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Abstract This study presents an integrated approach for targeting critical source areas (CSAs)
to control nonpoint source pollution in watersheds. CSAs are the intersections between
hydrologically sensitive areas (HSAs) and high pollution producing areas of watersheds.
HSAs are the areas with high hydrological sensitivity and potential for generating runoff.
They were based on a soil topographic index in consistence of a saturation excess runoff
process. High pollution producing areas are the areas that have a high potential for generating
pollutants. Such areas were based on simulated pollution loads to streams by the Soil and
Water Assessment Tool. The integrated approach is applied to the Neshanic River watershed, a
suburban watershed with mixed land uses in New Jersey in the U.S. Results show that several
land uses result in water pollution: agricultural land causes sediment, nitrogen and phosphorus
pollution; wetlands cause sediment and phosphorus pollution; and urban lands cause nitrogen
and phosphorus pollution. The primary CSAs are agricultural lands for all three pollutants,
urban lands for nitrogen and phosphorus, and wetlands for sediment and phosphorus. Some
pollution producing areas were not classified into CSAs because they are not located in HSAs
and the pollutants generated in those areas are less likely to be transported by runoff into
streams. The integrated approach identifies CSAs at a very fine scale, which is useful for
targeting the implementation of best management practices for water quality improvement, and
can be applied broadly in different watersheds to improve the economic efficiency of control-
ling nonpoint source pollution.
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1 Introduction

Nonpoint source (NPS) pollution is a major contributor to water pollution and the degradation
of aquatic ecosystems in the United States (Diebel et al. 2008; USEPA 2009). The challenge in
reducing NPS pollution is to identify the source of pollutants originating from spatially diverse
areas (Carpenter et al. 1998). A targeting approach for reducing agricultural NPS pollution has
received considerable attention (e.g., Trevisan et al. 2010; Zhou and Gao 2011; Kaini et al.
2012; Ghebremichael et al. 2013). In particular, there is growing interest in reducing NPS
pollution by implementing best management practices (BMPs) in critical source areas (CSAs)
(Qiu 2009; White et al. 2009; Giri et al. 2012; Buchanan et al. 2013; Kumar and Mishra 2015).

CSAs are the areas of watersheds where hydrologically sensitive areas (HSAs) and
pollution generating areas intersect and which have a high propensity to generate runoff and
pollutants (Walter et al. 2000; Qiu 2009; Ghebremichael et al. 2013). CSAs of watersheds have
the potential to generate significant pollution loads that can adversely impact the water quality
of receiving waterbodies (Srinivasan andMcDowell 2009; Shen et al. 2011). Identification and
prioritization of CSAs for BMP implementation can mitigate NPS pollution efficiently and
cost-effectively while minimizing landscape disturbance (Qiu 2009).

Different approaches have been used to identify watershed areas that disproportionally
contribute to NPS pollution. Shen et al. (2015) used the Soil and Water Assessment Tool
(SWAT) and statistical analysis to identify and prioritize management areas for controlling total
phosphorus concentration in the Daning River watershed located in Hubei, China. Buchanan
et al. (2013) used a travel time phosphorus index approach to identify phosphorus CSAs in an
agricultural watershed in central New York and found that man-made agricultural ditches are
the CSAs for phosphorus in that watershed. Their travel time-phosphorus index approach
integrates the probability of runoff generation, topographic position, hydrologic connectivity,
and land use to locate CSAs. Thompson et al. (2012) developed an export coefficient to
measure the effect of overland flow connectivity on nutrient transport and used that coefficient
to identify CSAs for reducing diffuse phosphorus loss in the County Down watershed in
Northern Ireland. Shen et al. (2011) applied an agricultural pollution potential index to identify
CSAs for reducing nitrogen and phosphorus loads to streams in the Fujiang watershed in
Qinghai, China. That study found that as the percentage of agricultural land in CSAs increases,
nitrogen and phosphorus loads to streams in the watershed increase. Qiu (2009) used a soil
topographic index (STI) to identify CSAs for conservation buffer planning and riparian
restoration in Raritan River Basin, New Jersey. Other methods used to identify CSAs include
a tiered approach for phosphorus (Doody et al. 2012), a geographical allocation approach for
phosphorus (Diebel et al. 2008), and the universal soil loss equation for sediment and
phosphorus (Sivertun and Prange 2003; Pandey et al. 2007; Chen et al. 2011). In contrast to
this study, which uses two criteria to identify CSAs for watersheds, the above studies use only
one criterion.

