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Abstract Sensitivity analysis of a model can identify key variables affecting the performance
of the model. Uncertainty analysis is an essential indicator of the precision of the model. In this
study, the sensitivity and uncertainty of the Long-Term Hydrologic Impact Assessment-Low
Impact Development 2.1 (L-THIA-LID 2.1) model in estimating runoff and water quality were
analyzed in an urbanized watershed in central Indiana, USA, using Sobol′‘s global sensitivity
analysis method and the bootstrap method, respectively. When estimating runoff volume and
pollutant loads for the case in which no best management practices (BMPs) and no low impact
development (LID) practices were implemented, CN (Curve Number) was the most sensitive
variable and the most important variable when calibrating the model before implementing
practices. When predicting water quantity and quality with varying levels of BMPs and LID
practices implemented, Ratio_r (Practice outflow runoff volume/inflow runoff volume) was
the most sensitive variable and therefore the most important variable to calibrate the model
with practices implemented. The output uncertainty bounds before implementing BMPs and
LID practices were relatively large, while the uncertainty ranges of model outputs with
practices implemented were relatively small. The limited observed data in the same study
area and results from other urban watersheds in scientific literature were either well within or
close to the uncertainty ranges determined in this study, indicating the L-THIA-LID 2.1 model
has good precision.
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1 Introduction

Computer based mathematical hydrologic/water quality models, from the simplest to the most
complex, are based on simplified mathematical descriptions of natural watershed processes. In
hydrologic and water quality simulation, the physical processes are complex and involve high
costs for measuring model variables (inputs and parameters) which vary at spatial and temporal
scales. As a result, to properly simulate hydrology and water quality at the watershed scale,
model variables must be specified for each application of the model (Duan et al. 2003; Gitau
et al. 2016). Model calibration, which adjusts model parameters to match simulated results with
observed data within a certain accuracy level, is commonly used to estimate model parameters
(Abbott et al. 1986). Before the calibration process, sensitivity analysis is often conducted.

Sensitivity analysis of amodel is a useful screening tool developed to find themain parameters
affecting performance of the model by estimating which contribute the most to output variability
(Muleta and Nicklow 2005; Kanakoudis et al. 2011; Castaño et al. 2013; D’Agostino et al. 2014;
Sharifi and Dinpashoh 2014; Andersson et al. 2015; Debnath et al. 2015; Machado et al. 2016;
Valdez et al. 2016). Sensitivity analysis methods can be divided into two groups: local sensitivity
analysis and global sensitivity analysis. Local sensitivity analysis, or one at a time sensitivity
analysis, estimates sensitivity by varying each variable in a certain range while keeping other
variables at their nominal values (Holvoet et al. 2005); although it is easy to conduct, local
sensitivity analysis has limitations due to assumptions of no interactions between variables, and
local sensitivity analysis can capture model response with respect to only one variable at a time
(Helton 1993; Muleta and Nicklow 2005). In comparison to local sensitivity analysis, global
sensitivity analysis is more reliable because of computing integrated sensitivity over the entire
range of variables; the impacts of variable interactions on model outputs can also be investigated.
Sobol′‘s global sensitivity analysis method (Sobol′ 1993) is a popular variance decomposition
based method that can characterize single variable and multivariable interactions (Sobol′ 1993;
Sobol′ 2001; Tang et al. 2006; Tang et al. 2007; Cibin et al. 2010).

The calibrated model will have minimized propagation of variable uncertainties into the
uncertainties of model outputs (Migliaccio and Chaubey 2008). However, uncertainty remains
because of the complicated stochastic features of environmental processes, quantity/quality of
input data, and parameter evaluation (Tsakiris and Spiliotis 2004; Muleta and Nicklow 2005;
Gaur and Simonovic 2015; Narsimlu et al. 2015; Theodossiou and Fotopoulou 2015).
Uncertainty analysis, which estimates overall uncertainty of the model results, is a vital
indicator of the precision of a model. The bootstrap method, which is suitable for both simple
and complicated models (Tang et al. 2006; Tang et al. 2007; Hanel et al. 2013; Sreekanth and
Datta 2014; Kumar et al. 2015; Zhang et al. 2015), is able to estimate confidence intervals for
model outputs with the lowest time consumption. Uncertainty analysis methods are discussed
separately; however, they can also be employed to estimate parameter sensitivity.

