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Abstract This paper is concerned with multi-objective fuzzy stochastic model for deter-
mination of optimum cropping patterns with water balance for the next crop season. The
objective functions of the model is to study the effect of various cropping patterns on crop
production subject to total water supply in a small farm. The decision variables are the cul-
tivated area of different crops at the farm. The water requirement of the crops follows fuzzy
uniform distribution and yields in the objective functions are taken as a fuzzy numbers.
The model is solved by using fuzzy stochastic simulation based genetic algorithm without
deriving the deterministic equivalents.
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1 Introduction

Land and water are the lifeline of agriculture and proper utilization of these resources is
essential. Irrigation plays an important role in agriculture as it ultimately decides the fate
of the crops under cultivation where enough water is not available. There is an increasing
demand to raise agricultural production to feed the growing population of the world, which
can be achieved by either increasing cultivation area or by using improved mechanism &
tools for cultivation. Matanga and Marifio (1979) developed an area allocation model which
maximizes gross margin from yields of crops under consideration subject to total water
supply. The author also considered the maximum amount of water that can be delivered
for irrigation purpose and labour constraint. Mayya and Prasad (1989) presented tank irri-
gation system to optimize the grain yield of rice in the semiarid region of India. Dudley
(1988) presented an integral consideration of the up-farm and on-farm aspects for a river
valley irrigation system controlled by a single decision maker. Bras and Cordova (1981)
considered the intraseasonal stochastic variation of the crop water requirements and the
dynamics of the soil moisture depletion with optimal temporal allocation of irrigated water.
Singh et al. (2001) formulated a linear programming model to maximize net return and
optimal crop patterns under different level of water availability, farmers’ socio-economic
conditions and crop preference. Kipkorir et al. (2001) developed an optimization model to
aid in decision making in real time for deficit irrigation taking water demand and supply
for multiple crop irrigation. Sethi et al. (2002) developed two models: (i) Ground water
balance model and optimum cropping and (ii) Ground water management model to deter-
mine optimum cropping pattern and ground water allocation from private and government
tubewells according to different soil type, type of agriculture and seasons. Benli and Kodal
(2003) developed a non linear model with objective function as crop water benefit func-
tions, to determine the optimum cropping pattern, farm income and water allocation under
limited and inadequate water supply conditions. Sahoo et al. (2006) presented a fuzzy multi-
objective and linear programming based management models for optimal land-water crop
system planning for the Mahanadi-Kathajodi delta in eastern India. Tsakiris and Spiliotis
(2006) presented cropping pattern planning under water supply from multiple sources aim-
ing at maximizing the revenue from irrigation activities. Sarker and Ray (2009) presented
three different approach for solving multi-objective crop planning model and analyzed the
solution to give better insight from the point of view of a decision maker. Mishra et al.
(2009) developed a multi-objective optimization model to determine the optimal crop pat-
tern and optimal size of auxiliary storage reservoir. Also, Fasakhodi et al. (2010) used a
multi-objective fractional goal programming approach method to determine the optimal
cropping pattern and sustain water availability in a rural farming system. Along with sur-
face water, ground water also act as a vital source for irrigation. Karamouz et al. (2010)
developed a model to determine net benefits of agricultural products using genetic algorithm
considering water allocation priorities and surface and ground water availability. Mdrquez
et al. (2011) solved a multi-objective crop planning problem using a Pareto based Multi-
objective Evolutionary Algorithms (MOEAs). Noory et al. (2011) presented a linear and a
mixed-integer linear model to maximize net benefit with multi-crop planning and irriga-
tion water allocation using Particle Swarm Optimization (PSO) algorithm. Regulwar and
Gurav (2011) presented a multi-objective fuzzy linear programming irrigation planning
model for deriving the optimal cropping pattern for Jayakwadi project in the Godavari river
in Maharashtra, India. Wang et al. (2011) presented a GIS frame work for changing crop-
ping pattern under different climate conditions and irrigation available scenarios. Sahoo and
Panda (2012) presented a simulation modeling for sizing lined on-farm pond for various

