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Abstract Hydropower is the most important source of electricity in Brazil. It is subject to the
natural variability of water yield. One building block of the proper management of hydropower
assets is the short-term forecast of reservoir inflows as input for an online, event-based
optimization of its release strategy. While deterministic forecasts and optimization schemes
are the established techniques for short-term reservoir management, the use of probabilistic
ensemble forecasts and multi-stage stochastic optimization techniques is receiving growing
attention. The present work introduces a novel, mass conservative scenario tree reduction in
combination with a detailed hindcasting and closed-loop control experiments for a multi-
purpose hydropower reservoir in a tropical region in Brazil. The case study is the hydropower
project Trés Marias, which is operated with two main objectives: (i) hydroelectricity generation
and (ii) flood control downstream. In the experiments, precipitation forecasts based on
observed data, deterministic and probabilistic forecasts are used to generate streamflow
forecasts in a hydrological model over a period of 2 years. Results for a perfect forecast show
the potential benefit of the online optimization and indicate a desired forecast lead time of 30
days. In comparison, the use of actual forecasts of up to 15 days shows the practical benefit of
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operational forecasts, where stochastic optimization (15 days lead time) outperforms the
deterministic version (10 days lead time) significantly. The range of the energy production
rate between the different approaches is relatively small, between 78% and 80%, suggesting
that the use of stochastic optimization combined with ensemble forecasts leads to a signifi-
cantly higher level of flood protection without compromising the energy production.

Keywords Hydrological forecasting - Short-term optimization - Ensemble forecasting - Real-
time control - Flood mitigation - Trés Marias Dam

1 Introduction

Hydropower is the most important source of electricity in Brazil. During recent years, it has
accounted for 60% to 70% of the total electrical power supply (EPE, 2014). The remaining
electricity is provided mostly by thermal power plants using biomass, coal, natural gas, and nuclear
power, but generally at higher costs. A nationwide transmission network allows for integrated
management of the energy production. This management is done by a central organization called
Operador Nacional do Sistema (ONS), whose objective is to optimize electricity production by
increasing production at plants with lower operation costs and decreasing it at plants where these
costs are higher. Operational costs of hydropower are lower than for thermal power plants;
therefore, there is a strong economic reason to maximize the proportion of energy generated from
hydropower (Hamlet et al. 2002). On the other hand, hydropower is dependent on weather and
climate, which are naturally variable, leading to risks of power production shortage.

In such a complex system, benefits of reservoir inflow forecasts include the following: (1)
spillage can be minimized; (2) reservoirs can operate with larger head for longer periods due to
more reliable release schedules; (3) more energy can be generated at times when energy prices
are higher; (4) more energy can be produced at hydropower plants that have the higher inflow
forecasts (Faber and Stedinger 2001; Yeh et al., 1982; Hamlet et al. 2002; Maurer 2002).
Forecast errors influence decision-making, leading to sub-optimal operation when water is
released unnecessarily from reservoirs, or when thermal power plants are activated needlessly.

ONS uses a chain of optimization models for the management of the Brazilian power
system (Maceira and Damazio 2005; Pereira and Pinto 1991). Two of the optimization models
are meant for long-term operational planning (5 to 10 years) and for seasonal operational
planning (12 months). These optimization models use stochastically generated inflow scenar-
ios, and no actual forecasts. The third optimization model used by ONS is applied to make
operational decisions up to 14 days in advance, and uses forecasts of inflows to more than two
hundred reservoirs. Until less than a decade ago, all of the inflow forecasts were provided by
periodic auto-regressive moving average (PARMA) models (Maceira and Damaézio,). In 2005,
ONS started to test inflow forecasting based on rainfall-runoff models with the input of
quantitative precipitation forecasts. The forecasting models tested used precipitation forecasts
generated by the Brazilian Weather Forecasting Center (Centro de Previsdo de Tempo e
Estudos Climaticos — CPTEC), primarily from the regional atmospheric Eta model (Chou et
al. 2002). An assessment of results by Guilhon et al. (2007) showed that the new forecasting
methods that included quantitative precipitation forecasts outperformed auto-regressive fore-
casting models based on inflow time series input only. As a result, forecasting models and
methods that use quantitative precipitation forecasts are gradually replacing PARMA models
in the Brazilian electric energy optimization chain (Guilhon et al. 2007). However, until now,
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mostly medium range (14 days) forecasts are deterministic, i.e. generated considering only one
possible future.

