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Abstract Streamflow forecasting and predicting are significant concern for several applica-
tions of water resources and management including flood management, determination of river
water potentials, environmental flow analysis, and agriculture and hydro-power generation.
Forecasting and predicting of monthly streamflows are investigated by using three heuristic
regression techniques, least square support vector regression (LSSVR), multivariate adaptive
regression splines (MARS) and M5 Model Tree (M5-Tree). Data from four different stations,
Besiri and Malabadi located in Turkey, Hit and Baghdad located in Iraq, are used in the
analysis. Cross validation method is employed in the applications. In the first stage of the
study, the heuristic regression models are compared with each other and multiple linear
regression (MLR) in forecasting one month ahead streamflow of each station, individually.
In the second stage, the models are evaluated and compared in predicting streamflow of one
station using data of nearby station. The research investigated also the influence of the
periodicity component (month number of the year) as an external sub-set in modeling long-
term streamflow. In both stages, the comparison results indicate that the LSSVR model
generally performs superior to the MARS, M5-Tree and MLR models. In addition, it is seen
that adding periodicity as input to the models significantly increase their accuracy in forecast-
ing and predicting monthly streamflows in both stages of the study.
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1 Introduction

Understanding the complicated phenomena of streamflow plays a significant part in water
resources management. More specifically, long-term streamflow forecasting (e.g., monthly
river flow) is greatly crucial for hydro-power generation, appropriate reservoir operation,
effective irrigation management decision and several other hydrological applications. Over
the past couple decades, streamflow modeling has received a massive attention by hundreds of
researchers. This is due to the fact that, the global climate changes have been influenced the
hydrologic cycle that caused numerous of flood and drought events. According to the
literature, river flow forecasting has been undertaken based on two main methodologies,
physical based models and conceptual based models “e.g., data-driven techniques”.
Physical models usually required more effort and various hydrological variables to
simulate the elemental physical processes of the watershed (Costabile et al. 2012). Whereas,
data-driven soft computing approaches have shown the capability to capture the non-linearity
relationship between the predictors and predicted without advance knowledge with less inputs
hydrological parameters (Ahmed and Sarma 2007; Afan et al. 2014; Singh and Cui 2015;
Tigkas et al. 2016).

Classically, black box time series models have been applied for streamflow forecasting
since 1970 by (Box and Jenkins). Based on the review researches, those parametric linear
models such as Moving Average (MA), Auto Regressive Integrated Moving Average
(ARIMA), and Multiple Linear Regression (MLR) have been used in almost all the hydro-
logical variables (Abrahart and See 2000; Maier and Dandy 2000; Abrahart et al. 2010;
Abrahart et al. 2012; Yaseen et al. 2015). However, they perform poorly in the conditions of
highly non-stationary and non-linear real problems. Since 1990, artificial intelligence methods
have been extensively utilized in a wide range of hydrological applications and more specif-
ically for streamflow forecasting, such as artificial neural network (ANN), support vector
machine (SVM), adaptive neuro fuzzy inference system (ANFIS), genetic algorithm (GA), and
gene expression programming (GEP) (Nourani et al. 2014; Yaseen et al. 2015).

Most recently, three data driven approaches have been gained a remarkable emerging and
potential in handling the complex nonlinear problems such as least square support vector
regression (LSSVR), multivariate adaptive regression splines (MARS) and M5 Model Tree.
Those forgoing approaches have been broadly used in solving hydrologic problems. LSSVR is
the modified version of support vector repression (SVR) that can exclude the quadratic
programming problems (Suykens and Vandewalle 1999). In addition, it avoids several
shortcomings of other data-driven learning processes (e.g., local minima, time consumption
and over-fitting) (Ji et al. 2014). LSSVR has received a positive successful application in the
engineering field; for instance, bearing raceway prediction (Tao et al. 2008), prediction of
effluent parameter of wastewater treatment plant (Huang et al. 2009), airframe wing-box
estimation (Deng and Yeh 2010), power system stabilization (Pahasa and Ngamroo 2011),
prediction of CO, in reservoir (Shokrollahi et al. 2013), oil recovery and economic analysis
(Kamari et al. 2014), and oil reservoir viscosity determination (Hemmati-Sarapardeh et al.
2014). In the hydrological context, there are a few studies have been conducted using LSSVR;
for example, evapotranspiration prediction (Guo et al. 2011; Kisi 2013), daily water demand
estimation (Hwang et al. 2012), sediment transport modeling (Kisi 2012), reservoir inflow
modeling (Okkan and Ali Serbes 2013), and water pollution prediction (Kisi and Parmar
2016), authors concluded the outperformance of the LSSVR over the other data-driven used in
their researches and recommended its applicability for other hydrological variables.
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Multivariate adaptive regression splines is a relatively modern artificial intelligence
approach that firstly proposed by (Friedman 1991). The main advantages of this
method are the capacity to capture the natural complication of the data mapping in
high-dimensional data patterns, quick and flexible model, and perform the forecasting
of continuous and binary output variables accurately. In addition, this nonparametric
statistical method is a flexible procedure that organize the relationship between the
inputs and output variables with less including variable interactions (Leathwick et al. 2006).
Previous studies of the MARS algorithm in water resources application include rainfall and
temperature forecasting, sediment concentration estimation, water pollution prediction, fresh-
water distribution system modeling, and drought events river flow simulation (Sarangi and
Bhattacharya 2005; Leathwick et al. 2006; Sotomayor 2010; Adamowski et al. 2012;
Shortridge et al. 2015). Thus, in the current research, the best knowledge of the authors is to
introduce the multivariate adaptive regression splines approach for forecasting and predicting
monthly streamflow.

Another new data-driven technique is M5 Model tree. M5 model tree is a data mining
approach that splits the data time series into subspace using divide-and-conquer method, which
makes it possible to divide the multi-dimensional parameter space and generate the model
automatically based on the overall quality criterion (Quinlan 1992). Recently, scholars
researched the utility of the M5 model tree in different hydrological applications such as water
level optimization (Bhattacharya and Solomatine 2005), precipitation-river flow modeling
(Solomatine and Dulal 2003), evapotranspiration prediction (Pal and Deswal 2009), flood
events forecasting (Solomatine and Xue 2004), and sedimentation estimation (Sarangi and
Bhattacharya 2005). Those are a few studies effectively accomplished in the water resources
sector using M5 model tree.

For the best knowledge of the authors, the major objectives of the current research
are (i) investigate three different modern heuristic regression approaches (i.e., LSSVR,
MARS and M5 model tree) for modeling long-term streamflow, (ii) compare their
performance with one classical method such as MLR, (iii) in order to demonstrate the
effectiveness, four rivers placed in two different region namely, Batman and Garzan
Rivers located in Turkey, Euphrates and Tigris Rivers located in Iraq, have been used
to perform the proposed models. In the first phase of the study, streamflow forecast-
ing is demonstrated based on the same river flow data for the same river. Whereas the
second phase, streamflow prediction is conducted for specific stream based on the nearby
stream. Furthermore, the influence of periodicity on the forecasting and predicting performance
was examined.