@ Springer



Fuzzy Stochastic Genetic Algorithm for Obtaining Optimum Crops 4099

crop substitution ratios in rainfed uplands of Eastern India. Sahoo and Panda (2014) pre-
sented rainwater harvesting option for rice-maize cropping system in rainfed upland through
root zone water balance simulation. Dogra et al. (2014) presented a compromise program-
ming based model to maximize food production with minimum allocation of available water
at watershed scale after meeting human, livestock and environment needs under different
scenarios. Zhang et al. (2014) presented a virtual water assessment methodology to assess
strategies of saving water by identifying products which would be better as imports rather
than producing them. Kaviani et al. (2015) presented a constraint-state equation optimiza-
tion model and beta function considering the stochastic variable in nonnormal state and
uncertainties for both irrigation depth and soil moisture. This model uses the soil moisture
budget equation for the specific plant on a weekly basis. Karandish et al. (2015) presented
an application of virtual water trade to evaluate cropping pattern in arid region by consider-
ing three indices including VW, unit blue water value, and the ratio of required blue water
to the total water allocation for the agriculture. Srivastava and Singh (2015) presented a
multi-objective optimization problem taking crop area, soil properties, use of fertilizer, and
local socio-economic conditions as constraints which is solved using fuzzy programming
approach with linear, exponential and hyperbolic membership functions. Singh (2016) pre-
sented a model incorporating the ground water component to maximize the net farm revenue
of an irrigated area located in northwest India by optimally allocating the available water
and land resources.

Fuzzy stochastic programming is concerned with optimization problems in which some
or all parameters are treated as fuzzy random variables in order to capture randomness
and fuzziness under one roof. Mohan and Nguyen (1997) developed the idea of fuzzi-
fying approach to multi-objective stochastic programming problem. Dubois and Prade
(1987) proposed the linear programming with constraints having fuzzy interval co-efficient.
Luhandjula (1996) generalized robust programming with interval co-efficient to the fuzzy
constraints into fuzzy inclusion constraints. Recent developments in fuzzy stochastic prob-
lem can be found in: (Acharya and Biswal 2011; Sakawa et al. 2011; Wang and Watada
2012; Mousavi et al. 2013; Sakawa and Matsui 2013; Aiche et al. 2013; Acharya et al. 2014;
Li et al. 2014). Montes and Montes (2015) studied the properties of fuzzy ranking and gen-
eralized their definition as compared with fuzzy random variables by means of stochastic
orders. Due to the complexities of agricultural systems, the mathematical models are gen-
erally manipulated by imposing selective constraints which reduces the impact and effects
of the model. To capture such ambiguity and uncertainties fuzzy stochastic model proves
beneficial. Lu et al. (2008) presented an inexact two stage fuzzy stochastic programming
method for water resources management under uncertainty with fuzzy punishment policies
under different water availability condition. Zhang et al. (2009) proposed a robust chance
constrained fuzzy possibilistic programming model for water quality management within
an agricultural system, where solutions for farming area, manures/fertilizers application
amount, and livestock husbandry size under different scenarios are obtained and interpreted.
Guo et al. (2010) presented a fuzzy stochastic two stage programming approach for water
resources management under multiple uncertainty within an agricultural system. Li et al.
(2014) presented a hybrid fuzzy stochastic programming method for water trading under
uncertainties of randomness and fuzziness. The method developed is applied to a water
trading program within an agricultural system.

Genetic Algorithms (GA) are based on the concept of the biological process of nat-
ural selection, developed by Holland (1975). Development of this field is mainly due to
John Holland and his students. GA provides a set of efficient domain independent search
heuristics which are a significant improvement over other traditional methods. The model
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most commonly investigated is a GA with a binary alphabet, multiple bit mutation, one
point crossover and proportional fitness selection. Liu and Iwamura (2001) formulated
a fuzzy simulation based genetic algorithm for solving chance constrained programming
models with fuzzy decision. Deb (2001) formulated a nonlinear goal programming using
multi-objective genetic algorithm. (Jana and Biswal 2004; 2006) used GA in a stochas-
tic simulation in order to solve stochastic programming problem. More detail on genetic
algorithms can be found in (Liang and Leung 2011; Loghmanian et al. 2012; Ruiz et al.
2015; Lu et al. 2013; Mitchell et al. 2014; Misevicius 2015). Particularly, in agriculture sec-
tor GA can play a vital role in providing a better alternate solutions which will help the
decision maker in taking proper decision. Kuo et al. (2000) presented a model based on on-
farm irrigation scheduling and simple GA method for decision support in irrigation project
planning. The proposed model is applied for optimizing economic profits, simulating the
water demand, crop yields and estimating the related crop area percentages with specified
water supply and planted area constraints. Nagesh Kumar et al. (2006) presented a genetic
algorithm (GA) model for obtaining an optimal operating policy and optimal crop water
allocation from an irrigation reservoirs. The objective is to maximize the sum of the relative
yields from all crops in the irrigated area. Ines et al. (2006) proposed an innovative approach
to explore water management options in irrigated agriculture considering the constraints of
water availability and heterogeneity of irrigation system properties. Fallah-Mehdipour et al.
(2012) compared total net benefit of the water resources system and multi cropping patterns
rules by three evolutionary algorithm genetic algorithm, particle swarm optimization and
shuffled frog leaping algorithm.