In Brazil, the use of Ensemble Streamflow Forecasts (ESF) for both floods and reservoir
inflow predictions is still starting (Fan et al. 2014). The aim of ESF is to account for uncertainties.
They are usually produced by forcing hydrological models with meteorological forecasts which
include multiple possible future trajectories of atmospheric variables (Cloke and Pappenberger
2009), although some others strategies to generate ESF such as the use of uncertainty of initial
conditions and model parametrization are present in the literature (Demirel et al. 2013). The first
examples of ESF for Brazilian cases are shown by Tucci et al. (2003 and 2008), who showed
results of hindcasting experiments of seasonal streamflow forecasts for the rivers Uruguay and
Grande. More recently, Calvetti and Pereira (2014), Collischonn et al. (2013) and Meller (2013)
described experiments of short- to medium-range ensemble flood forecasting. Fernandez Bou et
al. (2015) showed the development of a methodology for 1-month flood forecasting in the upper
region of the Uruguay River basin, at the Itd Hydroelectric Power Plant (HPP) reservoir. Finally,
Fan et al. (2014, 2015a b) showed the assessment of ESF within operational forecasting systems.

While ESF are not yet widely used operationally in Brazil for medium-range hydropower
optimization and planning (use of ensembles can be considered generally at a research level), a
number of studies worldwide have shown the benefits of the use of ESF for reservoir
operation. Selected recent works are cited as follows.

In the study of Zhao et al. (2011), synthetic experiments of ESF were applied to real-time
reservoir operation and were compared with deterministic forecasts. Through the hypothetical
example of a single-objective real-time reservoir operation model, the results illustrated that
forecast uncertainty exerts significant effects. Results showed that, in general, the benefit from
the reservoir operation using ensembles was nearly as high as the one obtained with a perfect
forecast. Zhao et al. (2012) demonstrated with synthetic tests that we may have an effective
forecast horizon where the forecast is useful for operational purposes, which is the horizon
where uncertainties do not excessively compromise the forecast quality.

Boucher et al. (2012) quantified the economic benefits of employing the forecasts in a
stochastic decision-making assistance tool for hydroelectricity production during a flood event
on the Gatineau River, Canada. According to the authors, this allowed for the comparison
between different types of forecasts according to their value in terms of energy, spillage and
storage in a reservoir. ESF exhibited excellent performances when compared to observations and
were also satisfying when involved in the operational management of electricity production.

Liu et al. (2015) investigated how the sources of uncertainty impact the process of reservoir
flood control based on forecasts, using a case study from the Ankang Reservoir, Han River,
China. Based on the results of a series of synthetic tests, authors shed light on how different
uncertainties can affect the operation of reservoirs while anticipating floods. Anvari et al. (2014)
tested optimization models in the Zayandeh-Rud reservoir system in Iran, aiming to investigate
uncertainty-based optimal operation of this multipurpose water reservoir system. Authors also
assessed the effect of Ensemble Streamflow Predictions (ESP) that were generated by artificial
neural networks in the application. Results for the case study demonstrated that some of the
specific approaches that were tested could be useful for real-time reservoir operation.

Ficchi (2015) presented a study where authors aimed to investigate the improvement of a
four-reservoir operation system in the Seine River basin, France, using an ensemble of weather
forecasts and a real-time control approach. In the proposed system, a model predictive control
(MPC) optimization technique was used, and it was modified to a version that incorporated
uncertainties in the form of a tree-based model predictive control (TB-MPC) approach in order
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to account for deterministic and ensemble forecasts, respectively. The management system was
assessed by the simulation of historical events. Simulation results showed that the proposed
real-time control system largely outperforms a no-forecasts management strategy based on rule
curves, and that explicitly considering forecast uncertainty through ensembles compensated for
the loss in performance due to forecast inaccuracies.

