between 1972 and 2003
was divided into three blocks, including train set (50 % of observations), test set (25 % of
observations), and validation test (25 % of observations). Figure 1 illustrates the daily
water levels for the study period. A linear trend line was also fitted to each data set as
depicted in the figure.

4.2 Evaluating Accuracy of Proposed Models

The performances of the proposed models were assessed using root means square
error (RMSE), coefficient of determination (R2) and Pearson correlation coefficient (r),
defined as:

1) Root-mean-square error (RMSE)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

Pi−Oið Þ2

n

vuuuut
; ð5Þ

2) Pearson correlation coefficient (r)

r ¼
n
Xn
i¼1

Oi⋅Pi

 !
−
Xn
i¼1

Oi

 !
⋅
Xn
i¼1

Pi

 !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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3) Coefficient of determination (R2)

R2 ¼

Xn
i¼1

Oi−Oi

� �
⋅ Pi−Pi

� �" #2

Xn
i¼1

Oi−Oi

� �
⋅
Xn
i¼1

Pi−Pi

� � ð7Þ

where Pi and Oi are the observed and forecasted values of water level, respectively, and n is the
total number of data patterns.

y = 0.0003x + 1275
R² = 0.2235

1273
1273.5

1274
1274.5

1275
1275.5

1276
1276.5

1277
1277.5

0 1000 2000 3000 4000 5000 6000La
ke

 le
ve

l a
bo

ve
 m

ea
n 

se
e 

le
ve

l [
m

]
Time [day]

Trainig data

y = 0.0002x + 1275.5
R² = 0.2062

1274.5

1275

1275.5

1276

1276.5

1277

1277.5

0 500 1000 1500 2000 2500 3000

La
ke

 le
ve

l a
bo

ve
 m

ea
n 

se
e 

le
ve

l [
m

]

Time [day]

Tes�ng set

y = 0.0009x + 1275.3
R² = 0.6101

1274.5
1275

1275.5
1276

1276.5
1277

1277.5
1278

1278.5
1279

0 500 1000 1500 2000 2500 3000

La
ke

 le
ve

l a
bo

ve
 m

ea
n 

se
e 

le
ve

l [
m

]

Time [day]

Valida�on set

(b)

(c)

(a)Fig. 1 Time series of the observed
water level for a train set, b test set
and c validation set

Prediction of Water-Level in the Urmia Lake Using the... 5223



y = 0.9999x + 0.1308
R² = 0.9992

1273

1273.5

1274

1274.5

1275

1275.5

1276

1276.5

1277

1277.5

1273 1273.5 1274 1274.5 1275 1275.5 1276 1276.5 1277 1277.5

Pr
ed

ic
te

d 
la

ke
 le

ve
l a

bo
ve

 m
ea

n 
se

e 
le

ve
l[

m
]

Actual lake level above mean see level [m]

y = 0.9995x + 0.6768
R² = 0.999

1274.5

1275

1275.5

1276

1276.5

1277

1277.5

1274.5 1275 1275.5 1276 1276.5 1277 1277.5

Pr
ed

ic
te

d 
la

ke
 le

ve
l a

bo
ve

 m
ea

n 
se

e 
le

ve
l[

m
]

Actual lake level above mean see level [m]

y = 1x + 0.0568
R² = 0.9999

1274.5

1275

1275.5

1276

1276.5

1277

1277.5

1278

1278.5

1279

1274.5 1275 1275.5 1276 1276.5 1277 1277.5 1278 1278.5 1279

Pr
ed

ic
te

d 
la

ke
 le

ve
l a

bo
ve

 m
ea

n 
se

e 
le

ve
l[

m
]

Actual lake level above mean see level [m]

(b)

(c)

(a)Fig. 2 Scatter plots of the
observed vs. predicted water levels
using ELM method for 1 day
ahead: a train set, b test set, and c
validation set

5224 J. Shiri et al.



y = 1.0008x - 1.0391
R² = 0.997

1273

1273.5

1274

1274.5

1275

1275.5

1276

1276.5

1277

1277.5

1273 1273.5 1274 1274.5 1275 1275.5 1276 1276.5 1277 1277.5

Pr
ed

ic
te

d 
la

ke
 le

ve
l a

bo
ve

 m
ea

n 
se

e 
le

ve
l[

m
]

Actual lake level above mean see level [m]

y = 0.9984x + 2.0999
R² = 0.9927

1274.5

1275

1275.5

1276

1276.5

1277

1277.5

1274.5 1275 1275.5 1276 1276.5 1277 1277.5

Pr
ed

ic
te

d 
la

ke
 le

ve
l a

bo
ve

 m
ea

n 
se

e 
le

ve
l[

m
]

Actual lake level above mean see level [m]

y = 1x - 0.049
R² = 0.999

1274.5

1275

1275.5

1276

1276.5

1277

1277.5

1278

1278.5

1279

1274.5 1275 1275.5 1276 1276.5 1277 1277.5 1278 1278.5 1279

Pr
ed

ic
te

d 
la

ke
 le

ve
l a

bo
ve

 m
ea

n 
se

e 
le

ve
l[

m
]

Actual lake level above mean see level [m]

(b)

(c)

(a)Fig. 3 Scatter plots of actual and
predicted lake level values using
ELM method for 7-days ahead for
a training set, b testing set and c
validation set
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4.3 Performance Evaluation of the Proposed ELM Algorithms

Figure 2 presents the scatterplots of the observed vs. predicted water levels by ELM during the
train, test and validation periods for the 1-day ahead prediction interval. From the scatters, it is
seen that the most of the points are located along the diagonal line, so, it follows that the
prediction results of ELM are in very good agreement with the corresponding measured water
levels. The corresponded R2 values (in the scatters) also confirm this statement.

The scatter plots of the observed and 7-days ahead predicted water levels have been
presented in Fig. 3. Analyzing the scatterplots it is clear that the ELM algorithm give
promising results in predicting 7-days ahead water levels, but, expectedly, the prediction
accuracy has been reduced (to a less extent) compared to 1-day ahead predictions.

Figure 4 shows the time series variations of the water level predictions (using ELM) and
corresponding observed values for the validation period. Although clear differences can be
seen between the results of two prediction intervals (where the outcomes of 1-day ahead
prediction is much better than those of the 7-days ahead prediction), ELM is able to predict the
water levels in both the prediction intervals rigorously.
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5 Performance Comparison of ELM, ANN and GP

In order to assess the proposed ELM approach with respect to the GP and conventional ANN
methods, a comparison was also made among the results of these models. Table 4 summarizes
the prediction accuracy of each model for train, test and validation periods.

For training data set, all three methods provide similar results. In case of 1 day ahead water
level forecasting, ELM performs better than the ANN and GP models in validation period. In
case of 7 days ahead prediction, however, the ELM shows better performance than GP. The
ANN seems to be slightly better than the ELM model in this case.

6 Conclusion

The ability of ELM model was investigated in prediction of daily water levels in Urmia Lake.
Observations collected in Urmia Lake (Northwestern Iran) during from 1972 to 2003 were
utilized for model building and evaluation. Two predictive models, for different prediction
horizons (1 day and 7 days ahead), were created using the ELM method. A comparison of
ELM method with GP and ANN was performed in order to assess the prediction accuracy.
Comparison of the results in terms of RMSE, r and R2, indicated that the ELM model is
superior to the GP and ANN approaches in 1 day ahead water level prediction. The results
suggested that the proposed ELM model can be successfully used in water level forecasting in
lakes.
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