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Abstract The aim of this paper is to present a comprehensive approach for spatial and
temporal demand profiling in water distribution systems. Multiple linear regression models
for estimating network design parameters and decision trees for predicting daily demand
patterns are presented. Proposed approach is a four-step procedure: data collection, data
processing, data characterization, and spatial and temporal demand profiling. Continuous flow
measurements and infrastructure and billing data were collected from a large set of water
network areas and combined with census data. Main results indicate that family structures (i.e.,
families with elderly or adolescents), individuals’ mobility (i.e., people employed in the
tertiary sector and university graduates) and public consumption (i.e., public spaces’ irrigation)
are key-variables to profile water demand. Profiling models are of the utmost importance to
describe water demand in areas with no monitoring but with similar socio-demographic
characteristics to the ones analyzed, to improve network operation and to support network
planning and design in new areas. Obtained models have been tested for new areas, showing
good prediction performances.
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1 Introduction

The approach used to classify patterns based on large amounts of data is known as
profiling (Wright 2009). Profiling can be applied in multiple domains and for a
variety of purposes. For instance, in the electricity sector, network managers need to
assess the type of demand to balance electricity between generation, transmission and
distribution, to support their long-term planning (Espinoza et al. 2005). In the water
sector, managers need to have reliable predictions of daily average consumption, peak
factors and minimum night consumption for the operation of water distribution
systems. Profiling water consumption is challenging given the nature and quality of
available data (i.e., different sources and with different temporal and spatial resolu-
tions), the numerous consumption drivers and the horizons and spatial scales involved
(Cabral et al. 2014; Donkor et al. 2012).

Water consumption in network areas is mostly influenced by socio-demographic,
billing and climate factors (Arbués et al. 2010; Browne et al. 2013; Parker and Wilby
2013). Higher consumption is typically associated with wealthier individuals living in
newer and larger households with outdoor uses, such as irrigation and swimming
pools (Beal and Stewart 2011). Households with more elements tend to have lower
water per capita consumption and households with elderly have patterns of more
frugal water consumption (March et al. 2010). In terms of billing and pricing, water
is price-inelastic, but the outdoor uses component is sensitive to price rising (Grafton et al. 2011;
Tanverakul and Lee 2012). Regarding climate, temperature and precipitation also affect water
uses (Polebitski and Palmer 2010).

Until now, demand profiling has been developed at the household level or at the
city or region level (Al-Zahrani and Abo-Monasar 2015; Hollermann et al. 2010;
Idowu et al. 2012; Polycarpou and Zachariadis 2013; Scheepers and Jacobs 2014),
taking into consideration a limited number of influential factors. Hardly any research
has been carried out at the census or network area level (Alcocer-Yamanaka and Tzatchkov
2012; Fontdecaba et al. 2012), important for many water planning decisions. Additional, very
prediction models incorporate seasonal or daily consumption scenarios, despite the differences
in consumption between winter and summer (Polebitski and Palmer 2010) or weekdays and
weekends (Alvisi et al. 2007).

The main objective of this paper is to present a comprehensive approach for spatial
and temporal demand profiling in network areas, focusing on domestic consumption.
Spatial profiling focuses on estimating consumption variables and patterns in network
areas without metering but with similar socio-demographic characteristics to the ones
analyzed. Temporal profiling focuses on predicting daily and seasonal demand behav-
iours in a specific area. This approach was explored through the use of extensive data
collected from different network areas in Portugal north and south regions. High-
resolution flow data (15-min) have been collected during one year, which allowed
identifying different seasonal and daily scenarios.

The main contribution of this study is the comprehensive approach for consumption
profiling that results in: (i) regression models for estimating design parameters and (ii) daily
consumption patterns for different seasonal and daily scenarios. These allow accurate estima-
tions of peaking factors, daily consumption patterns and minimum night consumption,
essential for the network operation and management (e.g., water losses control, pumping cost
minimization) and network planning, design and rehabilitation.
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2 Methodology

The methodology for spatial and temporal consumption profiling involves a four-step proce-
dure – data collection, data processing, data characterization, and spatial and temporal
consumption profiling – described in the following sections.

2.1 Data Collection

Data collection can be divided in two stages: the first includes collecting data from
different network areas and the second collecting census data provided by Statistics
Institutes.