Focusing more on operational aspects (not using forecasts), Che and Mays (2015) devel-
oped and tested a methodology for determining reservoir release schedules before, during, and
after an extreme flood event in real time. The problem was formulated as a real-time optimal
control problem in which reservoir releases represent the decision variables, similar to the
methodology adopted in the present work.

The present paper presents one of the first hindcasting experiments with multi-stage stochastic
reservoir optimization on the basis of medium-range ESF for a tropical study case in Brazil. Itis a
follow-up of a previous study presented by Schwanenberg et al. (2015a) which used a similar
approach, but restricted for a single-event simulation. The novel components of the present paper
are: (i) the closed loop experiment of the stochastic optimization in application to a real-world
case study and (ii) a novel, mass conservative scenario tree generation with a detailed comparison
of the forecast skill of the ensemble against the reduced scenario tree.

2 Methodology

The proposed methodology here does not intend to reduce forecast uncertainties, but, instead,
is focused in the usage of these uncertainties for better decision making by a short-term
reservoir optimization approach.

The short-term reservoir optimization considers a discrete time-dynamic system according to

o = gk, ik, d¥) (1)

where x, y, u, d are the state, dependent variable, control and disturbance vectors, respectively,
and f{), g() are functions representing an arbitrary water resources model. Equation (1) is used
to predict future trajectories of the state x and dependent variable y over a finite time horizon
represented by k=1, ..., N time instants to determine the optimal set of control variables u by
optimization. For a known disturbance d over the time-horizon, for example the inflows into
the reservoir system, the deterministic optimization setup becomes

n

i k k. k gk
z:,xg{lg,T}kz::l J(x , Vo, u ,d) (2)

subjectto :  A(x"*, ) 0k d")<0, k=1,...,N 3)
R f (R dF) = 0

where J() is a cost function associated with a state transition and /() includes hard constraints
on control variables and states. The notation x * refers to a subset of state variables which is used
in the hard constraints and which therefore become independent optimization variables. In this
case, the related process model becomes an equality constraint of the optimization problem.
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The stochastic version of the above optimization problem is obtained by replacing the
deterministic forecast @ by a forecast ensemble df, where j is the ensemble index. The
objective function in Eq. (2) is reformulated by computing the probability-weighted sum of
the objective function terms of the individual ensemble members. This can be expressed as

ur*e{O T}prz ( X ’uf’dlj) (4)

where p; is the probability of the ensemble member j and m are the number of ensembles.

The features of the stochastic optimization are determined by the choice of uf‘ In its simplest
form, the control trajectory is identical in all ensemble members according to u}‘:u". In this
case, the optimization tries to find a trajectory which minimizes the objective function on
average over all ensemble members. If we assume that the reservoir release is the typical control
variable in a reservoir management application, this means that the variability in the reservoir
inflow recurs as a variation of the forebay elevation of the reservoir. This can lead to
infeasibility if the inflow variability is larger than the reservoir storage over the forecast horizon.

A more advanced formulation is achieved by the use of a scenario tree for the control
trajectory and all other variables. Raso et al. (2013) and Schwanenberg et al. (2015a) applied
this methodology to the multi-stage stochastic optimization of reservoirs. In this approach, the
control adapts to the resolution of the forecast uncertainty. The scenario tree is defined by a tree
nodal partition matrix P(j, k)€ ZM ™. 1t assigns the control at time step & of scenario j to the
control vector . An example for a nodal partition matrix for a simple tree with two scenarios
and one branching point at the second time step is presented in Eq. (3) by

SIEEE g

The key to the method is the derivation of the scenario tree from an ensemble by a scenario
tree reduction. We revised existing tree reduction techniques and found that most existing
methods (Heitsch & Romisch 2003; Raso et al. 2013 among others) do not preserve the
probability-weighted sum of a quantity of the original ensemble )~ op_,-u;c due to a complete
deletion of ensembles and an allocation of their probability to the closest remaining one. This
is a drawback for reservoir management applications, since the probability-weighted inflow
volumes change with the tree reduction techniques and their parameters.