This research paper proposes a multi-objective fuzzy stochastic model for proper allo-
cation of agricultural land and the optimum use of water from surface runoff, with water
balance for turn in period (turn-in indicates a time period that extends from harvesting of
the first crop to sowing of the second crop. During this period the farmer prepares his
land and makes it ready for sowing of the second crop.) or increasing the area of the farm
using genetic algorithm. The paper highlights the use of a fuzzy random variable along
with a fuzzy random numbers to represent the water requirement and yields of the different
crops to deal with uncertain and imprecise data occurring in real world as compared with
other researchers where uncertainty and impreciseness are handled separately. This paper
also highlights the concept of turn in period which was not used before. The study is car-
ried out in the region where sufficient rainfall occurs to fulfill the needs of the irrigation
water which is different from other researchers work, i.e. other works are related to reser-
voir or where sufficient water for irrigation are not available. The water requirement of the
crops is satisfied from the rainfall and surface runoff, which greatly reduces the investment
cost, comparing with the other researchers works where additional cost is incurred as water
pumping cost and use of ground water to fulfill the demand of irrigation water. Cropping and
irrigation water are mainly characterized by uncertainty due to randomness of hydrological vari-
ables such as rainfall, evapotranspiration, soil moisture. The uncertainty in crop response lead
us to take the water requirement as a fuzzy uniform distribution and yield as a fuzzy numbers.
The problem was then solved using a genetic algorithm to find the Pareto solution and to
analyze the minute change in cultivated area or to use the balance water for the land prepa-
ration in the next crop season. The combining affect of using fuzzy stochastic model with
genetic algorithm clearly gives a better picture and also interpret the result in a better way.

The paper is organized as follows: Following this introduction, the Study Area is
described in Section 2. The mathematical model formulation is provided in Section 3.
Methodology is described in Section 4. Data Implementation is presented in Section 5.
Results are provided in Section 6. Finally, the conclusions are provided in Section 7.
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2 Study Area

The study area chosen for the case study is the Balasore district located in the north-
east coastal plain of Odisha, India, which lies between 21°3’ to 21°59' N latitude to
86°16’ to 87°2' E longitude. It is surrounded by Medinipur district of West Bengal in
its northern side, Bay of Bengal in its east, Bhadrak district in its south and Mayurb-
hanj and Kendujhar district lies on its western side. The climate is characterized by high
temperatures and humidity, with mean summer temperature of 30.4 °C and mean win-
ter temperature of 21 °C. The average annual rainfall is 1700 mm which is received
normally in two parts, June to September (South-West Monsoon) and October to Decem-
ber (North-East Monsoon). Two important rivers, Budhabalanga and Subarnarckha pass
through this district from west to east before flowing into the Bay of Bengal. The district
has three main types of soil, (i) Laterite Soils (uplands), (ii) Alluvial Soils (medium-
lands), (iii) Coastal Alluvial Soil (lowlands). The major crops of this region are rice,
wheat, maize, cereals, pulses, oilseeds, fibres, vegetables, spices, sugarcane and others
(Figs. 1 and 2).