In the first stage, flow time series, billed consumption and infrastructure data are
collected. Flow data readings from the utilities’ SCADA or telemetry systems should
be collected for each metered area. The following criteria have been set to select
network areas for the analysis:

1. Boundaries of each area where network operation are kept constant along the year.
2. Network areas with annual domestic billed consumption higher than 80 %, to ensure that

areas are mainly composed by residential clients.
3. Number of service connections between 150 and 5000, which corresponds to an accept-

able network size for operational management (Farley and Trow 2003; Jankovic-Nišic
et al. 2004).

4. Service connections with geographic reference. Infrastructure data is available in a
geographical information system.

5. High-resolution flow data with a 10 to 15-min time-step and a minimum one-year data
record.

In the second stage, socio-demographic data with the smallest territorial division, the
Bcensus areas^ should be collected. This division corresponds to a homogeneous building
and living zones, with ca. 300 households (INE 2012); a network area may include several
census areas.

2.2 Data Processing

Flow time series need to be validated, normalized and cleaned. Data validation includes
detecting and correcting outliers. Data normalization aims at obtaining data with a regular
time step (15 min). Infrastructure and billing data should be standardized and organized to a
common database.

A geoprocessing tool to relate infrastructure and billing data from network areas to socio-
demographic data organized in census areas should be used. This tool should convert
sociodemographic data at the census area level to data at the network area level.

2.3 Data Characterization

This step involves calculating all the variables for demand profiling. Regarding flow time
series, consumption variables and daily patterns different seasonal and daily scenario should be
considered.
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Consumption variables should include peaking factors and average consumption (relevant
for pipe design and rehabilitation) and minimum night consumption, and average consumption
during minimum night consumption period (relevant for network operation and water losses
control).

Daily consumption patterns can be obtained by the average values of flow data measure-
ments at each 15-min in the period of analysis. Dimensionless consumption patterns are
obtained by dividing each instantaneous values by the respective daily average. This is useful
to compare the daily behaviour of different network areas.

Consumption scenarios can be obtained using hierarchical cluster analyzes (Ward’s method and
Euclidean distances). The recommended procedure is to first identify of groups of months with a
similar behaviour and then, to identify group of weekdays with similar behaviour, within each
seasonal scenario following the same approach. Seasonal scenarios are related with changes in
outdoor uses throughout the year (e.g., garden watering and swimming pool filling during the
summer); daily scenarios are related to water use changes between working days and weekends.

Table 1 presents the consumption variables that should be considered and the respective
scenarios (global, seasonal and daily).

Infrastructure variables should include the main characteristics of the pipe network (i.e.,
material, diameter and installation year) and service connections (i.e., number of service
connections and service connection pipe length).

Billing variables should characterize the domestic and major categories of non-domestic
consumption (i.e., commerce-industry, collective and public).

Socio-demographic variables should include the four main census categories: building,
dwelling, family and individual. Building category refers to building age and number of floors;
dwelling category indicates whether the household is used as primary residence, rented or
vacant; family category indicates family type and size and individuals’ category refers to age,
employment and education level. Table 2 shows the 37 infrastructure (8), billing (6) and socio-
demographic (23) variables that should be considered for subsequent analyzes.

2.4 Spatial and Temporal Consumption Profiling

Profiling involves setting consumption variables and patterns as dependent variables that will
be explained by a combination of socio-demographic, billing and infrastructure independent
variables.

Table 1 Analysed time series, consumption variables and scenarios considered

Category of time series Variable Consumption scenario

Instantaneous flow values Instantaneous peaking factor (−) Global, seasonal, daily

Instantaneous flow values during
minimum night consumption period

Average consumption during minimum night
consumption period (l/inh hour)

Global, seasonal, daily

Instantaneous minimum flow values
during night period

Minimum night consumption value
(l/service connection day)

Global, seasonal

Daily flow Daily peaking factor (−) Global, seasonal, daily

Average daily consumption (l/inh day)

Monthly flow Monthly peaking factor (−) Global

Average monthly consumption l/inh month)