The purpose in this study is to define an efficient and robust scenario tree reduction
technique which 1) keeps probability-weighted quantities constant in the tree reduction process;
ii) leads to a constant number of branches in the tree (to keep the optimization effort roughly
the same); and iii) preserves other properties of the original ensemble as much as possible.

Numerical experiments led to the refinement of the scenario tree reduction techniques for
binary trees in Schwanenberg et al. (2015a, b). They are summarized as follows:

1. The number of ensemble members is reduced to 2%, e.g. 2, 4, 8, 16, by deleting m —2"
members with the closest distance to remaining members by means of the distance matrix
dis(i, j)=Y7r— lld* —djl-‘ll. The probability of a deleted member is added to the closest
remaining one. Next, the remaining member is replaced by the probability-weighted
sum of the deleted and remaining members.
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A number of x branching points are distributed in equidistant steps along the forecast
horizon.

All ensemble members up to the first branching point get aggregated into a single branch.
From this point on, the ensemble members get classified into two groups according to
their remaining inflow volume.

Step 3 is repeated at all other branching points for each of the previously generated subsets
and split into two again.

Optional smoothing is applied over a number of time steps after the branching point to
reduce the negative impact of large, unphysical inflow steps on the optimization.

An example of a generated scenario tree is presented in Fig. 1.
For the performance assessment of the ensemble forecast and the derived scenario trees, three

performance metrics were selected: Mean Absolute Error (MAE), Mean Continuous Ranked
Probability Score (Mean CRPS, usually referred to as CRPS), and Brier Score (BS). A brief
description about these metrics is provided below. For more information, we recommend Wilks
(2006), Brown et al. (2010), Bradley and Schwartz (2011), and Jolliffe and Stephenson (2012):

Mean Absolute Error (MAE): this metric is the absolute difference between two values, in
this case, between observations and forecasts at each lead time. In the case of ensemble
forecasts. The MAE of a perfect model would be zero.

Mean Continuous Ranked Probability Score (CRPS): the CRPS is a score that summarizes
the quality of a probability forecast into a number by comparing the integrated square
difference between the cumulative distribution function of forecasts and observations.
Lower CRPS values correspond to more accurate results.

Brier Score: the BS measures the average square error of a probability forecast for a
dichotomous event, defined, for example, by a flow threshold exceedance. A perfectly
sharp set of forecasts would show a BS value of zero.

3 Test Case Description

The case study of the present paper is the Trés Marias reservoir, located in southeastern Brazil
(Fig. 2). The reservoir is operated with two main objectives: (i) hydroelectricity generation and
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Fig. 1 Ensemble of inflows transformed into smooth optimization trees
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Fig. 2 Trés Marias case study

(i1) flood control at the downstream city of Pirapora. The main threat there is that floods in
Pirapora occur due to the outflow at Trés Marias and the Abaeté River tributary. In this case, an
optimized operation must account for the reservoir inflow forecast and the incremental
downstream flow contributions.

Trés Marias HPP is operated by CEMIG (Companhia Elétrica de Minas Gerais). During
low and medium flows, CEMIG follows rules defined by ONS to operate the HPP. However,
during flood events, CEMIG operators take over the control of the reservoir turbines and
spillways to mitigate downstream floods and without compromising future energy generation.