2 Theoretical Overview
2.1 Least Square Support Vector Regression

LSSVR is the extended version of support vector regression (SVR) model, modified by
(Suykens and Vandewalle 1999). Based on the literature, the major drawback of SVR is time
consumption that overcame by the improved version of LSSVR via excluding the quadratic
programming problem. This enhancement would avoid several limitations (e.g., the local
minima, the over-fitting problem). In addition, it may produce a stable solution to crack the
quadratic programming problems (Xie et al. 2013; Ji et al. 2014). Statistically, the main
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principle knowledge of LSSVR is to accomplish the optimum mapping function between the
inputs x and the output y. This process is conducted through non-linear relationship function
with high-dimensional feature space. To attain the optimal solution, regression model into the
high-dimensional feature space was developed to capture the non-linear regression function.
Regression function can be formulated as follows:

y(x) = wlo(x) +b (1)

where y is the obtained value in terms of x, w is the coefficient vector, ¢ is the mapping
function, b is the bias term achieved by the minimizing the upper bound of the generalization
error. According to the standard of minimizing the regularized risk, the regression function of
LSSVR (Suykens and Vandewalle 1999) can be well-defined as:

1
1o 1 2
min > w W—I—E’y; &) (2)
That subject to the following constraints

y=wox)+b+&i=12,..1 (3)

Where 7 is the regularization parameter which is control the minimization of the forecasting
or prediction error and the function smoothness, while £ is the training error for the inputs (x;).

At this point, Lagrange Multiplier is utilized to derive solution for w and £ using formula
(2). The objective function obtained by changing the constraint problem into an unconstraint
problem. The Lagrange function L written as follows:

1
L(w,b, &, «) = J(w, &) Z i) +b+ &y} (4)

where a; presents Lagrange Multipliers.
The Lagrangian theorem and Karush-Kuhn-Tucker (KK T) condition permit (Fletcher 1987)
to achieve the following function:

|
Z K(x,xi) +b (5)

K(x) denotes the kernel function that satisfies Mercer’s conditions; K(x, x;) = (¢(x) . @(x;))
that eliminate vector dot product operation in some feature space.

In the current research, radial basis function (kernel function) was used to in the regression
solution. The formula can be defined as:

K(x,xi) =¢ 22 (6)

There are two parameters used for tuning LSSVR model, which are v and o°
(Cao et al. 2008). The current state-of-the-art of the authors is the utilization of
LSSVR for streamflow forecasting and prediction. This is relying on the robustness
of LSSVR model against the chaotic disturbances, complex non-linear and random-
ness problems. Furthermore, it’s utility to reduce the soft computing efforts compar-
atively to the classical approaches.
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2.2 Multivariate Adaptive Regression Splines

MARS is a nonparametric regression model that was initially proposed by (Friedman 1991),
which is utilized to forecast continuous numeric outcomes. The main feature of
MARS algorithm is the forward and backward stepwise procedure that can controls
and explains the complex nonlinear mapping between the inputs and output variables.
The advantage of the backward stepwise procedure is to remove the unnecessary input
candidates from the previous selected data set in order to enhance the forecasting
accuracy. This function forecasts the new output Y according to the input variable X using either
of the two basis functions, using a knot or value of variable that defines the inflection point
along the inputs range (Sharda et al. 2006):

Y = max(0,X—c) (7)

Y = max(0,c—X) (8)

where the ¢ parameter indicates the threshold value. There are two adjacent splines intersect at
a knot, in order to maintain the continuity of the basis functions. The function is used
in the forward and backward stepwise procedure to each input parameter is to identify
the precise location of knots where the function value changes. Great to mention,
MARS model is a data-driven process that gained popularity in time series analysis,
most recently. In addition, it is even better to explore its capability to enhance river
flow forecast models. Authors recommend the following references for the reader to
refer for more comprehensive details of MARS model (Friedman 1991; Sharda et al. 2008;
Zhang and Goh 2014).

2.3 M5 Model Tree

The complex time series problems can be comprehended by splitting the time space
into a number of sub time space and build each category individually using linear
regression model. M5 model tree algorithm is one of the new data mining method
that divide the data space into smaller sub-spaces using divide and conquer procedure
(Quinlan 1992). The fundamental concept of this model is the binary decision tree.
The partition procedure follows the idea of a decision tree that has a regression

First Stage Second Stage

Subset (1,

Splitting 2,...n)

&

W Linear regression
] function

Fig. 1 The two stages of M5 model tree
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Fig. 2 a The Large basins of Turkey and The Malabadi (2612), Besiri (2603) stations, b Hit and Baghdad
stations which are located in Iraq region

function, which is able to forecast continuous numerical attribution. As shown in
Fig. 1, M5 model tree perform its algorithm based on two stages, at the first stage
time series data are divided into subset in order to initiate the decision tree. The
splitting criterion for this model is relying on the standard deviation of the class
values that reach a node as an amount of error at that node. Then after, computing the
expected reduction in this error as a result of testing each attribute at that node
(Solomatine and Dulal 2003; Pal and Deswal 2009). Now, the equation that compute
the standard deviation reduction (SDR) can be expressed as:

[Ki|

SDR = sd(K)-3 ", sd(Ki) )

(K]

The variables of the SDR formula explained are as follows; (i) sd represents the standard
deviation, (ii) K denotes a set of examples that reaches the node, and (iii) the subset of
examples that have the ith outcome of the potential set is represented as Ki. In the partition
procedure, the first generation (child) nodes are less than the origin node in data’s standard
deviation. As final step in first stage, M5 selects the split that maximizes the envisioned error
reduction. Nevertheless, this separation usually produces a large diagram (tree) structure that
need to be pruned subtrees using linear regression functions, which is representing the second
stage of M5 modeling.

2.4 Multiple Linear Regression

There are several engineering applications involve exploring the relationship between
two or more parameters. Regression analysis model is one of the popular statistical
approach that is highly recommended for these kind of problems. Throughout the
literature, streamflow forecasting has been undertaken using MLR model, due to the
fact that this model comprises many regressors to deal with the time series data base.
Theoretically, the relationship between the dependent variable (Y) “i.e., one-step-ahead
streamflow” and the independent variables (Xi) “i.e., the preceding streamflow records” can be
described as followed:

Y =P, + P1 X +PoX5 + - + P X, (10)

Where Y is the target output, P; (i=0,. ..., n) are the regression coefficients, and Xi (i=0,...., n)
are the input variables.

2.5 Model Performance Indicators

Hydrological applications usually are evaluated based on quantitative indicators. Legates and
McCabe (1999) stated in their study that predictive models in the scope of hydrology
recommended to be examined using “goodness-of-fit” for example determination coefficient
(R) and minimum one of absolute error performance criteria (e.g., mean absolute error (MAE)
and root mean square error (RMSE)). Thus, the proposed data-driven models were evaluated

@ Springer



4132

Z.M. Yaseen et al.

with respect to RMSE, MAE and R for each input combination. The statistic measure RMSE
and MAE are formulated as follows:

R

RMSE =

MAE =

N <

|Q07Qf|

i=1

>l(e-2)(e-2)]

Yl(ee)y (o0

(13)

where N is the number of the raw streamflow data, Q,, is the actual (observed) flow values and
Oy is the model output.