This study integrates an STI and SWAT to identify CSAs for sediment, nitrogen, and
phosphorus at a fine spatial scale. Specific objectives of this study are to: (1) determine HSAs
using an STI; (2) identify and characterize pollution producing areas at a fine scale using
SWAT; and (3) identify CSAs for sediment, nitrogen, and phosphorus defined as the

5088 S. Giri et al.



intersection of HSAs and high pollution producing areas. This integrated method presented
here allows CSAs to be identified at a fine spatial scale, which is useful when implementing
BMPs for controlling NPS pollution.

2 Materials and Methods

2.1 Study Area

The study area is the 142 km2 Neshanic River watershed (hydrologic unit code-HUC
02030105030), a suburban watershed with mixed land uses located in Central New Jersey
in the U.S. (Fig. 1). This watershed is a headwater watershed to the South Branch of the
Raritan River that flows eastward and drains into the Atlantic Ocean. The land cover/use for
the watershed is 38 % forest, 31 % agriculture, 25 % urban, and the remainder in wetland,
water, and barren areas. Major crops grown in the watershed are hay, pasture, corn, and
soybeans. Minor crops include winter wheat, rye, and oats. The watershed has a maximum
elevation of approximately 209 m and a minimum elevation of 20 m above the mean sea level.

Higher elevations are generally found on the watershed boundary except on the northeast
side. Water in the streams flows eastward and drains into the South Branch of the Raritan
River. The region where the watershed is located has a humid climate with hot humid summers
and cold winters. The highest temperatures in the study area are 27 °C to 30 °C, and the lowest

Fig. 1 Topography and location of the Neshanic River watershed in New Jersey
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temperatures are −5 °C to −7 °C. Average mean annual precipitation in the watershed is
1218 mm according to the National Climatic Data Center. Streams in the watershed are
classified as FW2 and NT streams. Water in FW2 streams can be used only for industrial
purposes and agricultural irrigation; and water in NT streams does not support trout production
and maintenance (NJDEP 2011). Water quality in the watershed is impaired due to excessive
sediment, phosphorus, and pathogen loads to the streams (Qiu and Wang 2014).

2.2 SWAT Model Description

SWAT was used to characterize the source areas that contribute sediment, nitrogen, and phos-
phorus loads to streams in the Neshanic River watershed. SWAT is a physically-based, spatially-
distributed, watershed scale model developed by the Agricultural Research Service (ARS) of the
U.S. Department of Agriculture (USDA) (Arnold et al. 1998). SWAT divides the watershed into
several subbasins based on topography. Each subbasin is further delineated into hydrologic
response units (HRUs) that have a unique combination of land use, soil, and slope representing
diverse natural resource conditions and their responses to management decisions. In this appli-
cation, the Neshanic River watershed is divided into 6363 HRUs within 115 subbasins.

2.3 Data Sources for SWAT Model

The topography of the Neshanic River watershed is represented by a light detection and
ranging (LiDAR) digital elevation model (DEM) at a 3-m resolution that was obtained from
the New Jersey Department of Environmental Protection (NJDEP). This study uses composite
land use data for the watershed developed from two sources: 2007 land use/cover data
developed from aerial photos developed by NJDEP; and a 2013 crop data layer derived from
LANDSAT satellite images processed by the USDA National Agricultural Statistics Service
(NASS 2014). The NJDEP land use/cover data has more accurate land use/cover classes, but
lacks detailed classification of agricultural land. The NASS crop data layer was used to
identify cropping patterns within agricultural lands classified using NJDEP data. Soil survey
geographic (SSURGO) soil data for the watershed was downloaded from the USDA Natural
Resources Conservation Service (NRCS) Geospatial Data Gateway.