This case has already been the object of several recent studies. In the research of Fan et al.
(2014), a first version of an ensemble forecasting system based on the MGB-IPH (Collischonn
et al. 2007) hydrological model and on GEFS v2 meteorological forecasts (Hamill et al. 2013)
was shown. Subsequently, Fan et al. (2015a) presented a second version of the ensemble
forecasting system coupled with Delft-FEWS software shell (Werner et al. 2013) and tested it
using multiple ensemble rainfall forecasts from the TIGGE database (Bougeault et al. 2010)
and in comparison to other Brazilian basins. Finally, Schwanenberg et al. (2015a) developed a
reservoir optimization system by coupling the MGB-IPH hydrological model, ECMWF
rainfall forecasts (Buizza et al. 2007) and the RTC-Tools (Real-Time Control Tools) software
(Schwanenberg et al. 2015b) to suggest optimum operations of the Trés Marias HPP dam.

In the tests presented by Schwanenberg et al. (2015a) that developed system were applied to
the reservoir’s operation during a single flood event, comparing results from perfect forecasts
(e.g. observations), deterministic forecasts, and ensemble forecasts (stochastic optimization).
Results showed that ensemble forecasts coupled with stochastic optimization were as good as
perfect forecasts to the operation of the reservoir for the tested single event. The present paper
extends the analysis to a more representative period of two consecutive years using optimum
decisions to control the reservoir’s release. This means that the impact of medium-range
forecasts to the long-term operation of the reservoir is also evaluated.
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Hydrological forecasts are produced using the MGB-IPH model (Collischonn et al.
2007; Paz et al. 2007; Fan et al. 2014), forced by historical rainfall forecasts from the ECMWF
global meteorological Bougeault et al. 2010). Both deterministic (fc) and probabilistic ensem-
ble forecasts (pf) are used. The system runs in the Delft-FEWS software shell (Werner et al.
2013). This hydrological forecasting framework is the same one presented by Fan et al.
(2015a), and forecasts used in the experiments shown here are the same as presented by Fan
et al. (2015a).

The tested period is from July 2011 until March 2013, comprising two dry seasons (May to
October) and two rainy seasons (November to March). Figure 3 presents the Trés Marias HPP
inflow hydrograph for the hindcast period and the Abaeté River hydrograph at the confluence
with the Sao Francisco River at the Ponte BR-040 (PBR-040) river gauge. The hydrographs
indicate two high inflows, the second of which reaches more than 6000 m*/s at Trés Marias
HPP in January 2012. When this second inflow occurred, Trés Marias HPP operators had to
deal with the large reservoir inflow and corresponding high flows in Abaeté River to avoid
flooding in the city of Pirapora.

Operational constraints of the Trés Marias HPP are:

1. The minimum flow requirement is 460m?/s;

2. Reservoir elevations must be between seasonally-dependent lower and upper bounds;

3. The forebay elevation should be close to a requested forebay elevation at each time-step
given by a guide cuve;

4. Spillage must be avoided as much as possible;

5. A discharge of 2000m’/s at the city of Pirapora must be avoided as much as possible to
prevent inundating small islands along the river;

6. If it is not possible to accomplish constraint 5, a discharge of 3800m?/s at the city of
Pirapora must be avoided as much as possible to prevent severe inundations; and

7. Changes in outflow should be as smooth as possible.

All of these constraints are included in the RTC-Tools model to optimize the
operation of Trés Marias HPP for the test period. Constraints 1 and 2 are considered
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Fig. 3 Trés Marias inflow hydrograph (blue line) and Abaeté River discharges at Ponte da BR-040 gauge (red
line)
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hard constraints. The others are implemented as soft constraints by penalizing their
violation in the objective function.

Weighting factors are adjusted under the supervision of CEMIG to represent the current
operation of the Trés Marias HPP. Under low flow conditions, operation of the Trés Marias
HPP must follow a guideline curve defined by ONS. Under high flow conditions, operation is
focused on avoiding floods at the city of Pirapora while also protecting the dam’s integrity.