3 Cases Studies and Data Preparation

3.1 Turkey Region

Average monthly intermittent streamflow data of two stations in the East-Anatolia
region located in Southeast Turkey were used. The location of the stations was

Table 1 The monthly statistical parameters of data set for Besiri, Malabadi, Hit, Baghdad stations

Stations  Data set Xmean (°/8)  SX (M%/5)  Csx (0/5) Xppin (M%/S)  Xipax (M/5) 11 2 3
Besiri 1991-1999 55.93 68.78 1.66 2.5 306 0.658 0.189 -0.050
1982-1990 42.39 52.25 1.94 2.0 284.4 0.633 0.170 -0.134
1973-1981 47.66 63.37 227 1.0 354 0.623 0.183 -0.038
1964-1972  68.68 137.68 439 0.1 964 0.745 0.370 0.155
Malabadi 1991-1999 134.18 142.21 1.21 5.1 568.6 0.681 0.253 -0.057
1982-1990 120.58 127.95 1.17 0.2 519.7 0.712 0.270 -0.080
1973-1981 126.10 132.49 1.19 1.2 5339 0.661 0.280 0.022
1964-1972 136.64 158.52 1.46 0.15 608 0.679 0.1655 -0.190
Hit 1989-1997 1146.42 1137.79 1.87 85.7 5797 0.702 0.270 -0.010
1980-1988 680.32 546.43 1.85 71.50 3212 0.648 0.249 -0.020
1970-1989 725.44 291.52 1.35 244.80 1987 0.693 0.414 0.190
1960-1969 448.08 297.85 1.26 152.30 1442 0.620 0.339 0.121
Baghdad 1996-2005 1085.61 718.76  0.94 334.50 2865 0.756 0.322  -0.060
1987-1995 816.37 422.55 1.45 292.70 2275 0.776 0.415 0.055
1977-1986 855.89 446.89 191 379 2651 0.832 0.656 0.451
1968-1976  597.50 196.65 1.05 331.40 1386 0.798 0.600 0.460
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Table 2 Regularization constant and width of RBF kernel parameters of the optimal LSSVR models for each
combination Besiri, Malabadi, Hit and Baghdad stations

Cross validation Training data set Test data set Input combination
@ (i) (iii)
Besiri
Ml 1964-1981 1991-1999 (3,100) (100,32) (10,29)
M2 1964-1972 and 1991-1999 1982-1990 (100,5) (L) (11,2)
M3 1964-1972 and 1982-1999 1973-1981 (60,5) (100,6) 2,2)
M4 1973-1999 1964-1972 (93,3) (86,10) (100,4)
Malabadi
Ml 1964-1981 1991-1999 (100,29) 4.,5) (5,6)
M2 1964-1972 and 1991-1999 1982-1990 (100,3) (1,2) (1,2)
M3 1964-1972 and 1982-1999 1973-1981 (76,100) (100,18) (100,22)
M4 1973-1999 1964-1972 (72,4) (100,10) (100,10)
Hit
Ml 1960-1980 1989-1997 (7,11) (2,26) (15,100)
M2 1960-1970 and 1989-1997 1980-1988 (4,100) (2,89) (2,100)
M3 1960-1969 and 1980-1997 1970-1989 (2,100) (3,100) (3,100)
M4 1970-1997 1960-1969 (49,18) (100,61) (2,100)
Baghdad
Ml 1968-1987 1996-2005 (65,24) 4,11) (90,100)
M2 1968-1977 and 1996-2005 1987-1995 (16,100) (5,100) (5,100)
M3 1968-1976 and 1987-2005 1977-1986 (1,1) (1,2) (28,100)
M4 1970-2005 1968-1976 3,1) 5.4 (43,82)

illustrated in Fig. 2a. In this study, the Besiri Station (Station No: 2603) on the
Garzan Stream and Malabadi Station (Station No: 2612) on the Batman Stream, in the
Firat-Dicle Basin of Turkey were used. The drainage areas at these sites are 2450 km?
for Besiri and 4105 km? for Malabadi. In Turkey, the first largest basin is Firat (basin
number 21) with an approximately 127,000 km? of land zone. Dicle Basin (basin
number 26) is the third largest basin with an almost 57,000 km? of land zone. Rely
on basin land area, the Firat basin is the largest, with a total yearly flow volume
approximately 32 billion m®. The second one is Dicle Basin, with approximately 25
billion m® (Kaygusuz 1999; Demirbas and Bakis 2003). Streamflow forecasting for
this region is very important for many of the activities such as flood mitigation,
management of water reservoirs, distribution of drinking water and management of water
infrastructures and dam planning etc. The observed data are 35 years (420 months) long with
an observation period between 1964 and 1999 for mentioned stations. The observed data were
obtained from the report of the Turkish General Directorate of Electrical Power Resources
Survey and Development Administration.

3.2 Iraq Region

Another two stations were selected to apply in this study which are Hit station on the Euphrates
River and Baghdad station on Tigris River in Iraq region, as shown in Fig. 2b. Hit and
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Table 3 Comparison of LSSVR models

Statistics Cross validation Test data set Input combinations
(1) (i) (iii) Mean
Besiri
RMSE Ml 1991-1999 109.21 104.78 37.02 83.67
M2 1982-1990 48.32 45.74 43.78 45.95
M3 1973-1981 39.10 33.11 32.67 34.96
M4 1964-1972 49.03 42.96 42.18 44.72
Mean 61.42 56.65 38.91 52.33
MAE Ml 1991-1999 50.75 4321 23.85 39.27
M2 1982-1990 31.15 30.28 27.14 29.52
M3 1973-1981 25.54 20.12 20.36 22.01
M4 1964-1972 32.53 2791 26.90 29.11
Mean 34.99 30.38 24.56 29.98
R M1 1991-1999 0.702 0.711 0.796 0.736
M2 1982-1990 0.653 0.715 0.738 0.702
M3 1973-1981 0.672 0.784 0.785 0.747
M4 1964-1972 0.698 0.782 0.800 0.760
Mean 0.681 0.748 0.780 0.736
Malabadi
RMSE Ml 1991-1999 111.84 86.85 85.15 94.61
M2 1982-1990 95.45 91.58 91.41 92.81
M3 1973-1981 88.33 74.35 74.11 78.93
M4 1964-1972 100.40 88.10 84.03 90.84
Mean 99.01 85.22 83.68 89.30
MAE Ml 1991-1999 77.14 59.54 56.64 64.44
M2 1982-1990 67.93 62.05 62.87 64.28
M3 1973-1981 65.01 51.23 51.20 55.81
M4 1964-1972 74.39 61.67 56.36 64.14
Mean 71.12 58.62 56.77 62.17
R Ml 1991-1999 0.710 0.850 0.859 0.806
M2 1982-1990 0.696 0.740 0.731 0.722
M3 1973-1981 0.721 0.814 0.817 0.784
M4 1964-1972 0.704 0.782 0.805 0.764
Mean 0.708 0.796 0.803 0.769
Hit
RMSE Ml 1989-1997 268.79 292.52 296.26 285.86
M2 1980-1988 210.42 211.25 212.42 211.36
M3 1970-1989 415.14 404.69 405.75 408.53
M4 1960-1969 842.02 859.47 906.45 869.31
Mean 434.09 441.98 455.22 443.77
MAE Ml 1989-1997 198.06 226.40 227.85 217.44
M2 1980-1988 138.39 142.05 144.84 141.76
M3 1970-1989 286.02 274.95 273.95 278.31
M4 1960-1969 520.63 468.67 509.31 499.54
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Table 3 (continued)