Daily streamflow obtained from USGS gauging station 01,398,000 (Fig. 1) was used to
calibrate and validate the streamflow simulated by SWAT. Water quality data on sediment,
nitrogen, and phosphorus for the same station were downloaded from EPA STORET and
National Water Quality Monitoring Council. Daily precipitation and temperature data from the
Flemington and Wertsville weather stations were downloaded from the National Climatic Data
Center website. The Flemington weather station is just beyond the boundary of the watershed
and the Wertsville weather station is located within the watershed. The weather generator
embedded in SWAT was used to generate the remaining meteorological data needed for
modeling (i.e., wind speed, solar radiation, and relative humidity).

Agricultural management practices for the crops evaluated in the study (i.e., corn, soybeans,
winter wheat, oat, rye, pasture, hay, and lawn management) are the typical agricultural
practices for these crops used by producers in the study area. The scheduling of tillage,
fertilizer application, planting, and harvesting operations were developed in consultation with
local producers and NRCS staff in the study area. Crop yields for corn, soybeans, wheat, and
hay were downloaded from the USDA NASS website and used to calibrate SWAT’s crop
growth module.
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2.4 Sensitivity Analysis and Model Calibration

A sensitivity analysis was used to identify critical model parameters that have a major
influence on streamflow, sediment, nitrogen, and phosphorus. Sensitivity analysis was per-
formed using the Latin-hypercube-one-factor-at-a-time (LH-OAT) method embedded in the
SWAT model. Critical model parameters for each water quality constituent identified in the
sensitivity analysis were used to calibrate and validate the SWAT model based on a daily time
step for simulated streamflow, and sediment, nitrogen, and phosphorus delivery to streams in
the watershed. A two-year, warm-up period was used in calibrating model parameters. The
model calibration period was 2010–2011 and the validation period was 2012–2013. The Nash-
Sutcliff efficiency (NSE), root mean square error (RMSE)-observations standard deviation
ratio (RSR), and percent bias (PBIAS), were used to evaluate how well the SWAT model
simulated streamflow and water quality (Moriasi et al. 2007). NSE is a normalized statistic that
determines the relative magnitude of the residual variance compared to the measured data
variance (Nash and Sutcliffe 1970). PBIAS measures the average tendency of the simulated
data to be larger or smaller than their observed counterparts (Gupta et al. 1999). RSR is the
ratio of the RMSE and standard deviation of measured data (Singh et al. 2004). The lower
RSR indicates the better model performance.

2.5 Deriving HSAs

2.5.1 Soil Topographic Index

STI approximates the propensity of a point in a watershed to generate runoff when variable
source hydrology is the dominant watershed hydrological process (Walter et al. 2000). STI for
each grid in the watershed was estimated using the following equation (Walter et al. 2000; Qiu
2009):

STI ¼ ln
a

tan βð Þ
� �

−ln Ks Dð Þ; ð1Þ

where α is the upslope contributing area per unit contour length (m), β is the local surface
slope (mm−1), Ks is saturated hydraulic conductivity (m/day), and D is the depth to restrictive
layer (m). The first term is a wetness index (see section 2.5.2) and the second term is soil
transmissivity (see section 2.5.3). The STI value and the potential for runoff generation are
directly related (i.e., the higher the STI value, the greater the likelihood of runoff).

2.5.2 Wetness Index

The wetness index is derived from the 3-m LiDAR DEM obtained from the NJDEP. Using
such a fine-scale LiDAR DEM significantly increases the accuracy of the soil topographic
index (Buchanan et al. 2014). The wetness index was created in R platform using the R-SAGA
package (Brenning 2007). Any depressions in the original LiDAR DEM were filled to create a
filled DEM with a smooth surface for analysis following the fill sinks procedure developed by
Wang and Liu (2006). The slope of each grid was calculated using the least-squares fitted
plane method (Horn 1981; Costa-Cabral and Burges 1996). Catchment area was determined
using the multiple triangular flow direction method (Seibert and McGlynn 2007).
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2.5.3 Soil Transmissivity

The calculation of soil transmissivity was based on the procedure developed by Hong and
Swaney (2007). Soil transmissivity is the product of saturated hydraulic conductivity and
depth to a restrictive layer. The latter was extracted from the SSURGO soil database
downloaded from the Geospatial Data Gateway of USDA-NRCS. The saturated hydraulic
conductivity used to calculate soil transmissivity is the geometric mean of the saturated
hydraulic conductivities associated with multiple soil layers above the restrictive layer (Qiu
2009). Soil transmissivity was multiplied by 0.000864 to convert the units of measurement for
soil transmissivity to m2/day.