The L-THIA-LID 2.1model (Liu 2015; Liu et al. 2015a, b; Liu et al. 2016a, b), whichwas newly
enhanced based on previous L-THIA models (e.g. Harbor 1994; Engel et al. 2003; Tang et al.
2005; Muthukrishnan et al. 2006; Wilson and Weng 2010; Ahiablame 2012; Ahiablame et al.
2012; Ahiablame et al. 2013; Wright et al. 2016), is an easy to use tool that aims to estimate the
impacts of BMPs and LID practices on runoff and water quality at watershed scales. Although
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studies analyzed the sensitivity of the L-THIA model (Wilson andWeng 2010) and uncertainty
of the L-THIA-LID model in estimating runoff (Ahiablame 2012), studies about sensitivity
analysis and uncertainty analysis of the newly enhanced L-THIA-LID 2.1 model in estimating
both runoff and water quality have not been reported. This paper was the first study to analyze
the sensitivity and uncertainty of the newly enhanced L-THIA-LID 2.1 model, which would
help model users and future researchers understand the precision of the model and the key
variables affecting performance of the model.

The objectives of this study were to 1) use Sobol′‘s global sensitivity analysis method to
analyze sensitivity of the L-THIA-LID 2.1 model in estimating runoff and water quality
without and with BMPs and LID practices implemented; and 2) use the bootstrap method to
analyze the output uncertainty of L-THIA-LID 2.1 model in predicting water quantity and
quality without and with BMPs and LID practices implemented.

2 Materials and Methods

2.1 Study Area

The study area is Crooked Creek Watershed in central Indiana, USA (Fig. 1). The total area of
the watershed is 5129 ha, and the watershed is highly urbanized with over 88 % of its area
covered by urban land uses (including residential, industrial, and commercial areas), which
makes it suitable to model the impacts of BMPs and LID practices. Stormwater runoff flows to
the outlet of watershed with no interaction of municipal sewer systems.

2.2 Input Data

Daily precipitation data (from 1993 to 2010) for two stations (USC124249 and USC129557)
were obtained from the National Climatic Data Center (http://www.ncdc.noaa.gov).
Hydrologic soil group (HSG) data were obtained from Soil Survey Geographic (SSURGO)
database. All hydrologic soil groups of high density residential, commercial, and industrial
areas were assumed to be D because of construction impacts (Lim et al. 2006). Land use
classes in the National Land Cover Dataset (NLCD) 2001 (http://www.mrlc.gov/nlcd2001.php)
were obtained and reclassified by the method described in Liu et al. (2015b) using ArcGIS.

The GIS data for street centerlines, imperviousness, streams, lakes, and building footprints
were downloaded from the IndianaMap Layer Gallery (http://maps.indiana.edu/layerGallery.
html). Digital elevation model (DEM) data were obtained from the National Map (http://
nationalmap.gov/). Based on methods described in Liu et al. (2015b), these data were
combined to quantify surfaces of streets, sidewalks, parking lots, driveways, roof tops,
patios, streams, and lakes; and also estimate imperviousness of the area, drainage area, and
drainage slope.

2.3 Variables and Outputs for L-THIA-LID 2.1 Model

2.3.1 Ranges and Probability Density Function of Variables

The ranges, probability density function (pdf), notes, default values of variables and variables
needed for each simulation in L-THIA-LID 2.1 are shown in Table 1. The inputs and
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parameters (together called variables) of the L-THIA-LID 2.1 model included curve number
(CN), precipitation (P), event mean concentration (EMC), ratio of outflow runoff volume to
inflow runoff volume (Ratio_r), irreducible concentration (IC), and ratio of outflow pollutant
concentration to inflow pollutant concentration (Ratio_C).