Statistics Cross validation Test data set Input combinations
(i) (i) (iii) Mean
Mean 285.78 278.02 288.99 284.26
R Ml 1989-1997 0.616 0.624 0.628 0.623
M2 1980-1988 0.694 0.699 0.701 0.698
M3 1970-1989 0.649 0.679 0.679 0.669
M4 1960-1969 0.711 0.790 0.803 0.768
Mean 0.667 0.698 0.703 0.689
Baghdad
RMSE M1 1996-2005 137.14 164.05 173.92 158.37
M2 1987-1995 248.34 253.19 252.92 251.48
M3 1977-1986 264.16 233.92 235.42 244.50
M4 1968-1976 467.32 411.36 414.09 430.92
Mean 279.24 265.63 269.09 271.32
MAE Ml 1996-2005 110.21 132.92 143.77 128.97
M2 1987-1995 152.47 168.38 174.29 165.05
M3 1977-1986 199.32 170.68 173.68 181.23
M4 1968-1976 346.36 291.36 282.81 306.84
Mean 202.09 190.84 193.64 195.52
R Ml 1996-2005 0.799 0.786 0.785 0.790
M2 1987-1995 0.831 0.828 0.831 0.830
M3 1977-1986 0.782 0.840 0.832 0.818
M4 1968-1976 0.764 0.822 0.822 0.803
Mean 0.794 0.819 0.818 0.810

Baghdad stations are covered a drainage area approximately 264,100 km* and 134,000 km?,
respectively. The geographic position of the Hit and Baghdad stations areas are stretched
between (33° 36' 23") N Latitude and (42° 50' 14") E Longitude, (33° 24' 34") N Latitude and
(44° 20" 32") E Longitude. Euphrates and Tigris Rivers are the essential source of fresh water,
socioeconomic development and the political stabilization in this region. Developing such
accurate forecasting and predicting river flow modeling in particular long-term (e.g., monthly
streamflow) are significantly important to provide a considerable economic benefit, improve
the irrigation sector, and solve the water shortage problems. The monthly streamflow data
records 38 years (456 months) between (1960-1997) for Hit and Baghdad stations between
(1968-2005) were used for this application. The hydrological data were obtained from the
descriptive research that was conducted by Saleh (2010).

3.3 Data Time Series Preparation

For all presented stations, streamflow data time series were splitted into four training/testing
divisions in order to achieve the best effective model formulation. For both of the applications
forecasting and predicting, three divisions of the data were utilized to train the models, while
the fourth was used to validate (test) the models network. The testing data phase was changed
in all application; therefore, four different scenarios were investigated. Table 1
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Table 4 Comparison of MARS models

Statistics Cross validation Test data set Input combinations
(i) (i) (iii) Mean
Besiri
RMSE Ml 1991-1999 93.28 86.96 86.26 88.83
M2 1982-1990 50.80 51.49 51.42 51.24
M3 1973-1981 41.20 38.24 33.93 37.79
M4 1964-1972 48.67 40.51 42.82 44.00
Mean 58.49 54.30 53.61 55.47
MAE M1 1991-1999 44.13 38.48 37.83 40.15
M2 1982-1990 32.19 31.81 30.91 31.64
M3 1973-1981 26.46 24.28 20.48 23.74
M4 1964-1972 32.65 26.19 27.41 28.75
Mean 33.86 30.19 29.16 31.07
R M1 1991-1999 0.750 0.778 0.782 0.770
M2 1982-1990 0.643 0.677 0.677 0.666
M3 1973-1981 0.627 0.718 0.775 0.707
M4 1964-1972 0.704 0.808 0.782 0.764
Mean 0.681 0.745 0.754 0.727
Malabadi
RMSE Ml 1991-1999 119.08 91.39 88.67 99.71
M2 1982-1990 95.11 93.84 93.87 94.27
M3 1973-1981 94.03 76.07 77.92 82.67
M4 1964-1972 101.74 90.39 89.83 93.99
Mean 102.49 87.92 87.57 92.66
MAE Ml 1991-1999 81.20 61.89 59.59 67.56
M2 1982-1990 67.53 61.41 62.16 63.70
M3 1973-1981 66.65 52.37 49.62 56.21
M4 1964-1972 75.88 63.37 63.01 67.42
Mean 72.82 59.76 58.60 63.72
R Ml 1991-1999 0.662 0.817 0.828 0.769
M2 1982-1990 0.700 0.729 0.722 0.717
M3 1973-1981 0.684 0.806 0.798 0.763
M4 1964-1972 0.695 0.769 0.773 0.746
Mean 0.685 0.780 0.780 0.749
Hit
RMSE M1 1989-1997 284.23 313.96 313.96 304.05
M2 1980-1988 231.63 251.35 251.16 244.71
M3 1970-1989 473.50 450.58 436.41 453.50
M4 1960-1969 862.64 828.14 847.49 846.09
Mean 463.00 461.01 462.26 462.09
MAE Ml 1989-1997 186.00 198.59 198.59 194.39
M2 1980-1988 151.04 177.77 177.71 168.84
M3 1970-1989 308.61 294.17 273.88 292.22
M4 1960-1969 546.92 470.54 470.39 495.95
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Table 4 (continued)

Statistics Cross validation Test data set Input combinations
(i) (i) (iii) Mean
Mean 298.14 285.27 280.14 287.85
R M1 1989-1997 0.643 0.653 0.653 0.649
M2 1980-1988 0.633 0.683 0.683 0.667
M3 1970-1989 0.598 0.653 0.689 0.647
M4 1960-1969 0.685 0.804 0.794 0.761
Mean 0.640 0.698 0.705 0.681
Baghdad
RMSE Ml 1996-2005 141.68 178.06 181.27 167.00
M2 1987-1995 26221 293.01 289.85 281.69
M3 1977-1986 276.86 259.60 260.68 265.71
M4 1968-1976 475.92 420.44 47741 457.92
Mean 289.17 287.78 302.30 293.08
MAE Ml 1996-2005 109.14 136.025 139.92 128.36
M2 1987-1995 160.54 192.85 187.72 180.37
M3 1977-1986 204.16 180.68 183.51 189.45
M4 1968-1976 351.54 286.66 320.19 319.46
Mean 24.38 23.98 24.97 204.41
R Ml 1996-2005 0.805 0.802 0.808 0.805
M2 1987-1995 0.814 0.774 0.781 0.790
M3 1977-1986 0.763 0.826 0.826 0.805
M4 1968-1976 0.756 0.819 0.796 0.790
Mean 0.784 0.806 0.803 0.798

indicated the statistical characteristics of each data set used in this study for all
stations. Those statistical indicators included over all mean (X, ,can), standard deviation (Sx),
minimum and maximum flow records (X,;, and X,ax), skewness (Csx), and the antecedent
values of auto-correlation coefficient.