2.5.4 Hydrologically Sensitive Areas (HSAs)

The wetness index and soil transmissivity were combined in the R-platform to
calculate STIs for the watershed. HSAs are a subset of grids that actively generate
runoff (i.e., grids with higher STI values in the watershed) (Qiu 2009). HSAs can be
defined using various criteria. A simple way to create HSAs is to select a threshold
value of STI and define HSAs as areas with STI values that equal or exceed that
threshold. In this study, a threshold value of 10 was chosen following the recommen-
dation by Qiu (2009). Hence, HSAs are areas with STIs greater than or equal to ten.
HSAs based on this definition covered about 25.5 % of the watershed, which is
slightly larger than the management goal of 20 % recommended by Herron and
Hairsine (1998).

2.6 Identifying Pollution Producing Areas

The pollution producing area for sediment, nitrogen, and phosphorus was based on
the SWAT-simulated pollutant loads per unit area (Tuppad and Srinivasan 2008; Giri et al.
2012). Previous studies identified pollution producing areas for subbasins. This study identified
pollution producing areas for HRUs within subbasins of the watershed.

Based on the pollutant loads for HRUs simulated using SWAT, high, medium, and low
potential pollution producing areas were delineated using the natural break methods of
classification embedded in the ArcGIS platform. The natural break method classifies data into
natural groups by minimizing the variance within each group variance while maximizing the
variance of between the group means. High potential pollution producing areas for each
pollutant were used to determine CSAs.

2.7 Identifying Critical Source Areas

CSAs are watershed areas where pollution source and transport coincide (Walter
et al. 2000). In particular, CSAs are areas in the watershed that can have the
potential to generate significant amounts of pollutants and are prone to runoff
generation through a saturation-excess hydrological process. In this study, CSAs
for each pollutant were identified based on the HSAs for the watershed, which were
determined using the STIs discussed in section 2.5, and the high potential pollution
producing areas for HRUs, which were identified using the SWAT model discussed
in section 2.6.
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3 Results and Discussions

3.1 SWAT Model Calibration and Validation

Table 1 presents the three model evaluation parameters (i.e., NSE, PBIAS, and RSR) for the
model calibration and validation periods and four water constituents (i.e., daily streamflow,
sediment, nitrogen, and phosphorus) for the Neshanic River watershed. The calibration period
is 2010–2011, the validation period is 2012–2013, and the overall period is 2010–2013 with one
exception. The validation for phosphorus was done by using the observations in the overall period
due to limited observation on phosphorus concentrations during the validation period. Based on
Moriasi et al. (2007), the SWAT model is good when simulating streamflow (NSE = 0.67,
RSR = 0.58, and PBIAS = 9.25), very good when simulating sediment (NSE = 0.78, RSR = 0.45,
and PBIAS = 2.34) and nitrogen (NSE = 0.76, RSR = 0.47, and PBIAS = 25.34), and satisfactory
when simulating phosphorus (NSE = 0.45, RSR = 0.70, and PBIAS = 60.42).

Figure 2 presents hydrographs for observed and simulated streamflow in the watershed
during the calibration and validation periods. Observed and simulated streamflow are similar
except for several days when the observed streamflow is significantly higher than the
simulated streamflow. The Neshanic River watershed has experienced substantial urban
development, which has increased the area of impervious surface. This makes the Neshanic
River watershed flashier than traditional agricultural watersheds. It appears SWAT is not able
to fully capture such flashness in watershed hydrology.

Some parameters for the watershed, including the radiation use efficiency or biomass
energy ratio and the harvest index for primary crops (i.e., corn, soybeans, wheat, and hay),
were calibrated to ensure that simulated crop yields match average crop yields for Hunterdon
County where the Neshanic River watershed is located. Average crop yields for Hunterdon
County were obtained from NASS.