The hindcast experiments consider five different configurations, most of which are tested
with different forecast horizons:

* Configuration 01: perfect knowledge of the future (using observed discharges), at different
total lead times (2, 3, 5, 7, 10, 15, 30, and 60 days);

*  Configuration 02: perfect knowledge of future rainfall is used to generate discharges of the
hydrological model with different total lead times (2, 3, 5, 7, 10, 15, 30, and 60 days);

*  Configuration 03: deterministic future rainfalls obtained from ECMWF (ECMWF-fc) are
used to generate discharges with the hydrological model, at different lead times (2, 3, 5, 7,
and 10 days);

* Configuration 04: ensemble mean of future rainfalls obtained from ECMWF (ECMWF-pf
mean) are used to generate discharges within the hydrological model for different lead
times (2, 3, 5, 7, 10, and 15days); and

* Configuration 05: ensemble of future rainfalls obtained from ECMWF (ECMWF-pf) are
used to generate discharges within the hydrological model, with a lead time of 15 days.

Results of these experiments are showed and discussed in the following section.

4 Results and Discussions
4.1 Evaluation of Hydrological Forecasts and Derived Scenario Trees

Evaluation results of deterministic and probabilistic hydrological forecasts and derived deci-
sion trees with 8 (8B) and 32 (32B) branches are shown in Fig. 4, 5 and 6.

MAE metric results (Fig 4) indicate that deterministic forecasts (ECMWF-fc) and ensemble
forecasts (ECMWF-pf) perform very similarly until a lead time of 96 h, with errors increasing
from 60 m*/s (0 h) to 170 m*/s (96 h). For higher lead times, the ensemble forecasts show
smaller errors (198 m’/s at 240 h) than the deterministic ones (220 m*/s at 240 h). Figure 4 also
demonstrates that the computed MAE of the decision trees 8B and 32B have the same value
than the full ensemble. This is expected since the scenario tree reduction generation process
supposes that the mean value of the distribution must be maintained. Hence, the test confirms
the expected feature of the tree reduction.

CRPS metric results (Fig 5) indicate a similar performance to the deterministic forecasts
(ECMWF-fc) and the ensemble forecasts (ECMWEF-pf) until a lead time 48 h, with errors
varying from 60 m*/s (0 h) to 115 m*/s (96 h). For higher lead times, the ensemble forecasts
have smaller errors (151 m®/s at 240 h) than the deterministic ones (220 m?/s at 240 h). The
CRPS of the scenario trees are between the deterministic forecasts and the ensemble. The tree
with 8 branches (8B) has slightly higher error values than the 32B tree.

Another important feature noticed on Fig 5 is that for decision trees the mean CRPS
values have “steps” along lead times. This happens due to the branching process. The
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Fig. 4 MAE for the deterministic forecast (ECMWF-fc), the ensemble forecasts (ECMWEF-pf), the 8 branches
decision tree (ECMWF-Tree 8B), and the 32 branches decision tree (ECMWEF-Tree 32B)]

trees have a lower number of branches for shorter lead times, whereas the number of
branches increases for larger lead times. This property makes the decision tree more
similar to a deterministic forecast at smaller lead times and more alike the probabilistic
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Fig. 5 Mean CRPS calculated for the deterministic forecast (ECMWF-fc), the ensemble forecasts (ECMWF-pf),
the 8 branches decision tree (ECMWE-Tree 8B), and the 32 branches decision tree (ECMWE-Tree 32B)
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Fig. 6 BS for the deterministic forecast (ECMWE-fc), the ensemble forecasts (ECMWE-pf), the 8 branches
decision tree (ECMWEF-Tree 8B), and the 32 branches decision tree (ECMWEF-Tree 32B)

forecast for higher lead times. As such, the CRPS of the trees propagates from the
deterministic forecasts to the probabilistic forecasts.

BS metric results (Fig 6) indicate that the performance of the deterministic forecasts (ECMWF-
fc) is similar to the ensemble forecasts’ (ECMWF-pf) performance until a lead time of 120 h, with
BS values varying from 0.01 (0 h) to 0.04 (120 h). For higher lead times, the ensemble forecasts
show smaller BS values (0.035 at 240 h) than the deterministic forecasts (0.048 at 240 h).