3 Mathematical Model Formulation

A multi-objective fuzzy stochastic programming model has been developed for optimum
production under different crop patterns and water balance (water remaining after the first
growing season) in a farm considering the following terminology:

Area under cultivation for different types of crops
Rainfall in growing season for each allocated area
Runoff from catchment area

Crop yields

District Map of Balasore, Orissa

Bahanaga 4 Bay of Bengal

Khaira

<@ KVK Balasore (Baliapal)
© Dictrict Hoad Quartor

Bhadrak

Fig. 1 Map of Balasore
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Fig. 2 Types of Soil in Balasore

3.1 Model Description

A multi-objective fuzzy stochastic programming model has been formulated for obtaining

optimal production under different crop patterns with water remaining after the first growing
season.

Parameters
(i) Cultivated Area:
xi,i = 1,2,--- ,n:is the area under cultivation of different crops, measured in
hectare.
(ii) Yield:
Yi,i = 1,2,---,n: is the yield of different crop under cultivation, measured in
kg/hectare.

@ Springer



Fuzzy Stochastic Genetic Algorithm for Obtaining Optimum Crops 4103

(iii)

(iv)

)

(vi)

(vii)

Water Requirement:

wi,i = 1,2,--- n: is the water requirement of different crops, measured in
millimeter (mm).

Rain Water:

Wgi, I = 1,2, -, n:is the water available from rainfall to different cultivated area,

measured in millimeter (mm).
Water from Catchment Area:
W: is the total water available from catchment area, measured in millimeter (mm).

Water Balance:
Wb, j=1,2,---,m:is the water remaining under different crop pattern after the
growing season, measured in millimeter (mm).

Decision variables:
xi, i =1,2,---,n:is the amount of area under cultivation for different crop.

3.2 Formulation of Objective Functions

The Production functions of different crops can be formulated using the cultivated area and
their yields. As yields of various crops differ from year to year, so we took yield as fuzzy
triangular number. If P is the production function then, P can be given by:

P = Yield X Cultivated Area.

Mathematically, the above expression can be expressed as: » Yixi.

This objective is known as the maximization of crop production.

3.3 Formulation of Constraints

®

Better crop yields depends on many factors, including, timing of rainfall and/or irri-
gation, fertilizers, pesticides, good variety seeds, etc,. As water plays a vital role in
farming, the water requirement of the crops can be incorporated as constraints, is
divided into two parts, (a) water received from the rainfall and, (b) water received by
means of irrigation.

Rainfall is a hydrological phenomenon, so, how long it will rain, with what inten-
sity, and by how much is uncertain. The information regarding water absorbed by the
soil, evapotranspiration, seepage loss, etc, can be imprecise. This lead us to consid-
eration of water availability to the soil as a fuzzy variable. The condition of the soil
in a day period do not change abruptly, so the water requirement by the crop is taken
uniform over a small area. Under this concept, water available to crops by rainfall
can be assumed to follow a fuzzy uniform distribution. So, the requirement of water
by different crops can be given by:

Water requirement = Cultivated Area X (Water Requirement of the crops - Water
Available (rainfall)).

The above constraints for different crops can be mathematically expressed as:

n ~
Zizlxi(wi — Wai)-

The fulfillment of water requirement depends upon the total water available. Mathe-
matically, the constraint can be expressed as:

n ~
Zizlxi(wi —wgi)) =W
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(i)

(iii)

The water balance after the crop season under different crops can be given by:
Water Balance = (Total Water Available - Total Water needed by different crops
under different allocated area).
Mathematically, the above expression can be expressed as:

n ~ .
ij = W_Zizlx,'(w,' —Wei), j=1,2,--- ,m

Affinity Constraints: Depending on the regions or states, there is the tendency of
farmers to grow paddy or wheat in the Kharif season ( The cropping season in India
during which crops are grown amidst monsoonal rains is called as kharif season in
local parlance. In other words, this is also called as the rainy season in the country.
This season continues for four months, starts from mid-June and continues up to
mid-September of the year.) and pulse or mustard in the Rabi seasons (This season
continues for six months, starts from October till end of March) for the basic food
security. So, water for turn in period plays a vital role as it can save investment on
water supply. The affinity constraints puts upper limits on the cultivated area for food
supply.

To summarize the objective function and constraints derived above, the problem can
be modeled as a multi-objective fuzzy stochastic programming problem which is
given below:

n
max: (Zj) =Y Yixi.j=12.m (3.1)
i=1
Subject to
n
PO xi(i — wai) = W) = B; (32)
i=1
n ~ .
Whj =W =3 xi(Bi —wa), j=12--m (3.3)
X >0,i=12--,n (3.4)
where 0 < /§,~ <1,w;,i=1,2,---,n follows fuzzy uniform distribution.