Table 1 Model evaluation parameters for four water constituents in the model calibration and validation periods,
the Neshanic River watershed

Constituent Evaluation Overall period Calibration period Validation period

parameters (2010–2013) (2010–2011) (2012–2014)

Flow NSE 0.67 0.69 0.44

PBIAS 9.25 9.89 7.82

RSR 0.58 0.55 0.75

Sediment NSE 0.78 0.75 0.81

PBIAS 2.34 -14.63 20.26

RSR 0.45 0.49 0.43

Nitrogen NSE 0.76 0.79 0.60

PBIAS 25.34 31.99 13.15

RSR 0.47 0.45 0.63

Phosphorus NSE 0.45 0.57 0.45

PBIAS 60.42 63.55 60.42

RSR 0.70 0.65 0.70

NSE is Nash-Sutcliffe efficiency, PBIAS is percent bias, and RSR is root mean square error (RMSE)-observa-
tions standard deviation ratio

An Integrated Approach for Targeting Critical Source Areas 5093



3.2 Hydrologically Sensitive Areas

Soil transmissivity for the watershed varies from −0.52 m2/d to 0.87 m2/d. A negative soil
transmissivity index indicates that water infiltration is negligible (Machiwal et al.
2006) and a positive soil transmissivity index indicates that water infiltration is
sufficient to reduce the probability of runoff. The estimated values of STI range from
3 to 28 (Fig. 3a). The higher STI (darker shading) indicates the higher probability of
runoff generation. During a rainfall event, runoff would first occur in areas with high
STI values (Qiu 2009; Lyon et al. 2004).

The delineated HSAs have STI values ranging from 10 to 28. Figure 3b shows the location
of HSAs in the watershed, or areas of the watershed that are most prone to producing runoff.
HSAs are usually located near streams in the upland areas of the watershed. The total area of
HSAs is 3628 ha, which is about 25 % of the watershed. Of the 3628 ha of HSAs, 1291 ha are
agricultural lands, 857 ha are forest lands, 812 ha are urban land, 599 ha are wetlands, 65 ha
are water, and 4 ha are barren land (Table 2).
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Fig. 3 Soil topographic index (a) and hydrologically sensitive areas (b) for the Neshanic River watershed
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3.3 Pollution Producing Areas

The pollution producing areas for sediment, nitrogen, and phosphorus in the watershed are
based on the SWAT-simulated pollutant loads for HRUs (see Fig. 4). Physical boundaries for
HRUs were approximated using the NASS crop data layer as described above.

3.3.1 Sediment Producing Areas

Simulated sediment loads in the watershed range from 0 to 10.20 t/ha (Fig. 4a). Areas with
sediment loads between 0 and 0.51 t/ha (tan color), 0.52 and 2.08 t/ha (light brown color), and
2.09 and 10.20 t/ha (dark brown color) are classified as having low, medium, and high
potential for producing sediment, respectively. High potential sediment producing areas are
concentrated in the central and southeast regions of the watershed, cover 145 ha, and are
predominantly agricultural lands (121 ha) and wetlands (19.5 ha) (see Table 2). Medium

Table 2 Land use in hydrologically sensitive areas, high potential pollution producing areas, and critical source
areas for sediment, total nitrogen, and total phosphorus, in hectares, the Neshanic River watershed

Land use type Hydrol. sensitive areasa High potential pollution producing areasb Critical source areasc

Sediment TN TP Sediment TN TP

Ag. land 1290.80 120.85 7.58 627.16 24.48 1.78 145.62

Urban 811.82 0.53 1.61 26.91 0.09 0.62 9.94

Forest 857.29 3.06 0.04 3.73 0.55 0.02 0.76

Wetland 599.11 19.42 0.21 34.53 5.59 0.04 10.89

Barren land 4.15 0.02 0.00 0.02 0.00 0.00 0.00

Water 64.88 1.09 0.00 1.11 0.15 0.00 0.15

Total 3628.04 144.98 9.44 693.47 30.86 2.46 167.38

The areas of various land uses in this table were based on the 2007 NJDEP land use data. The small numbers for
some land uses in high potential pollution producing areas and critical source areas, especially the areas less than
one hectare, might be caused by the approximation of the physical boundary of HRUs using the NASS crop data
layer and inherent inconsistence between the NASS crop data layer and NJDEP land use data. Consequently,
these small numbers are not meaningful
a Estimated based on application of STI
b Estimated based on application of SWAT
c Estimated based on the integrated application of STI and SWAT