4 Application and Analysis

The effectiveness of the proposed artificial intelligence approaches were examined upon actual
streamflow data obtained from official organizations authorized for monitoring such river
flows. In the first part of the current study, it was decided to prove the efficiency of the
LSSVR, MARS and M5-Tree models to forecast one month ahead streamflow and compare
the results with MLR model. In addition, the effect of the periodic time scale on the forecasting
results was also explored. Whereas, the second part of the study is to investigate the
applicability of the data-driven to predict monthly streamflow using inflow time series data
belonging to the nearby river. Different input combinations based on the present and anteced-
ent streamflow were used to model the forecasting and prediction. In other words, Q, indicates
the streamflow at time t, the input variables are; (i) Qy, (i) Qy, Qc1, (iii) Q;, Q1 and Q. This
application section provides a comprehensive detailed discussion and analysis of the proposed
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Table 5 Comparison of M5-Tree models

Statistics Cross validation Test data set Input combinations
(1) (i) (iii) Mean
Besiri
RMSE Ml 1991-1999 109.14 123.09 124.66 118.96
M2 1982-1990 49.81 54.24 57.70 53.92
M3 1973-1981 42.86 42.97 43.83 43.22
M4 1964-1972 52.77 52.04 52.64 52.48
Mean 63.65 68.09 69.71 67.15
MAE Ml 1991-1999 45.18 43.90 45.87 44.98
M2 1982-1990 3231 29.35 30.14 30.60
M3 1973-1981 28.45 23.88 23.79 25.37
M4 1964-1972 34.73 31.38 31.23 32.45
Mean 35.17 32.13 32.76 33.35
R M1 1991-1999 0.666 0.467 0.462 0.532
M2 1982-1990 0.649 0.729 0.657 0.678
M3 1973-1981 0.620 0.708 0.704 0.678
M4 1964-1972 0.650 0.697 0.688 0.678
Mean 0.646 0.650 0.628 0.641
Malabadi
RMSE Ml 1991-1999 120.55 99.06 111.92 105.56
M2 1982-1990 105.79 103.25 107.65 100.39
M3 1973-1981 95.81 89.40 115.97 161.87
M4 1964-1972 287.70 9743 100.49 119.59
Mean 152.46 97.29 109.01 73.57
MAE Ml 1991-1999 81.16 68.01 71.55 69.97
M2 1982-1990 76.14 67.54 66.24 66.11
M3 1973-1981 69.08 54.97 74.28 104.81
M4 1964-1972 192.03 62.23 60.16 78.62
Mean 104.60 63.19 68.06 79.87
R Ml 1991-1999 0.647 0.778 0.706 0.710
M2 1982-1990 0.651 0.705 0.639 0.665
M3 1973-1981 0.677 0.736 0.628 0.680
M4 1964-1972 0.590 0.730 0.716 0.679
Mean 0.641 0.737 0.672 0.684
Hit
RMSE Ml 1989-1997 287.70 412.05 405.92 368.56
M2 1980-1988 319.24 334.48 352.34 335.35
M3 1970-1989 473.50 478.36 538.34 496.73
M4 1960-1969 860.22 829.50 859.90 742.69
Mean 485.17 513.60 458.74 485.83
MAE Ml 1989-1997 192.03 257.84 264.82 238.23
M2 1980-1988 233.0 241.88 257.68 244.19
M3 1970-1989 308.61 309.75 325.10 314.49
M4 1960-1969 525.87 477.71 510.56 343.09
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Table 5 (continued)

Statistics Cross validation Test data set Input combinations
(1) (i) (iii) Mean
Mean 314.88 321.80 218.33 285.00
R Ml 1989-1997 0.590 0.513 0.531 0.545
M2 1980-1988 0.462 0.490 0.431 0.461
M3 1970-1989 0.598 0.634 0.574 0.602
M4 1960-1969 0.713 0.788 0.763 0.769
Mean 0.591 0.606 0.586 0.594
Baghdad
RMSE Ml 1996-2005 161.54 208.59 225.09 198.41
M2 1987-1995 279.48 340.39 366.44 328.77
M3 1977-1986 300.78 307.99 333.92 314.23
M4 1968-1976 480.81 459.73 451.24 463.93
Mean 305.65 329.18 344.17 326.33
MAE Ml 1996-2005 123.50 156.57 172.98 151.01
M2 1987-1995 177.08 219.42 239.74 212.08
M3 1977-1986 217.63 21131 237.78 222.24
M4 1968-1976 353.89 329.70 319.32 334.30
Mean 218.02 229.25 24245 229.90
R Ml 1996-2005 0.767 0.697 0.681 0.715
M2 1987-1995 0.800 0.716 0.689 0.735
M3 1977-1986 0.756 0.788 0.763 0.769
M4 1968-1976 0.755 0.783 0.790 0.776
Mean 0.770 0.746 0.731 0.749

methods. It should be remarked that the utilized river flow data for all rivers are continuous and
do not experience any missing monitoring events data during the examination period.

4.1 Streamflow Forecasting

As mentioned in the previous section, the first scenario was undertaken to forecast monthly
streamflow. For the purpose of how the statistical analysis will generalize an independent data
set, each input combination was cross validated by partitioning the time series data into four
sets. By recalling the main parameters of LSSVR model, different regularization constant and
width of radial basis function kernel were tried to obtain the minimum RMSE indicator. Table 2
displayed the optimal LSSVR parameters models of each input combination for the testing
phase. Tables 3, 4, 5, and 6 indicated the testing phase outcomes using LSSVR, MARS, M5
model tree and MLR models for the all stations (Besiri, Malabadi, Hit and Baghdad). According
to the mean values of the performance indicators (e.g., RMSE and MAE) of the modeling, there
is a remarkable difference can be observed in the results, which are the values of the root mean
square error and mean absolute error. The Turkish rivers modeling showed low percentages of
RMSE and MAE comparing the Iraq Rivers. This is due to the mean average flow of the rivers,
Garzan and Batman Rivers are characterized by mean river flow 53.66 and 129.37 m?s,
respectively. While Euphrates and Tigris rivers are 750.06 and 838.84 m?/s, respectively.
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Table 6 Comparison of MLR models

Statistics Cross validation Test data set Input combinations
(i) (i) (iii) Mean
Besiri
RMSE Ml 1991-1999 92.68 85.95 82.54 87.06
M2 1982-1990 51.39 50.3 49.81 50.50
M3 1973-1981 42.05 40.48 40.9 41.14
M4 1964-1972 53.58 50.5 49.12 51.07
Mean 59.93 56.81 55.59 57.44
MAE M1 1991-1999 46.08 40.85 41.01 42.65
M2 1982-1990 31.09 29.53 29.2 29.94
M3 1973-1981 25.56 22.6 23.38 23.85
M4 1964-1972 32.58 30.14 30.98 31.23
Mean 33.83 30.78 31.14 31.92
R M1 1991-1999 0.745 0.790 0.805 0.780
M2 1982-1990 0.623 0.672 0.671 0.655
M3 1973-1981 0.633 0.691 0.673 0.666
M4 1964-1972 0.658 0.721 0.727 0.702
Mean 0.665 0.718 0.719 0.701
Malabadi
RMSE Ml 1991-1999 120.37 109.27 107.63 112.42
M2 1982-1990 103.56 103.75 103.53 103.61
M3 1973-1981 93.14 86.57 86.18 88.63
M4 1964-1972 107.95 103.67 103.19 104.94
Mean 106.26 100.82 100.13 102.40
MAE Ml 1991-1999 79.76 71.82 70.81 74.13
M2 1982-1990 71.82 67.72 67.3 68.95
M3 1973-1981 63.25 54.85 55.07 57.72
M4 1964-1972 71.36 68.57 69.28 69.74
Mean 24.38 23.98 24.97 67.63
R Ml 1991-1999 0.679 0.755 0.758 0.731
M2 1982-1990 0.656 0.691 0.686 0.678
M3 1973-1981 0.712 0.771 0.767 0.750
M4 1964-1972 0.680 0.731 0.726 0.713
Mean 0.682 0.737 0.734 0.718
Hit
RMSE M1 1989-1997 252.165 264.00 267.60 250.88
M2 1980-1988 240.01 258.76 253.86 250.87
M3 1970-1989 440.96 440.01 438.94 439.97
M4 1960-1969 844.34 829.62 819.43 831.13
Mean 444.37 448.10 444.96 443.21
MAE Ml 1989-1997 163.13 178.44 177.19 172.92
M2 1980-1988 161.27 181.30 175.42 172.66
M3 1970-1989 280.20 284.61 280.55 281.79
M4 1960-1969 566.78 548.52 557.18 557.49
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Table 6 (continued)