In order to solve the above problem, we formulated an equivalent mathematical
multi-objective fuzzy stochastic programming model, which is described in the next
section.

4 Methodology

A Multi-objective probabilistic programming (MOPP) problem is of the form:

n

max: (Zj) =Y Yixi,j=12-.m 4.1
i=1
Subject to
n
PO xi(wi —wa) < W) = Bi (4.2)
i=1
x; >Li>1,i=12,---,n (43)
where 0 < 8; < land w;, Y;,i = 1,2, --- , n are random variables.
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A multi-objective fuzzy probabilistic programming (MOFPP) problem is an MOPP problem
of the above form where at least one of the weighted objectives w;, Y; is a fuzzy random
variable (FRV) and f; is a positive fuzzy number.

In a MOFPP problem, fuzziness may be present in constraints or in the objective function
or in both. Therefore, at least one of the following situation is possible.

(i) At least one of the constraints has a fuzzy inequality
(ii) Objective function has a certain type of fuzziness
(iii)  Co-efficient present in the constraint, in an objective function, or in both are fuzzy
random variables.
A multi-objective fuzzy stochastic programming problem where fuzziness and ran-
domness are considered in the objective function as well as in the constraints can be
expressed as:
n
max;(Zj):Z?ixi,jzl,z,u-’m (44)
i=1
Subject to
n
P xi(i; — wai) 2 W) = B (4.5)
i=1
xi>Li>1,i=12,---,n (4.6)
where w; are fuzzy random variables, and 17, are fuzzy random number, L; is the
constant, V 1.
To handle the fuzziness, let w;,i = 1, 2, - - - , n are independent FRVs distributed uniformly
with FU(f, 52) where ji and 62 are mean and variance of W;,i = 1,2, ,n

The a-cut of the probabilistic constraints can be expressed as:

P xi (il — wai)

i=1

IA

W)lal] 4.7

= P(A;

IA

W)la] (4.8)

n
where Ai = in(u?i — wa,-)
i=1

P(W > A)|A; € Ai[a] 4.9)

Using fuzzy inequality, the a-cut of the fuzzy constraint (4.5) is expressed as:

ﬁ(i xi (W; — wa;)

< W)le] = Bile] (4.10)
i=1

=1-P(W < x;(W; — wa)) (4.11)

=1—PW < Ajy) > ,3,-* 4.12)

where [wix[er], w¥[e]] € W;[] and [Bix[a], B[] € Bile].

4.1 Fuzzy Stochastic Simulation Based GA

The fuzzy simulation based GA is designed to solve the fuzzy probabilistic programming
problems. The steps of the algorithm is described as follows:
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Algorithm Fuzzy Stochastic GA

P = (21,29, ...... cee ey Xy), mEN -Initial Population

D = (wq,wa, ...... <+ .,wy,), n €N  -Distribution Parameter
gen = generation

;= decision variables i€ N

l;= Lower bound

u;= Upper bound

C; = Constraints ieN

x;,2; = New Child i,jeN

x; = Mutated Child i€ N

= Best Solution i€ N

Tl#, Tf = Crossover chromosomes i, j € N

<%

max-gen = maximum generation

Begin

generate D //Generating Distribution Parameter
init P // Initializing Population
gen <— 0

L < <u // Applying bounds

for (gen< max-gen)

[YV; 2o // Applying a- cut to the objective functions

[2; (w;—wa;) —Wer // Applying a- cut to the constraints with Bracket Penalty Operator
x; < select best // Applying Selection

Evaluate Fi //Function value

Ti, T A)Il#,lj#

//Crossover

T = T} //Mutation
Evaluate Fi //Function value
if

{

Pr(z;(w; — war) — W) = §; // Probability Criteria
}

Elitism

else

goto init

gen — gen + 1

xf // Best Solution

i

}
End
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The Flow Diagram of Fuzzy Stochastic GA is shown in Fig. 3.

Representation and Initialization A population of potential solutions is generated and
initialized. If xp, xp, ..... Xxn be n decision variables, then each chromosome can be repre-
sented as X, = (x1, x2, ..... Xn)p, where p = 1,2, ... p-size, while p_size is the size of
the population. To search the domain space, the p_size plays an important role which can be
chosen by the user. The value of x; (i = 1, 2, ...... n) is typically chosen between 0 and the
upper bound of the decision variables.