As it was also observed in the CRPS analysis, the performance of the scenario trees is
between the ones of the deterministic forecasts and the ensemble. Trees with 8 branches
have slighter higher errors than trees with 32 branches. Both trees almost converge to the
values of the full ensemble for high lead times, with a slightly better performance of the
larger (32B) tree.

For MAE, CRPS and BS metrics it is visible that the lead time 100 h has critical
importance. This lead time is when the uncertainties related to meteorological forecasts start
to be more expressive in the basin and results start to differ more substantially, what is accused
by the visible “split” between metrics results between different forecasting techniques (deter-
ministic, full ensemble, or ensemble trees).

The metrics assessment results indicate two main conclusions. The first is that the ensemble
forecasts have a better performance than the deterministic ones. This has been already reported
in the broader analysis of Fan et al. (2015a) and recurs in the optimization results. Second, the
generated scenario trees reveal a performance in between the deterministic forecast and the full
ensemble. Usually, results are more similar to the ensemble at greater lead times when decision
trees have more branches. At initial lead times, trees are more similar to the deterministic
forecasts due to the smaller number of branches. This last fact is not a problem, because
deterministic and probabilistic forecasts are usually close for smaller lead times; thus, the
overall performance loss of the trees is small.
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From the exclusive perspective of the tree metrics, the best option for the optimization is the use
of a tree with 32 branches. However, a pre-assessment of the CPU time of the optimization shows
an increase by a factor of 7 when increasing the number of branches from 8 to 32 in the multi-stage
stochastic optimization. From this perspective, the metrics differences between these two trees are
considered too small to justify the much longer processing time in an operational setup of the daily
operation of the Trés Marias HPP. Therefore, further analysis is based on the 8B tree only.

4.2 Optimization Results

Figure 7 shows the peak flow at the city of Pirapora for configurations 01-05. Lower values
indicate a better performance. Thresholds are given by two horizontal lines at 2000 m*/s (start
of small-scale inundation) and 3800 m’/s (start of large-scale inundation in the city). Results
from optimizations using a perfect inflow forecast (“Perfect”) show that a forecast horizon of 3
days is not sufficient to avoid peak flows over 3800 m>/s. The peak flow decreases with a
longer horizon and reaches the lower threshold of 2000 m*/s for a forecast horizon of 30 days.
This indicates that it is all but impossible to avoid any flooding in a practical setting.

The “ForecastOBS” configuration uses perfect rainfall observations as forcing of the
hyrological model. Once again, the performance increases with longer forecast horizons.
However, the decrease in the peak flow is significantly less than the one in the “Perfect”
configuration. This reflects the negative impact of the relatively sparse gauging network as
well as the error introduced by the hydrological model.

The results obtained with the deterministic forecasts (ECMWF-fc) and the ensemble mean
(ECMWF-pf mean) are very similar until forecast horizons of 10 days. Peak flows decrease
with longer horizons, but stay above 3800 m’/s in all cases. For the horizon of 15 days, the
remaining optimization with the ensemble mean (ECMWF-pf mean) shows a peak flow of
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Fig. 7 Results in terms of peak flow at the city of Pirapora for the studied circumstances
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3500 m*/s and performs similarly to the ForecastOBS result. This shows the added value of the
extra lead time of the ensemble mean (15 days) over the deterministic forecast (10 days).

The use of the 8B scenario tree in the multi-stage stochastic optimization significantly improve
the performance at a horizon of 15 days by reducing the peak flow from 3500 m*/s (ECMWF-pf
mean) to 2900 m*/s (ECMWE-pf). This clearly shows the benefit of the full tree in the stochastic
setup versus the averaging of the ensemble and application of a deterministic optimization.

AtFig. 7 there are no values reported below the lower threshold. This happens because there
is no motivation to have values below the lower threshold, once the objective of the optimiza-
tion is to keep values discharges equal or below 2000m?/s., and values equals to 2000m>/s are
the ones that guarantee the maximum flood protection without breaking the constrain.

Figure 8 shows the reservoir inflow and outflow as well as the obtained hydrographs at
Pirapora for the optimization run using the stochastic optimization.