Statistics Cross validation Test data set Input combinations
(i) (i) (iii) Mean
Mean 292.85 298.22 297.59 296.21
R M1 1989-1997 0.620 0.621 0.597 0.613
M2 1980-1988 0.693 0.694 0.673 0.686
M3 1970-1989 0.648 0.680 0.668 0.665
M4 1960-1969 0.701 0.716 0.716 0.711
Mean 0.665 0.678 0.663 0.669
Baghdad
RMSE Ml 1996-2005 127.18 139.63 139.23 135.35
M2 1987-1995 257.48 274.15 253.86 261.83
M3 1977-1986 277.86 262.05 260.41 266.77
M4 1968-1976 492.59 462.63 819.43 591.55
Mean 288.78 284.62 368.23 313.88
MAE Ml 1996-2005 93.81 102.17 101.15 99.04
M2 1987-1995 150.21 173.30 175.42 166.31
M3 1977-1986 204.08 185.79 18233 190.73
M4 1968-1976 359.54 322.89 557.18 413.20
Mean 201.91 196.04 254.02 217.32
R Ml 1996-2005 0.797 0.788 0.780 0.788
M2 1987-1995 0.832 0.827 0.673 0.778
M3 1977-1986 0.777 0.820 0.815 0.804
M4 1968-1976 0.756 0.794 0.716 0.755
Mean 0.791 0.807 0.746 0.781

Based on the mean performance of RMSE and MAE, Tables 3, 4, and 5) exhibited M3 as
the best data set to forecast one month ahead for Besiri and Malabadi stations. This might be
because M3 data set provides a knowledgeable pattern of flow in the training and testing
phases of the models that could perform very well comparing to the other data sets. On the
other hand, the worst data set was M1 for LSSVR, MARS and M5 model tree for all the
investigated inputs combination. This can be expounded that LSSVR, MARS and M5 model
tree could not explore the nature of the streamflow of the M1 data set in the training and testing
periods. However, LSSVR results outperformed MARS and M5-Tree models and the out-
standing outcome presented for M3 data set period for the input combination (iii). The optimal
LSSVR model (M3 data set and input iii) increased the RMSE accuracy of the optimal MARS
and MS5-Tree models by 3.9 and 31.2 % for the Besiri and by 2.6 and 20.6 % for the Malabadi
stations, respectively. It should be noted that there is also a significant difference between
MARS and M5-Tree for the both stations. Euphrates and Tigris Rivers modeling were totally
different with obvious fluctuation of the best performance results. The consistency of the Iraq
rivers region modeling conclusion was diverse, various data sets with different inputs combi-
nation performed the remarkable results of the used intelligence approaches. Hit station
modeling showed the best accuracy belonging to M2 with one lag time for the LSSVR and
MARS models, while M5 model tree demonstrated the best results for the M1 with one lag as
well (the input combination (i)). Baghdad station obtained its best application using the first
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Table 7 Comparison of the P-LSSVR models

Statistics Cross validation Test data set Input combinations
(1) (i) (iii) Mean
Besiri
RMSE Ml 1991-1999 95.82 96.34 30.27 74.14
M2 1982-1990 34.26 35.24 37.02 35.51
M3 1973-1981 23.18 22.88 22.03 22.70
M4 1964-1972 35.30 35.82 33.65 34.92
Mean 47.14 47.57 30.74 41.82
MAE Ml 1991-1999 39.52 38.89 19.74 32.72
M2 1982-1990 22.02 2323 24.19 23.15
M3 1973-1981 13.46 13.76 13.01 1341
M4 1964-1972 22.80 23.29 22.31 22.80
Mean 2445 24.79 19.81 23.02
R M1 1991-1999 0.781 0.768 0.869 0.806
M2 1982-1990 0.846 0.838 0.823 0.836
M3 1973-1981 0.902 0.903 0.909 0.905
M4 1964-1972 0.857 0.852 0.871 0.860
Mean 0.846 0.840 0.868 0.852
Malabadi
RMSE Ml 1991-1999 59.55 7748 64.07 67.03
M2 1982-1990 69.42 53.11 74.56 65.70
M3 1973-1981 57.16 57.54 59.52 58.07
M4 1964-1972 62.25 63.72 65.32 63.76
Mean 62.10 62.96 65.87 63.64
MAE Ml 1991-1999 38.80 49.19 43.51 43.83
M2 1982-1990 44.61 33.12 49.52 42.42
M3 1973-1981 37.81 38.65 41.20 39.22
M4 1964-1972 38.53 38.57 40.18 39.09
Mean 39.94 39.88 43.60 41.14
R Ml 1991-1999 0.932 0.888 0.920 0.913
M2 1982-1990 0.863 0.935 0.832 0.877
M3 1973-1981 0.898 0.896 0.888 0.894
M4 1964-1972 0.899 0.894 0.888 0.894
Mean 0.898 0.903 0.882 0.894
Hit
RMSE Ml 1989-1997 325.16 327.19 330.16 327.50
M2 1980-1988 251.96 249.14 255.68 252.26
M3 1970-1989 258.28 371.25 364.35 331.29
M4 1960-1969 739.75 842.85 891.93 824.84
Mean 393.79 447.61 460.53 433.98
MAE Ml 1989-1997 234.89 23238 235.29 234.19
M2 1980-1988 188.51 186.25 193.50 189.42
M3 1970-1989 53.11 249.79 242.39 181.76
M4 1960-1969 42521 467.19 500.79 464.40
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Table 7 (continued)

Statistics Cross validation Test data set Input combinations
(i) (i) (iii) Mean
Mean 225.43 283.90 292.99 267.44
R Ml 1989-1997 0.521 0.525 0.519 0.522
M2 1980-1988 0.594 0.622 0.604 0.607
M3 1970-1989 0.736 0.736 0.746 0.739
M4 1960-1969 0.828 0.796 0.807 0.810
Mean 0.670 0.670 0.669 0.669
Baghdad
RMSE M1 1996-2005 228.54 191.43 193.39 204.45
M2 1987-1995 284.63 287.86 288.77 287.09
M3 1977-1986 207.19 210.57 212.20 209.99
M4 1968-1976 256.43 361.95 370.49 329.62
Mean 244.20 262.95 266.21 257.79
MAE Ml 1996-2005 181.10 157.63 158.75 165.83
M2 1987-1995 205.54 209.49 209.78 208.27
M3 1977-1986 147.86 151.64 149.68 149.73
M4 1968-1976 240.33 241.16 249.23 171.57
Mean 139.71 189.98 191.86 173.85
R Ml 1996-2005 0.605 0.733 0.726 0.688
M2 1987-1995 0.773 0.766 0.764 0.768
M3 1977-1986 0.881 0.877 0.879 0.879
M4 1968-1976 0.860 0.865 0.858 0.861
Mean 0.780 0.810 0.807 0.799

data set (M1) with one antecedent value of flow to forecast one-month-ahead. The variance of
the best results here is because of the phenomena that characterized Iraq climatology which is
highly nonstationary and each approach dealt with the data base with different consistency.
Here, the lowest standard indicators appeared for the fourth data set (M4) with respect to the all
inputs combination. In general, it could be noticed that LSSVR provides the admira-
ble forecasting modeling of streamflow over the other methods. The RMSE perfor-
mance of the best MARS and MS5-Tree models was increased using the best LSSVR
model by 10.1 and 36.7 % for the Hit and by 3.3 and 17.8 % for the Baghdad stations,
respectively. Similar to the previous application, here also a considerable difference exists
between MARS and MS5-Tree models.