The ranges of variables were defined as percent changes from default values.
Previous studies suggested that parameters and input data ranges had more impact
on results than actual probability distribution functions (pdfs), and uniform distribution

Fig. 1 Location of Crooked Creek Watershed in Central Indiana, USA
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would be sufficient for exploratory studies (Helton 1993; Haan et al. 1998; Muleta
and Nicklow 2005). Therefore, the pdfs of the percent changes were assumed to be
uniform distributions.

An upper limit of 2 % changes from default CN values was used to keep the
biggest CN lower than 100; and a lower limit of −20 % changes from default CN
values was adapted to keep the lowest CN of urban land uses reasonable. The lower
and higher limits of changes (−10 % to 10 %) from measured P values were 25th and
75th percentiles of percent differences between the annual rainfalls of the two rainfall
gauge stations near Crooked Creek Watershed (USC00129557 and USC00124249)
used in the study. The annual rainfall data, instead of daily rainfall data, were
compared because the L-THIA-LID 2.1 model estimates long-term annual results of
runoff volume and pollutant loads. The lower and higher limits of percent changes
from default EMC values were 25th and 75th percentiles of the percent differences
between minimum and median, maximum and median values, respectively, using data
from Baird et al. (1996). For Ratio_r, IC, and Ratio_c, based on data from the
International Stormwater BMP database (www.bmpdatabase.org), the lower limits
were median values of percent differences between 25th percentile and median
values from the database; and higher limits were median values of percent
differences between 75th percentile and median values from the database.

2.3.2 Outputs from L-THIA-LID 2.1 Model

Before implementing BMPs and LID practices, the outputs of the model tested
included the runoff volume (m3/ha/yr), and loads of Total Nitrogen (TN) (kg/ha/yr),
Total Kjeldahl Nitrogen (TKN) (kg/ha/yr), Nitrate + Nitrite (NOx) (kg/ha/yr), Total
Phosphorus (TP) (kg/ha/yr), Dissolved Phosphorus (DP) (kg/ha/yr), Total Suspended
Solids (TSS) (kg/ha/yr), Total Dissolved Solids (TDS) (kg/ha/yr), Total Lead (Pb)
(g/ha/yr), Total Copper (Cu) (g/ha/yr), Total Zinc (Zn) (g/ha/yr), Total Cadmium (Cd)
(g/ha/yr), Total Chromium (Cr) (g/ha/yr), Total Nickel (Ni) (g/ha/yr), Fecal Coliform
(FC) (colonies/ha/yr), Fecal Streptococcus (FS) (colonies/ha/yr), Escherichia coli
(E.coli) (MPN/ha/yr), Biochemical Oxygen Demand (BOD) (kg/ha/yr), Chemical
Oxygen Demand (COD) (kg/ha/yr), and Oil and Grease (O&G) (kg/ha/yr).

After implementing BMPs and LID practices, the outputs of the model were cumulative
runoff/pollutant value (CRPV) as shown in the following equations.

runoff−CRPV ¼ Runoff
Runoff 0 ð1Þ

pollutant−CRPV ¼ 1
19 ð TSSTSS

0 þ TDS
TDS

0 þ TP
TP

0 þ DP
DP

0 þ TN
TN

0 þ TKN
TKN

0 þ NOx

NOx
0

þ Cd
Cd

0 þ Cr
Cr0 þ Cu

Cu0 þ Pb
Pb

0 þ Ni
Ni0

þ Zn
Zn0 þ FC

FC
0 þ FS

FS
0

þ E:coli
E:coli0

þ BOD
BOD

0 þ COD
COD

0 þ O&G

O&G
0

�
ð2Þ

Where, runoffand pollutant names are runoff volume and pollutant loads after
implementing BMPs and LID practices. Runoff 'and pollutant names'(with right single quo-
tation mark) are runoff volume and pollutant loads before implementing BMPs and LID
practices.
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2.4 Sobol′‘S Sensitivity Analysis Method

Model sensitivity was analyzed using a variance-based technique named Sobol′‘s global
sensitivity analysis method (Sobol′ 1993). Although Sobol′‘s method requires a large number
of model evaluations, it is the most accurate method in characterizing single variable and
multivariable interactions (Tang et al. 2006). The Monte Carlo method was combined with
Sobol′‘s method to conduct sensitivity analysis (Sobol′ 1993; Sobol′ 2001; Hall et al. 2005). In
this study, the number of samples for Monte Carlo approximation was set to be 2000 based on
literature recommendations (Tang et al. 2007).