Fig. 4 High, medium, and low potential pollution producing area for sediment (a), nitrogen (b), and phosphorus
(c) in the Neshanic River watershed
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potential sediment producing areas are concentrated in the central and southern parts of the
watershed, which are primarily grass and pasture land. Low potential sediment producing areas
are concentrated in the northwest region and the edge of southeast region of the watershed,
which are dominated by forests. The results are consistent with other studies. Miller et al.
(2011) found that agricultural land contributes significantly to higher suspended solid concen-
trations in the Lower Kaskaskia River watershed in Illinois. Gyawali et al. (2013) found that
agricultural land contributes significantly to sediment load in the U-Tapao River Basin in
Thailand. Wilson and Weng (2010) concluded that agricultural land accounts for the highest
suspended solid concentration in the Lake Calumet watershed in the Greater Chicago area.

3.3.2 Nitrogen Producing Areas

Nitrogen loads in the watershed vary from 0 to 655 kg/ha (see Fig. 4b). Areas with nitrogen loads
between 0 kg/ha and 42.79 kg/ha (light blue color) are classified as low potential nitrogen
producing areas, 42.80 kg/ha and 138.04 kg/ha (medium blue color) as medium potential nitrogen
producing areas, and 138.05 kg/ha and 654.59 kg/ha (dark blue color) as high potential nitrogen
producing areas (see Fig. 4b). The majority of the watershed contains low potential nitrogen
producing areas; a very small portion of thewatershed containsmedium and high potential nitrogen
producing areas. Thewatershed has only 9.44 ha of high potential nitrogen producing areas. Of that
area, 7.58 ha are agricultural land and 1.61 ha are urban land (see Table 2). Corroborating results
were obtained in other studies. Zampella et al. (2007) found that agricultural and urban land uses
contributed significantly to nitrogen concentration in the Mullica River Basin located in the New
Jersey Pinelands. Hayakawa et al. (2006) determined that agricultural and urban lands were the
primary sources of nitrogen in the Akkeshi and Shibetsu catchments in Japan.

3.3.3 Phosphorus Producing Areas

Low, medium, and high potential phosphorus producing areas are areas having phosphorus loads
ranging from 0 to 1.45 kg/ha (yellow color), 1.46 to 3.69 kg/ha (light orange color), and 3.70 to
13.18 kg/ha (dark orange color), respectively (see Fig. 4c). The spatial patterns of phosphorus and
sediment producing areas are similar because of the close correlation between sediment and
phosphorus loads (i.e., phosphorus attaches to sediment). High potential producing areas for
phosphorus cover 693.5 ha of which 627 ha are agricultural land, 27 ha are urban, and 34.5 ha
are wetlands (see Table 2). Similar to the high potential producing areas for sediment, agricultural
land accounts for the bulk of the phosphorus loads to streams in the watershed, which is consistent
with other studies. Pratt and Chang (2012) found that urban and agricultural lands account for the
majority of phosphorus loads to streams near the Portland, Oregon metropolitan area. Wan et al.
(2014) observed that agricultural and urban lands are the major sources of phosphorus loads to the
Lake Tai Basin in China. Some wetlands contribute to phosphorus loads because some of the
accumulated nutrients in wetlands are slowly released to receivingwaterbodies. Ardon et al. (2010)
observed that a restored wetland released more total phosphorus and soluble reactive phosphorus
per ha to receiving waterbodies than agricultural land in Albemarle Peninsula in North Carolina.