Traditionally, MLR models were examined for the same data sets and the remark-
able goodness in term of RMSE and MAE were selected for comparison purpose.
MLR results presented in Table 6 for all the stations. There is an outstanding
harmony with gained results regarding the data sets and the preceding input vectors
comparing with LSSVR, MARS and M5 model methods. What is worth to be observed? There
is a noteworthy enhancement in the application of LSSVR, MARS and M5-Tree model
methods comparatively with MLR method. In order to describe this improvement in rational
way, the percentages of the accuracy increment for the performance criteria have been
calculated. The mean RMSE and MAE accuracies of the MLR model successfully
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Fig. 3 The observed and forecasted streamflows scatterplot by the LSSVR, MARS, M5-Tree, MLR and
P-LSSVR, a the M3 data set-Besiri station, b the M3 data set-Malabadi station ¢ the M1 and M2 data sets—
Hit station, and d the M1 data set - Baghdad station

increased using LSSVR model by 8.95-4.19 %, 12.8-8.08 %, -0.12-4.03 % and 13.56-
10.03 % for Besiri, Malabadi, Hit and Baghdad stations, respectively.

The periodicity data component was also examined and evaluated for the forecasting
modeling section. In fact, the main idea behind including this periodic sub data which is one
year to forecast one month ahead, is to supply the modeling an external pattern of flow that
might give a comprehensive knowledge and better accuracy of results. Table 7 displayed the
results of the testing phase for periodic LSSVR model. Obviously, adding the periodicity
component has increased the average LSSVR model performance accuracy in term of the
RMSE and MAE by 20-23.21 %, 28.73-33.82 %, 2.20-5.91 % and 4.98-11.08 % for Besiri,
Malabadi, Hit and Baghdad stations, respectively. By comparing Table 7 with 3, the periodic
LSSVR indicates the same consistency of modeling accuracy with LSSVR for Besiri and
Malabadi stations which are M3 the best model and M1 the worst model. In addition, Hit
station gives the same combination of results M2 the best model and M4 the worst model.

Table 8 The optimal parameters of the LSSVR models in cross application

Cross validation Test data set Input combinations

@ (ii) (iii)
Ml 1991-1999 (25,1) @1 (LD
M2 1982-1990 (100,3) 7,1 (32,2)
M3 1973-1981 (100,4) (17,2 (100,5)
M4 1964-1972 (16,1) (24,1) (91,3)
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Table 9 Comparison of the LSSVR and MARS models in predicting monthly streamflow’s of the Malabadi
Station by using the data of Besiri station

Model Statistics Cross validation Test data set Input combinations
(i) (i) (iii) Mean
LSSVR RMSE Ml 1991-1999 125.54 104.86 108.27 112.89
M2 1982-1990 97.76 85.20 84.25 89.07
M3 1973-1981 92.02 75.77 74.47 80.75
M4 1964-1972 97.36 82.968 83.48 87.94
Mean 103.17 87.20 87.62 92.66
MAE Ml 1991-1999 84.01 68.42 71.02 74.48
M2 1982-1990 71.91 59.44 58.11 63.15
M3 1973-1981 66.30 55.04 52.08 57.81
M4 1964-1972 73.00 57.64 57.94 62.86
Mean 73.81 60.14 59.79 64.58
R Ml 1991-1999 0.610 0.750 0.737 0.699
M2 1982-1990 0.672 0.771 0.780 0.741
M3 1973-1981 0.691 0.804 0.812 0.769
M4 1964-1972 0.729 0.811 0.808 0.783
Mean 0.676 0.784 0.784 0.748
MARS
RMSE M1 1991-1999 166.28 136.72 137.73 146.91
M2 1982-1990 98.89 86.60 90.63 92.04
M3 1973-1981 93.04 78.41 79.49 83.65
M4 1964-1972 106.79 84.15 88.25 93.06
Mean 116.25 96.47 99.03 103.92
MAE M1 1991-1999 100.74 80.41 81.12 87.42
M2 1982-1990 70.06 61.58 67.38 66.34
M3 1973-1981 66.98 56.29 58.45 60.57
M4 1964-1972 77.98 60.36 63.96 67.43
Mean 78.94 64.66 67.73 70.44
R Ml 1991-1999 0.525 0.661 0.656 0.614
M2 1982-1990 0.663 0.762 0.731 0.719
M3 1973-1981 0.683 0.790 0.783 0.752
M4 1964-1972 0.656 0.806 0.782 0.748
Mean 0.632 0.755 0.738 0.708

Whereas, Baghdad station presents different outcome the best testing data set was 1977-1986
(M3) and the worest testing data set was similar to the previous application od the LSSVR,
1968-1976 (M4).

Further assessment for the effectiveness of the utilized data-driven models, it seems
reasonable to investigate the linear relationship between the observed and forecasted time
series for the testing period. Scatter plots are illustrated in Figs. 3a, b belonging to Besiri and
Malabadi stations, respectively. Those figures demonstrated the best models of LSSVR,
MARS, M5 model tree, periodic LSSVR (P-LSSVR) and MLR models for M3 input
combination. P-LSSVR has been found the best model displayed closed to the fit line
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Table 10 Comparison of the M5-Tree and MLR models in predicting monthly streamflow’s of the Malabadi
Station by using the data of Besiri station

Model Statistics Cross validation Test data set Input combinations
(1) (i) (iii) Mean
M5-Tree RMSE Ml 1991-1999 134.28 116.83 121.29 124.13
M2 1982-1990 100.92 101.20 104.19 102.10
M3 1973-1981 100.08 109.58 101.85 103.84
M4 1964-1972 111.77 93.58 83.33 96.23
Mean 111.76 105.30 102.67 106.58
MAE Ml 1991-1999 86.06 76.06 73.66 78.59
M2 1982-1990 72.08 61.14 68.65 67.29
M3 1973-1981 71.06 69.59 65.00 68.55
M4 1964-1972 79.99 65.10 5843 67.84
Mean 77.30 67.97 66.44 70.57
R Ml 1991-1999 0.570 0.683 0.663 0.639
M2 1982-1990 0.650 0.716 0.713 0.693
M3 1973-1981 0.623 0.664 0.696 0.661
M4 1964-1972 0.622 0.754 0.811 0.729
Mean 0.616 0.704 0.721 0.680
MLR
RMSE M1 1991-1999 230.94 228.73 227.95 229.21
M2 1982-1990 129.86 127.84 126.56 128.09
M3 1973-1981 121.19 118.64 118.30 119.38
M4 1964-1972 125.55 122.67 121.39 123.20
Mean 151.89 149.47 148.55 149.97
MAE M1 1991-1999 115.60 111.42 113.38 113.47
M2 1982-1990 82.05 81.22 79.92 81.06
M3 1973-1981 77.20 75.21 74.34 75.58
M4 1964-1972 79.93 78.57 77.75 78.75
Mean 88.70 86.61 86.35 87.22
R Ml 1991-1999 0.483 0.530 0.522 0.512
M2 1982-1990 0.594 0.642 0.638 0.625
M3 1973-1981 0.651 0.704 0.687 0.681
M4 1964-1972 0.676 0.725 0.720 0.707
Mean 0.601 0.650 0.642 0.631

comparing to the other models. Similarly, Fig. 3c, d showed the best fit line regression
indicator regarding Hit and Baghdad stations. Hit station performed the best value of R for
LSSVR model with M2 data set and input combination (i). However, it is evident based on
Fig. 3c that there is a slight deviation between LSSVR model and MLR. Fig. 3d displayed the
best fit line all the models for M1 and combination (i), except MLR method with combination
(ii), for Baghdad station.