Figure 9 shows the total volume of water (hm®) above the lower inundation threshold of
2000 m?/s at the city of Pirapora during the entire simulated period. Lower values indicate a
better performance with the optimum value of zero. For all configurations, a longer forecast
horizon Greater observed values in this case indicate worse situations because the water level
was higher and/or the flood lasted longer.

A general analysis of Fig. 9 indicates that for all studied circumstances increasing lead times
in the optimization procedure results in decreasing volumes above 2000m?/s threshold. The
lowest observed values were obtained for perfect inflows, culminating in zero values for
horizons of 30 days and greater. The performance of the configurations of practical relevance
decrease from 1450 hm® for the deterministic ECMWF-fc run of 10 days to a value of 1250 hm®
for the run of 15 days with the ensemble mean and the deterministic optimization (ECMWF-pf
mean) and to 650 hm? for the stochastic optimization with the 8B tree (ECMWF-pf). The latter
shows the same performance as the deterministic run with the perfect inflow forecast (Perfect).

Figure 10 summarizes the total energy production at the Trés Marias HPP. It is provided as
the percentage of the maximum energy generation that could have been generated at the HPP
had the inflow for the entire 2-year test period been completely turbined. Therefore, higher
values show a better performance.
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Fig. 8 Inflows and the obtained hydrographs at Pirapora for the optimization run using stochastic optimization
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Fig. 9 Results in terms of total volume of water (hm®) above 2000 m*/s (lower discharge threshold) observed at
Pirapora city during the entire period

The analysis of Fig. 10 indicates that the fluctuation in the total energy generated is
relatively small among the different configurations and for different forecast horizons; it is
between 78% and 80% for the forecast horizon of 15 days. Longer lead times do not
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Fig. 10 Percentage of energy production at the Trés Marias HPP, related to the maximum energy that could be
generated at the HPP assuming the 2-year test period inflow as known
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necessarily lead to a higher energy production. This is due to the fact that the optimization
becomes more flood-aware with longer horizons and probably deploys lower hydropower
generation to achieve better flood mitigation. The cases of practical relevance are again the
runs ECMWF-fc (10 days), ECMWF-pf mean (15 days) and ECMWF-pf (15 days). In all of
these runs, the energy generation is between 79.5% and 80%, which can be considered as an
almost identical performance. This means that the added value in the flood mitigation
objectives does not jeopardize the generation efficiency.

5 Conclusions

In this study, deterministic and probabilistic forecasts force a short-term optimization model to
operate the Trés Marias HPP reservoir over a 2-years test period. Main focus is the assessment
of the added value of probabilistic forecast, the novel mass-conservative scenario tree reduc-
tion technique and multi-stage-stochastic optimization in comparison to their deterministic
counterparts.

Main conclusions are:

*  The skill of the scenario trees, measured by several performance metrics, tends to decrease
with a decreasing number of branches, while the computational performance increases
with a decreasing number of branches.

* A larger lead time improves the skill of optimized reservoir operation in terms of flood
protection. If forecasts were perfect, the required lead time to accomplish the best operation
in terms of flood mitigation would be approximately 30 days.

* In forcing the deterministic and probabilistic ECMWF forecasts into the deterministic
optimization (by using the ensemble average), the main benefit is achieved by the longer
lead time of the probabilistic forecast. Little benefit can be explained by the higher skill of
the probabilistic forecast average.

* The use of probabilistic forecasts in combination with the stochastic optimization (15 days
lead time) outperforms the deterministic version (10 days lead time) significantly.

* Therange of the energy production rate between the different approaches is relatively small,
between 78% and 80%. This means that the flood protection improvement of the probabi-
listic / stochastic approach is achieved without compromising the energy generation.

Since early 2016, the presented approach is being used in the operational flow forecasting
and decision support system of CEMIG for the operation of six single reservoirs at different
locations and climates. Future studies are intended to address the extension of this approach to
reservoir systems, to analyze alternate scenario tree reduction techniques and to assess
additional meteorological and hydrological models.
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