3.4 Critical Source Areas

Table 2 gives the land area in CSAs by pollutant and land use. The area of CSAs for sediment
is 31 ha, of which 24.5 ha is agricultural land and 5.6 ha are wetland. The total area of CSAs
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for nitrogen is 2.5 ha, of which 1.8 ha are agricultural land and .6 ha are urban land. The total
area of CSAs for phosphorus is 167.4 ha, of which 145.6 ha are agricultural land, 10 ha are
urban land, and 11 ha are wetland. Figure 5 illustrates the location of CSAs for sediment,
nitrogen, and phosphorus in the Neshanic River Watershed.

4 Conclusions

The pollutants generated in CSAs have a high potential of being transported to streams. Hence,
targeting BMPs to CSAs is an ideal way to reduce NPS pollution. The ideal CSAs for targeting
BMPs varies by pollutant. Without targeting, the potential area for implementing agricultural
BMPs is 3628 ha, the total agricultural area in the watershed. The effectiveness and efficiency
of lowering sediment loads in the watershed would be much higher by targeting agricultural
BMPs to the 1291 ha of agricultural land classified as HSAs or the 121 ha of agricultural land
classified as high potential sediment producing areas. Targeted area for BMPs for sediment
reduction can be further reduced by applying BMPs to the 24 ha of CSAs for sediment
identified in this study. Similarly, the targeted areas for implementing agricultural BMPs to
reduce nitrogen pollution in the watershed can be reduced to 1291 ha based on HSAs, 8 ha
based on high potential nitrogen producing areas or to 2 ha based on CSAs. Finally, the
targeted area for implementing agricultural BMPs to reduce phosphorus pollution in the
watershed can be reduced to 1291 ha based on HSAs, 627 ha based on high potential
phosphorus producing areas, or 146 ha based on CSAs. Targeting BMP implementation to
finer-scaled CSAs improves the effectiveness and economic efficiency of targeting. In addi-
tion, the final choice of targeted areas (i.e., HSAs, high potential pollution areas, or CSAs)
depends on the desired amount of pollution reduction, which is an important consideration, for
example, when implementing total maximum daily loads for pollutants.

Most existing methods for identifying CSAs are based on a single criterion, such as STIs or
high pollution producing areas (Qiu 2009; Giri et al. 2012) A major contribution of this study
is that it delineates CSAs for controlling sediment, nitrogen, and phosphorus pollution of
streams in the Neshanic River watershed in New Jersey by integrating two criteria: HSAs
identified using STIs; and high pollution producing areas identified using SWAT. Specifically,
CSAs for sediment, nitrogen and phosphorus are identified by the intersection of HSAs and
high potential pollution producing areas in the watershed. The advantage of using an integrated
approach to delineate CSAs in the Neshanic River watershed is that it can significantly reduce
the area targeted for BMP implementation, which would improve the economic efficiency of

Fig. 5 Critical source areas for sediment (a), nitrogen (b), and phosphorus (c) in the Neshanic River watershed
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targeting for NPS pollution reduction. Targeting BMPs to CSAs identified using the integrated
approach described here can increase the economic efficiency of reducing NPS pollution.

This study used a threshold value of ten for STIs to define HSAs and applied the natural
break procedure embedded in ArcGIS to define the high potential pollution producing areas. In
practice, there are different ways to define HSAs based on STI and high pollution producing
areas based on the pollutant loads simulated using SWAT, which are used to define CSAs in
this study. Resource managers should use their local knowledge and understanding of pollu-
tion to select the most appropriate way to define HSAs and high pollution producing areas.
The procedures described in this study provide one way to define HSAs, high pollution
producing areas, and CSAs. This novel CSAs identification technique can be applied widely
in watersheds where restoration funding is a constraint.

Although this study provides clear direction for targeting BMPs to CSAs, it is not clear how
much water quality would be improved by targeting BMPs to CSAs vs. implementing BMPs
based on other targeting criteria. Future research could install alternative BMPs both inside and
outside of CSAs and empirically assess the extent and economic efficiency of pollution
reduction with both approaches. Such research could be carried out either through experiments
at a field scale or modeling at a larger watershed scale. Research results would improve the
understanding of how pollution reduction efficacy and efficiency are influenced by the
placement of BMPs and, perhaps, form the basis for developing various incentives and policies
by land use planners and watershed managers to encourage agricultural producers to adopt
BMPs in CSAs.
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