Overall, LSSVR and MARS generally performed superior to M5-Tree and MLR models.
The reason behind this may be the fact that the linear structure of the M5-Tree and MLR
models prevents them from accurately modeling highly nonlinear streamflow process. Wang
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et al. 2009 compared the ability of autoregressive moving-average ARMA, ANN, ANFIS,
genetic programming (GP) and SVM methods in forecasting monthly discharge time series
and they obtained R of 0.786, 0.786, 0.801, 0.815 and 0.823 for the ARMA, ANN, ANFIS,
GP and SVM, respectively. Rezaeian-Zadeh et al. 2013 predicted monthly discharges in a
semi-arid region using ANN with different training algorithms and they found that the best
ANN model trained with scaled conjugate gradient algorithm provided a correlation 0.78.
Turan and Yurdusev 2014 used ANFIS and genetic fuzzy system (GFS) in predicting
monthly river flows of Gediz Basin in Turkey and they obtained R of 0.84 and 0.85
for the best ANFIS and GFS models. It is clear from the presented tables “performance metrics”
that the LSSVR and MARS models provided accurate results in forecasting monthly
streamflow from the R* viewpoint.

4.2 Streamflow Predicting

In this section, streamflow’s prediction has been conducted using the LSSVR, MARS, M5
model tree, P-LSSVR and MLR based on nearby streamflow data for particular station. The
significant of this kind of modeling is for the cases of missing river flow or the poor quality of
discharge monitoring (e.g., upstream or downstream stations). For this kind of problem,
streamflow prediction using nearby station can be highly useful to predict the missing data.
In this study, the prediction was undertaken for the Turkish streams. This is for the reason that
Garzan and Batman rivers have the same drainage hydrological features; so that, the prediction
will be implemented in homogenous physical characteristics. Here also, the data base was
cross-validated and divided into four divisions. With similar to the previous sub section
application procedure, Table 8 expresses the optimal parameters of LSSVR model. For the
scenario of predicting streamflow at Malabadi station (Batman River) using river flow data of
Besiri station (Garzan River), Table 9 and 10 provided the modeling evaluators of LSSVR,
MARS and M5 Tree models, respectively. According to the mean RMSE and MAE indicators,
the highest score given by LSSVR and MARS models for M3 and input combination
(iii) and (ii); in that order, while M5 Tree model score the best accuracy of M4 data
set and two lagged times. Negatively, the three models gave the lowest accuracy
scores for M1 data set. The best LSSVR model (M3 data set and input iii) increased
the RMSE performance of the best MARS (M3 data set and input ii) and M5-Tree
(M4 data set and input iii) models by 5.3 and 11.9 %, respectively. Comparison of the
best explored model which is using LSSVR approach with MLR model (table 10),
there were a positive improvement in the prediction scenario accuracies in term of mean RMSE
and MAE by 37.04-29.95 %, respectively.

Table 11 The optimal parameters of P-LSSVR models in cross application

Cross validation Test data set Input combinations

@ (ii) (iii)
Ml 1991-1999 ©,1 4,2) (63,7)
M2 1982-1990 (100,15) (1,2) (1,2)
M3 1973-1981 (17,2) (35,3) (32,3)
M4 1964-1972 (1,5) 8.3) (5,2)
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Table 12 Comparison of the P-LSSVR models in predicting monthly streamflow’s of the Malabadi Station by

using the data of Besiri station

Statistics Cross validation Test data set Input combinations
(1) (ii) (iii) Mean
RMSE Ml 1991-1999 8291 83.34 86.57 84.27
M2 1982-1990 81.45 85.63 85.81 84.30
M3 1973-1981 58.15 57.72 58.22 58.03
M4 1964-1972 68.79 65.81 64.89 66.50
Mean 72.83 73.13 73.87 73.27
MAE Ml 1991-1999 49.16 50.50 50.96 50.21
M2 1982-1990 54.94 53.37 53.21 53.84
M3 1973-1981 39.57 39.49 39.68 39.58
M4 1964-1972 47.86 41.80 41.22 43.63
Mean 47.88 46.29 46.27 46.81
R M1 1991-1999 0.861 0.858 0.848 0.856
M2 1982-1990 0.797 0.784 0.784 0.788
M3 1973-1981 0.891 0.893 0.891 0.892
M4 1964-1972 0.875 0.885 0.888 0.883
Mean 0.856 0.855 0.853 0.854

The effect of embedding the periodicity feature was tested for prediction phase. This was
conducted for the best accurate model has been obtained in the forgoing applications, which is
least square support vector regression model. Again, the ideal regularization constant and RBF
kernel values are visualized in Table 11. The test results of P-LSSVR is exhibited in Table 12;
however, the best average performances accuracies of P-LSSVR were gained from M3 data
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Fig. 4 The streamflow prediction of the Malabadi Station by LSSVR, MARS, M5-Tree, MLR and P-LSSVR

using M3 data sets of Besiri Station
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set, whereas the worst model from M1 and M2 with slight variation. To further visualize the
effect of including the periodic component, the percentages of the prediction development
between LSSVR and P-LSSVR in term of the mean RMSE and MAE were 22.50-24.17 %,
respectively. Finally, the actual and predicted river flow for LSSVR, MARS, M5 model tree,
MLR and P-LSSVR are illustrated in Fig. 4 of the best sophisticated data set. Clearly, it was
found that the closet prediction model is P-LSSVR with R value 0.89.

5 Conclusion

As a matter of fact, streamflow modeling is a challenging task for the hydrology researchers.
This is due to the chaotic disturbances, complex non-linear dynamics and randomness
phenomena of this hydrological variable. In the current research, the potential of three
heuristic regression models namely; LSSVR, MARS and M5 model tree were inves-
tigated in forecasting and predicting long-term streamflow. The application and anal-
ysis were numerically conducted based on four rivers flow, Batman and Garzan Rivers
located in Turkey, Euphrates and Tigris Rivers located in Iraq. However, the findings are
enumerated as follows.

(i) LSSVR, MARS and M5 tree models outperformed the classical MLR method in both
scenarios forecasting and predicting.

(i) In general, LSSVR indicated better forecasted and predicted accuracies for one-month-
ahead over MARS and M5 model tree. Indeed, this is due to the capability of the novel
application of least square support vector regression which is developed version of
support vector regression via excluding the quadratic programming problem in addition
to the skill to capture the complicated non-linear relationship.

(iii) The periodic component feature was embedded and considered within the input com-
binations of the modeling, the results illustrated that adding this component data was
remarkably helpful to provide a detailed intuition into the process of the
forecasted and predicted monthly streamflow and improves the accuracy modeling for
all the examined rivers.
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