2.5 Uncertainty Analysis with Bootstrap Method

After sensitivity analysis, the uncertainties of the model outputs were analyzed with the
bootstrap method. The bootstrap method (Efron 1979; Efron and Tibshirani 1993) is a
nonparametric estimation technique using a random mechanism to create bootstrap samples
by direct resampling with replacement from empirical distribution functions of data. The
bootstrap technique can be applied with minimum assumptions and with unknown sample
distributions (Efron 1979; Efron and Tibshirani 1993). In this study, 2000 was used as the
resample dimension based on previous literature (Tang et al. 2006).

2.6 Simulation Scenarios

With BMPs and LID practices implemented, two groups of practices, including lower level
implementation and higher level implementation, were applied in suitable areas of the
watershed with randomly assigned implementation levels. Suitable areas of the watershed
for implementing each practice were identified by considering drainage area, drainage slope,
imperviousness, hydrologic soil group, road buffer, stream buffer, and building buffer (Liu
et al. 2015a, 2015b). Random implementation levels were assigned to each practice from a
group of preset values. The specific location of each practice did not matter in this study,
because the implementation level of each practice was based on percentages of suitable areas.
The lower level implementation of practices included 19 % green roof, 19 % rain barrel/
cistern, 6 % green roof with rain barrel/cistern, 25 % bioretention system, 25 % porous
pavement, 25 % permeable patio, 25 % grass strip, 12.5 % grassed swale, 12.5 % wetland
channel, 18 % retention pond, 4 % detention basin, and 4 % wetland basin. The higher level
implementation of practices included 37.5 % green roof, 37.5 % rain barrel/cistern, 12.5 %
green roof with rain barrel/cistern, 50 % bioretention system, 50 % porous pavement, 50 %
permeable patio, 50 % grass strip, 25 % grassed swale, 25 % wetland channel, 35 % retention
pond, 7.5 % detention basin, and 7.5 % wetland basin. The percentages mentioned above are
percent implementation of each BMP/LID practice in areas where they are suitable to be
implemented.

Sobol′‘s global sensitivity analysis method was used for estimating sensitivity of the L-
THIA-LID 2.1 model. Total order Sobol′‘s sensitivity indices for estimating runoff volume and
pollutant loads without implementing BMPs/LID practices and for estimating runoff volume
and pollutant loads with different levels of BMPs/LID practices implemented were estimated
and compared.

The bootstrap method was used to analyze the output uncertainty of the L-THIA-LID 2.1
model in predicting water quantity and quality without and with BMPs and LID practices
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implemented. The 95 % confidence intervals and confidence interval widths of the model
outputs were estimated and compared with results observed and from literature. Distributions
of samples for uncertainty analysis were also studied.

3 Results and Discussion

3.1 Sensitivity Analysis

The total order Sobol′‘s sensitivity indices for estimating runoff volume and pollutant loads
without and with BMPs/LID practices implemented are shown in Table 2. Note that the total
order Sobol′‘s sensitivity indices measure contributions of both single variables and variable
interactions to the L-THIA-LID 2.1 model output.

Table 2 Total order Sobol′‘s sensitivity indices for estimating runoff volume and pollutant loads without and
with different levels of BMPs/LID practices implemented