Constraints Checking by the Fuzzy Simulation The constraints of the model are
represented as fuzzy probabilistic constraints. Consider the fuzzy probabilistic constraints

PQY xiii — wa) < W) = B (4.13)

| Fix the GA parameters and termination criteria |

g

| Generate the parameter for different distributions |

Initialize the Population P(t) |< )

Apply Fuzzy a- cut technique to evaluate the Constraints |

|}

| Evaluate the fitness |

Crossover

t=t+1 | Evaluate the fitness |

NO
Probability
Criteria

j!

Termination
Criteria

Best Solution

Fig. 3 Flow Diagram of Fuzzy Stochastic GA
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The constraint of Eq. 4.13 are defuzzyfied using the «-cut and inequality conditions, so that
the constraint reduces to

1—P(W < Aiy) = B/, 4.14)

i=1,2,.... , n as discussed before.
The above inequality can be represented by

P(W—Aj<0)<(1-8) 4.15)

= P(ti(x,5) <0) < (1 =B]) (4.16)
where s = (wy, wo, ....... , Wy, W) is a (n+1) dimensional continuous probability distribu-
tion, x = (X1, X2, X3, cevnus , X,,) is the decision variable. We generate N independent random
vectors as s = (W], wj, ...... wy),r=12,.N,i=12,..n.
Let N;(<£ N),i = 1,2, ..... ,n be the number of times the following relation satisfies:

ti(x,s") <0,i=1,2,..... n
Then by the definition of probability, (4.16) will hold if Ni /N < (1—-8}),i =1,2,--- ,n.

Fitness The fitness value are the values of objective function which satisfies the given
constraints.

Selection Binary Tournament Selection is a robust selection mechanism which is based on
fitness value from a pool of chromosomes. We randomly pick k individuals and compare
their fitness, replacing the lower with higher fittest individuals. The winners are chosen for
mating. The process is repeated until the desired number of individuals are achieved. Here,
k is called the tournament size, which controls the selection pressure. If k = 2, then the
tournament selection is called binary tournament selection. The obtained individuals by this
process is treated as new population with same p_size as initial population.

Crossover This is a genetic operator which used in varying the individuals from one gen-
eration to next generation. When it is done at a particular point, it is known as single point
crossover. A random number ‘r’ is generated within (0,1) for each pair of chromosomes,
which act as the crossover point. We assign the probability of crossover as pc, if r < pc, the
given pair is selected for crossover.

Mutation To maintain the diversity of population from one generation to another, mutation
operator is used. Mutation is a process of modifying the genetic material of a chromosome
from its initial state. When the variation is done bitwise in a sequence, it is called bitwise
mutation. It creates a random small diversion and stay near to the area of parents. A random
number ‘r’ is generated from the interval [0,1] for every bit in the population. If r < pm then
the parents are selected for mutation operation, where pm is the probability of mutation of
the genetic system.

Termination The process is stopped as the desired accuracy is attained or the maximum
generation fixed is completed.
5 Data Implementation
Maximizing agricultural production has become an important aspect for farmers, states or

the Nation. The government provides necessary facilities required for the better produc-
tion such as good varieties of seed, better irrigation, fertilizers, etc,. On the other hand, if
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Table 1 Water Requirement

of Crops Crops Water requirement (Growing Season) (mm)
Rice 1100 - 1300
Maize 800 - 1000
Cotton 1250 (maximum)
Gram 1200 (maximum)
Groundnut 1000 - 1200

uncultivated land can be brought under cultivation then it can add to production. In order
to achieve this, a better planning and detailed study of the area is required. In this case
study, we studied the effect of cropping pattern and water balance for turn in period simul-
taneously, keeping in view the production factor as well as farmers tendency to grow basic
food crops of that region. The upper limit of area under paddy or maize cultivation were
kept as 73 % of total irrigated area. This study should help to determine how much the
command area can be increased where less irrigation facilities are provided. To study the
cropping pattern and water balance, a command area of 0.8 hectares and a catchment area
of 0.7 hectares (grassland) are assumed. Annual rainfall data was collected for 30 years and
the yield of various crops data were collected for ten years. From the collected information,
the pattern of rainfall data was studied and found to follow a log-normal distribution with
different percentage of significance level. As the significance level was low, so we did not
followed this distribution. A particular year was chosen with a sufficient amount of rainfall
to study the case. Runoff and Antecedent soil moisture are calculated by the Curve number
formula is given below.