3446 Loureiro D. et al.



Amodel should depend on the fewest number of independent variables (Vandekerckhove et
al. 2014). Principal Components Analysis (PCA) should be applied to reduce the number of
independent variables into the most significant ones (Jolliffe 2002). Principal Components
(PCs) are new orthogonal (uncorrelated) variables given by linear combinations of the original
ones that preserve the total variance. Mathematically, PCA is an eigen decomposition of
covariance (or correlation) matrix of the original variables. The Kaiser-Meyer-Olkin measure
of sampling adequacy (KMO-test) should be used to avoid reducing the variables to an
inadequate size (Kaiser 1970). Adequate samples are the ones with KMO values greater than
0.6 and a total explained variance for each category greater than 75 %. After the PCA, Multiple
Linear Regression (MLR) should be carried out by setting consumption variables as dependent

variables and key-variables as independent variables. For a data set yi; xi1;…; xip
� �

n
i¼1 of n

statistical units, the MLR model takes is given by:

yi ¼ β0 þ β1xi1 þ…þ βpxip þ εI i ¼ 1;…; n ð1Þ
in which yi, Dependent or response variable for unit i;
βP: Regression coefficient related with independent variable p.
xip: Independent variable p for unit i.
εI: Random error at case i.
The regression coefficients β1...βp represent an increase (positive value) or decrease

(negative value) in the expected value of the dependent variable, associated with each
independent variable. The expected value of the dependent variable is equal to β0 when the
remaining regression coefficients are null. To evaluate the quality of the results, the standard
errors of the estimated regression coefficients should be computed, as well as the adjusted

Table 2 Socio-demographic, infrastructure and billing variables calculated in this study

Category Sub-category Variables

Socio-demographic Building Buildings until 1970, 1980, 1990, 2000 and up to 2011;
Buildings with 1–2 , 3–4 and ≥5 floor

Dwelling Residential immobility; Rented dwellings; Vacant dwellings

Family Families with adolescents; Families with elderly; Families
with unemployed; Small families (1–2 elements); Medium
families (3–4 elements); Large families (≥5 elements)

Individuals Population above age 65 years; Inactive workers;
University graduates; Economic mobility; Active
population mobility; Population with 12 years
of education

Billing Domestic Average domestic consumption (l/inh day); Total domestic
consumption (%); Total domestic consumption
within each tariff category (%)

Non-domestic Total commerce-industry consumption (%); Total
collective consumption (%); Total public consumption (%)

Infrastructure Pipe Average installation year (year); Average diameter (mm);
Total stainless steel pipe length (%); Total grey iron
pipe length (%); Total asbestos cement pipe length (%);
Unknown material pipe length (%)

Service-connection Service connection density (service connection/km);
Average service connection pipe length (m)
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correlation coefficient R2
a . This last coefficient is called Badjusted^ since it reflects the number

of independent variables and the sample size. Additionally, the p-value of the overall F-test for
the regression model should also be calculated.

For daily consumption patterns, a new cluster analysis with standardized variables needs to be
carried out to group areas with similar patterns. A Decision Tree (DT) using CART algorithm and
Gini impurity (Breiman et al. 1984) should be calculated to classify consumption patterns.

3 Case-Studies

The methodology was applied to network areas belonging to Portuguese WDS located in two
regions: the north region that includes the districts of Oporto (Por) and Braga (Bra), and the
south region incluiing the districts of Lisbon (Lis) and Setúbal (Set). Each area was identified
with a code with an abbreviation code followed by the district names (e.g., ADE_Bra refers to
an area in Braga district).

Billing and infrastructure data from 86 network areas was collected: 33 areas in the north
region and 53 south region. Network length in the studied areas ranged between 4 and 95 km,
clients ranged between 740 and 5200 and inhabitants ranged between 2300 and 9300.

Socio-demographic data referring to the last census in Portugal (2011) were obtained
through the National Statistics Institute website (www.ine.pt). To convert data at the census
area level to the network area level, a geoprocessing tool has been used (Loureiro, 2010;
Mamade 2013). This conversion was carried out by weighting census areas according to the
number of domestic clients. This weighting option proved to be more accurate than the original
weighting method that relied on the Thiessen’s polygons of each service connection. A cluster
analysis has been applied to highlight main regional differences in terms of the socio-
demographic, billing and infrastructure characteristics (Fig. 1).