Variable Runoff
w/o prac-
tices

Rank Runoff w/
lower level
practices

Runoff w/
higher level
practices

Rank Pollutants w/
lower level
practices

Pollutants w/
higher level
practices

Rank

CN 0.994 1 0.040 0.037 2 0.047 0.054 4

P 0.035 2 0.029 0.033 3 0.031 0.039 6

EMC -- -- -- -- -- 0.190 0.145 2

Ratio_r -- -- 0.989 0.997 1 0.793 0.827 1

IC -- -- -- -- -- 0.137 0.128 3

Ratio_c -- -- -- -- -- 0.038 0.050 5

Pollutants w/o practices CN EMC P

TN 0.774 0.248 0.060

TKN 0.770 0.282 0.062

NOx 0.789 0.240 0.068

TP 0.750 0.286 0.087

DP 0.738 0.273 0.093

TSS 0.832 0.247 0.035

TDS 0.818 0.256 0.055

Pb 0.818 0.245 0.030

Cu 0.816 0.243 0.035

Zn 0.763 0.255 0.064

Cd 0.792 0.274 0.057

Cr 0.778 0.257 0.044

Ni 0.824 0.287 0.031

FC 0.773 0.188 0.089

FS 0.764 0.246 0.074

E.coli 0.771 0.276 0.049

BOD 0.760 0.235 0.058

COD 0.771 0.230 0.069

O&G 0.770 0.259 0.060
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Table 2 shows that when estimating runoff volume without implementing practices, the
model output was more sensitive to the variations in the CN parameter than the variations in
the P input within the prescribed ranges. Table 2 shows that when estimating pollutant loads
without implementing practices, CN was the most sensitive variable, and EMC was more
sensitive than P. The findings were in accordance with the results of Wilson and Weng (2010)
for the L-THIA model, which showed CN was the most sensitive variable estimating runoff
volume and pollutant loads. This was expected because CN is the main factor for estimating
runoff volume from a HRU. P was not as sensitive in this study when estimating runoff
volume and pollutant loads before implementing practices, which may be because the range
(or uncertainty) of P was smaller than other variables due to using uncertainty of annual
rainfall values. Pollutant load is the product of runoff volume and EMC, making EMC a
sensitive variable when estimating pollutant loads. These indicate that when estimating runoff
volume and pollutant loads for the case in which no practices were implemented, CN was the
most sensitive variable and the most important variable when calibrating the model before
implementing practices.

Table 2 indicates that when estimating runoff volume with different levels of
practices implemented, Ratio_r was the most sensitive variable, and CN was more
sensitive than P. When estimating pollutant loads with different levels of practices
implemented (Table 2), Ratio_r was the most sensitive variable. Other variables with
less impact on estimating pollutant loads with practices implemented were EMC, IC,
CN, Ratio_c, and P. High sensitivity of Ratio_r was expected because a high level of
BMPs/LID practice implementation was simulated in this study, and Ratio_r indicates
the performances of practices represented by the percent runoff volume reduction
method. Ratio_r would strongly affect pollutant load estimation since pollutant loads
were estimated using runoff volume and pollutant concentrations; the change of
Ratio_r would affect runoff volume after implementing BMPs/LID practices, and
therefore, would impact pollutant loads. IC was sensitive because it is the lowest
pollutant concentration of effluent for practices due to the treatment abilities of the
practices. When estimating pollutant loads with practices implemented, EMC was
more sensitive than CN because EMC represents the original pollutant concentrations
before treated by BMPs/LID practices, which is closely related to IC. P and Ratio_c
were not as sensitive as other variables which may be because of the smaller ranges
(or uncertainties) of P and Ratio_c in this study. These results indicate that when
predicting water quantity and quality with varying practices implemented, Ratio_r was
the most sensitive variable. Thus, when calibrating the model with practices imple-
mented, Ratio_r would be the most important variable.

The first order Sobol′‘s sensitivity indices, which indicate the influence of single
variables to the L-THIA-LID 2.1 model output, were also calculated; the results show
the same sensitivity rankings comparing to results of total order Sobol′‘s sensitivity
indices.

The first order and total order Sobol′‘s sensitivity indices were computed when the ranges
changing from default variables in Table 1 were set to similar values (−10 % to 2 % for CN and
−10 % to 10 % for all of the other variables); results show that when estimating pollutant loads
without implementing practices, P was more sensitive than EMC; results indicate that when
estimating pollutant loads with practices, the sensitivity rankings of EMC and Ratio_c in
Table 2 switched due to using similar ranges changing from default variables. All other
sensitivity rankings were the same as using original ranges in Table 1 for variables.
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3.2 Uncertainty Analysis

Results of uncertainty analysis with 2.5 % threshold values, 97.5 % threshold values, width of
95 % confidence interval (CI), and results observed or from literature are shown in Table 3.
Distributions of samples for uncertainty analysis of the L-THIA-LID 2.1 model are shown in
Fig. 2. Figures 2(a) to (t) are results before implementing BMPs/LID practices. Figures 2(u)
and (v) are results after implementing lower level of BMPs/LID practices. Figures 2(w) and (x)
are results after implementing higher level of BMPs/LID practices.