0 0, for P < I,
= _ 2
;’I:I:(ZF)S for P <1,

where Q is runoff, P is rainfall, S is the potential maximum soil retention after runoff begins,
1, is the initial abstraction. The runoff curve number is calculated using the formula

1
S = 254(E -1
CN

where, CN is the curve number.

For our study purpose, we took I, = 0.3 S. As this value has been recommended for
most of the watersheds in India especially which are not in black soil region and under
AMCII&III conditions (Bhattacharya et al. 2003).

The water requirement and yields of different crops are provided in Tables 1 and 2
respectively.

Table 2 Yields of Crops

Crops Yield (kg/hectare)
Rice 2300 - 3200
Maize 2000 - 3000
Cotton 400 - 500

Gram 400 - 500
Groundnut 1000 - 1050
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To study the effect of cropping patterns and water remaining for the land preparation
in the next growing season, a multi-objective fuzzy stochastic programming problem was
considered. We chose five different crops: rice, maize, cotton, gram, and groundnut. Water
requirement of different crops was assumed to follow a fuzzy uniform distribution as water
requirement do not vary in a small farm area for a day with a hydrological conditions. The
agricultural yield per season of different crops are taken as fuzzy number as it depends on
many factors such temperature, climates, soil condition, etc,.

The mathematical model of the case study can be expressed as follows:

max : Zi(x) = flxl + Y~3X3 + )74x4 (5.1

max : Zy(x) = Yoxs + Y3X3 + Yaxs (5.2)

max : Z3(x) = Yix) + f3x3 + f5x5 (5.3)

max : Z4(x) = Yoxs + Y~3)C3 + Y~5)C5 5.4)

max : Zs(x) = Y~1X1 + Y~4X4 + }75)65 (5.5)

max : Zg(x) = fzxz + Y~4X4 + )75X5 (5.6)

max : Z7(x) = Yix1 + Yaxa (5.7)

Subject to

P(x1 (W1 — wa1) + x3(w3 — wg3) + x4(ws — wag) < W) = 0.70 (5.8)
P(x2(uy — wa2) + X3 (w3 — wg3) + xa(wa — wea) < W) = 0.70 (5.9)
P (x1 (W1 — wa1) + x3(w3 — wa3) + x5(us — wes) < W) = 0.75 (5.10)
P(x2(ty — wa2) + x3(w3 — wy3) + x5 (s — wes) < W) > 0.80 (5.11)
P(x1 (W) — wa1) + x4 (ws — waa) + x5(d5 — w,s) < W) > 0.80 (5.12)
P(x2(1 — wa2) + x4(wa — waa) + x5(f5 — wes) < W) > 0.85 (5.13)
P(x1 () — wa1) + x2(tr — waz) < W) = 0.90 (5.14)

xi >0,w; >0,w;; >0,Y;>0,i=1,2,---,5 (5.15)

Where w1 wz, ws follows fuzzy unlforrn dlstrlbutlon with FU (a, b) =FU (1100 1300)
FU(a b) = FU(800 1000) and FU(a b) = FU(lOOO 1200)

Y, =< 0. 23/0.32/0.41 >, Y, =< 0. 20/0.29/0.38 >, Y3 =< 0. 032/0.041/0.050 >,

Yy =< 0.040/0.049/0.058 >, Ys =< 0.1/0.1045/0.1090 >

W = runoff water generated from grassland;

= Area under different crops,i = 1,2,---,5;
w; = Water requirement for different crops(total growing season),i = 1,2,---,5;
wg; = Effective rainfall water in different crops,i =1,2,---,5;

= Yield of different crops,i =1,2,---,5;

6 Result Analysis

The proposed fuzzy stochastic simulation based GA is coded in C++ in VB2010 Profes-
sional. The population size is taken as 100. When the population size is increased, it does
not yield better results as compared with the population size 100 and the computational time
is also increased. When we decrease the population size it affects the result and the accuracy
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Water Balance of differentcrops
pattern