Before implementing practices, the average observed runoff volume from the study area
was 2000 m3/ha/yr., which was included in the uncertainty ranges of 462 to 2183 m3/ha/yr.
simulated by the L-THIA-LID 2.1 model; TP loads of 0.20 to 1.80 kg/ha/yr. were found in
other studies for urban areas, which fell within the uncertainty range of 0.19 to 1.81 kg/ha/yr.;
O&G loads of 1.80 to 6.43 kg/ha/yr. were reported in other studies, which fell well within the
uncertainty ranges of 0.73 to 6.44 kg/ha/yr. in this study.

Before implementing practices, TN loads of 1.70 to 10.00 kg/ha/yr. were reported for other
urban watersheds, while uncertainty bounds of 0.58 to 4.98 kg/ha/yr. were found in this study;
TKN and NOx loads of 2.40–6.00 kg/ha/yr. and 0.83–3.90 kg/ha/yr., respectively were found
in other urban watersheds, while uncertainty ranges of 0.50–4.74 kg/ha/yr. and 0.17–1.60 kg/
ha/yr., respectively, were found in this study; TSS loads of 65 to 570 kg/ha/yr. were found in
previous studies, while uncertainty bounds of 17 to 149 kg/ha/yr. were found in this study.
Loads of Pb, Cu, Zn and Cr were found to be 2.0–30.0, 18.0–120.0, 17.0–360.0 and 9.8–
20.0 g/ha/yr., respectively, in urban areas of other studies, while uncertainty ranges of 3.3 to
29.3, 4.7 to 40.1, 34.4 to 349.9 and 1.2 to 12.0 g/ha/yr., respectively, were found in this study;
4.20E + 10 colonies/ha/yr. of FC was found, which was slightly lower than the uncertainty
bounds of 4.95E + 10 to 4.38E + 11 colonies/ha/yr.; 59.0 kg/ha/yr. of BOD was found, which
was slightly above the uncertainty range of 6.4 to 57.0 kg/ha/yr. No studies were found to
directly compare other uncertainty results in Table 3.

Table 3 shows that uncertainty bounds before implementing practices were relatively large.
Because of intensively simplifying natural processes, simple models, such as L-THIA-LID 2.1,
are likely to generate more uncertain outputs compared to complex models (Patil and Deng
2010). The ranges of variables used in Table 1 to estimate output uncertainty were relatively large,
which could be one reason for the relatively large output uncertainty bounds before implementing
practices in Table 3. Figures 2(a) to (t) show that before implementing practices, most model
outputs were smaller than mean values. This could be caused by the −20 % to 2 % change of CN
from default values used in the uncertainty analysis, which increased the number of smaller CN
values. The increased number of small CN values decreased the predicted runoff volume and in
turn decreased the predicted pollutant load values. Therefore, the skewness of the pre-set bounds
of the variables was likely the reason for the skewness of output distributions. This could be
another reason why uncertainty bounds before implementing practices were relatively large.

The effectiveness of BMPs and LID practices was evaluated using model output after
implementing practices, and the uncertainty ranges of model outputs were relatively small as
shown in Table 3. Figures 2(u) to (x) showed that after implementing practices, the distribu-
tions of outputs were more symmetric compared to results before implementing practices.
Figure 2 shows that relative predictions (outputs after implementing BMPs/LID practices)
changed the output distribution to a more symmetric shape compared to that of estimating
absolute results (outputs before implementing practices). Others found that uncertainty of
model outputs estimating absolute results were found to be relatively large due to limitations of
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data availability and the model itself; that is to say, models are more accurate when comparing
relative predictions instead of estimating absolute results (Benaman and Shoemaker 2004). In
this case, the more symmetric distribution shape would present less uncertainty and more
accurate results. The output uncertainty ranges of implementing higher levels of practices were
greater than those of implementing lower level practices; this was due to more uncertainties of
simulating additional practices in the model.

It should be noted that this work was conducted in a watershed with limited water quality
data, and only the output uncertainty of runoff volume was compared to observed data from
the same study area; all other output uncertainties in this study were compared to results of

Fig. 2 Distributions of samples for uncertainty analysis. (a) to (t) are results before implementing BMPs/LID
practices. (u) and (v) are results after implementing lower level of BMPs/LID practices. (w) and (x) are results
after implementing higher level of BMPs/LID practices
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other study areas. Without a substantial budget, it is not feasible to acquire watershed scale
runoff volume and water quality data before and after implementing BMPs and LID practices.
Additional insight into L-THIA-LID 2.1 model behavior could be obtained by analyzing
model uncertainty using watersheds with more water quality data.

4 Conclusions

The sensitivity and uncertainty of the L-THIA-LID 2.1 model in estimating hydrology
and water quality were analyzed in an urbanized watershed in central Indiana, USA

Fig. 2 (continued)
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using Sobol′‘s global sensitivity analysis method and bootstrap method, respectively.
When estimating runoff volume without implementing BMPs and LID practices, CN
was more sensitive than P. When computing pollutant loads without implementing
practices, the sensitivities were in the descending order of CN, EMC, and P. When
predicting runoff volume with different levels of practices implemented, the sensitiv-
ities were in the descending order of Ratio_r, CN and P. When modeling nonpoint
source pollutant loads with different levels of practices implemented, the sensitivities
were in the descending order of Ratio_r, EMC, IC, CN, Ratio_c, and P. Therefore,
when estimating runoff volume and pollutant loads for the case in which no practices

Fig. 2 (continued)
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were implemented, CN was the most sensitive variable and the most important
variable when calibrating the model before implementing practices. When predicting
water quantity and quality with practices implemented, Ratio_r was the most sensitive
variable and thus would be the most important variable when calibrating the model
for such conditions.

The relatively large output uncertainty bounds before implementing BMPs and LID
practices may be due to simplifying natural processes by the simple model, large
ranges (or uncertainty) for variables, and unsymmetrical changes (−20 % to 2 %) of
CNs from default values. The uncertainty ranges of model outputs after implementing
practices were relatively small, due to comparing relative predictions instead of
absolute values. Before implementing practices, average observed runoff volume was
well covered in the uncertainty ranges simulated by the L-THIA-LID 2.1 model. TP
and O&G loads from other urban watersheds fell well within the uncertainty ranges in
this study; TN, TKN, NOx, TSS, Pb, Cu, Zn, Cr, FC, and BOD loads from other
study areas were similar to the uncertainty bounds found in this study. This indicates
good precision of the model.

5 Appendix

Table 4 Default curve number values used in the L-THIA-LID 2.1 model

Land use or LID practice HSG A HSG B HSG C HSG D

Forest/Woods (F/W) 30 55 70 77

Agricultural (AG) 64 75 82 85

Grass/Pasture (G/P) 39 61 74 80

Water/Wetland (W/W) 0 0 0 0

Low density residential (LDR) 54 70 80 85

High density residential (HDR) 77 85 90 92

Industrial (INDU) 81 88 91 93

Commercial (COMM) 89 92 94 95

Driveway 98 98 98 98

Driveway with porous pavement 70 80 85 87

Sidewalk 98 98 98 98

Sidewalk with porous pavement 70 80 85 87

Street/Road 98 98 98 98

Street with porous pavement 70 80 85 87

Patio 95 95 95 95

Permeable patio 76 85 89 91

Parking lot 98 98 98 98

Parking lot with porous pavement 46 65 77 82

Roof 95 95 95 95

Green roof 85 85 85 85

Roof with rain barrel or cistern 85 85 85 85

Green roof with rain barrel or cistern 74 74 74 74

Sensitivity and uncertainty analysis of the L-THIA-LID 2.1 4943
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