Fig. 4 Water Balance for Different Crops Pattern

too, although, the computational time is less than compared with the population size 100.
As we increased the number of generation then also computational time is increased with
no improvement in the results. The population size is normally taken as twice the number
of decision variables in the problem. In this study, we have five decision variables each with
10 bits. So, the size of the population is taken 100. Computational time is one of the factor
which needs to be taken care while solving a problem so that we can handle large and com-
plex problems. It is seen from the table that as we increase the value of « the objective value
keeps on increasing. Optimum solution (Tables 3, 4, 5, 6, 7, 8, 9, 10 and 11) obtained for
different values of probability of crossover(pc), mutation(pm) and « over 300 generation
are given in Appendix.

It is clearly seen from the Fig. 4, that the availability of water in (W, W4, We) are more
as compared to the availability of water in (W, W3, W5, W7). Therefore, the patterns of
the crop can be easily chosen for better planning so that more farm area can be included to
obtain maximum return in that region.

From the Fig. 5, we find that the production is more in (Zy, Z3, Z5, Z7) than in
(Z2, Z4, Zs) under the given set of constraints. From Table 2, we see that the combina-
tion of rice, cotton and groundnut and the combination of rice, gram and groundnut are
almost same as the yield of cotton and gram are same. Similarly, the case of maize, cotton
and groundnut and the combination of maize, gram and groundnut. The water requirement
and the yield of rice crop is more than of maize crop. So, the production is more and water
availability is less in Z; as compared to Z,. As water requirement of cotton and gram are
slightly different with same yield, so any one crop can be chosen with rice crop. But, when
we compare groundnut with cotton or gram then we find that the water requirement of
groundnut is less and yield is more than cotton and gram. In (Z,, Z4, Z¢), the yield of
the maize crop plays an important role in the production value. Since, the yield of maize
crop is less than of rice crop, so, the production value is less in (Z3, Z4, Zg) than in
(Z1, 23, Zs, Z7).

The graphical representation of the Pareto Solution Space of the case study is shown
below for o = 0.5 (Fig. 6)

Production of different crops pattern for

alpha=0.5

Fig. 5 Production for Different Crops Pattern
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Fig. 6 The Pareto Solution Space

7 Conclusion and Discussion

In this paper, a multi-objective fuzzy stochastic model was developed to study the crop
patterns and the optimal use of available water resources in a small farm. The methodol-
ogy presented incorporates maximization of crop production under different combination
of crops. In the objective functions where fuzziness has been incorporated as a fuzzy num-
bers to obtain the production of the crops under different crop patterns subjected to the
availability of the irrigated water. The yield of the crops in the objective function is treated
as a fuzzy numbers and imprecise data are taken from Table 2. The irrigated water pro-
vided to the soil for the growing season are from rainfall and surface runoff generated from
it. The water requirement by the crops follow a fuzzy uniform distribution. The data from
Table 1 is used for generating a fuzzy uniform distribution for different crops. The multi-
objective fuzzy stochastic programming problem is then handle with Fuzzy Stochastic GA
based approach. This study help us to know that by how much the area of the farm can be
increased under the condition of availability of water and the patterns of the crop. As dif-
ferent crops have different water requirement, so under which pattern, how much irrigated
area can be increased, or the remaining water can be used in preparing the land for the next
crop season can be known from the study above. From the result section, we find that the
crops pattern in (Z1, Z3, Zs, Z7) shows better production than (Z,, Z4, Zs). In terms of
water balance, we see that (W, W4, W) leaves a significant amount of water for turn in
period than (W1, W3, W5, W7). So, a small amount of cultivated area can be increased for
(Z1, Z3, Zs, Z7) and a good amount of area can be increased for (Z2, Z4, Z¢) in terms of
water balance.

From the above crop patterns, appropriate decisions can be made by taking into consid-
eration the price of grains, i.e, which crop area should be increased and by how much, so
that it will fetch more profit with less investment. The advantage of using GA is that the
Pareto solution helps in analyzing the effect of small change in terms of cultivation area
which will help the decision makers in taking appropriate decision. The present model can
be extended to study the reservoir area model including different objective functions with
more constraints such as labour constraints, cost related issues, under different crop season,
etc. The model can also be extended to tank irrigation optimization model, ground water
resources model.
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