Regarding billing variables, domestic billed consumption is higher in the north region
(Groups 1–2) where families are larger (higher percentage of families with adolescents).
Nevertheless, per capita consumption in the north ranges between 50 and 70 l/inh day, whereas
in the south (Groups 3–5) it is considerably higher (100–140 l/inh day). This can be due to the
higher economic mobility in the south region (higher percentage of workers employed in the
tertiary sector), which is typically correlated with higher incomes and may lead to less
conservation attitudes towards the use of water. This difference may also be related with the
existence of households in the north region that are not connected to the WDS (e.g.,
households with private wells). The northern region is also characterized by lower tempera-
tures (T) in the summer and much higher precipitation (P) than the south region. This explains
the lower public consumption in the northern region.

Regarding socio-demographic and infrastructure variables, the north region has newer
buildings, less asbestos cement pipes and a higher proportion of buildings with 1–2 floors,
comparatively to the south region. Northern areas also exhibit a higher proportion of families
with adolescents, while the southern areas have more elderly population.

Flow time series could not be obtained for all network areas due to insufficient historical data. A
total of 17 network areas (5 in the north and 12 in the south) have been used for consumption
profiling. Outliers were removed based on the concept of outlier region (Loureiro et al. 2015). For
each time series, the minimum consumption during the night period (0 h00-6 h00) was identified
and removed from the series, to ensure that neither consumption variables nor daily patterns were
influenced by the level of water losses in the network area (Farley and Trow 2003).
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4 Results from Spatial and Temporal Profiling

4.1 Consumption Scenarios

Daily and seasonal scenarios were identified using cluster analysis. Cluster analysis
allowed the identification of two seasons: the winter and the summer seasons. Fig. 2a
shows these seasonal scenarios for one network area, in which there is a seasonal
average consumption increase and a significant behavioural change. Typically for all
the analyzed areas, summer (S) scenarios occur from July to September, whereas
winter (W) scenarios occur from November to February.

The next step was to understand daily consumptions behaviours. Results have
shown that working days have a different behaviour from Saturdays and Sundays
and bank holidays, for both seasonal scenarios. Thus, for spatial and temporal
profiling three daily scenarios were analyzed for each seasonal scenario (Fig. 2b).

4.2 Data Reduction

The multiple variables obtained in each category (infrastructure, billing and customers
and socio-demography) were reduced to a subset of independent variables using PCA.
Since significant regional differences were identified, PCA was separately carried out
for the north and south regions. A total of 33 and 53 areas in the north and south
regions, respectively, were used in PCA. Table 3 summarizes all the key-variables
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Fig. 1 Cluster analysis revealing the main socio-demographic, billing and infrastructure characteristics of
network areas (Group 1–2: North region; Group 3–5: South region)
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considered for DT and MLR analysis and describes the structure of each principal
component.

Concerning the socio-demographic category in the south region, the 1st component
(PC1: Elderly families) is the most important, as it explains 58.2 % of total variance
and shows that families with 1–2 elements and inactive workers or elderly are related
(positive loadings), in opposition (negative loadings) to families with 3–4 elements
and with adolescents. The 2nd component (PC2: Individuals Mobility) explains
30.7 % of total variance and shows that individuals with higher graduation (university
graduates) and working in the tertiary sector (economic mobility) are related, in
opposition to individuals with lower education level. For the north region, PCA
showed the same components, however, the Individuals Mobility component had a
greater importance, explaining 50.6 % of total variance, whereas the Elderly families
component explained 26.0 %.

Regarding the infrastructure in the south region, the 1st component (PC1: Pipe material)
explains 44.9 % reflecting pipe material, which is independent of pipe size (PC2: Pipe size)
that explains 31.0 %. In opposition, for the north region, Pipe size is more important (explains
42.5 %) than Pipe material (explains only 25.3 %).

For billing variables in the south region, PCA was only applied to domestic billed
consumption variables as these are independent from non-domestic ones. The only component
obtained is PC1: Domestic billed consumption. The same results were obtained for the north
region.

In summary, data reduction allowed reducing the 49 initial variables into 8 new variables (5
PCs and 3 variables). A good structure (with high explained variance and KMO) was obtained
for both regions and important regional differences were observed.

4.3 Regression Models

A correlation matrix was calculated to analyze which relations between consumption variables
(Table 1) and key-variables (Table 3) ought to be explored. After analysing the most significant

Fig. 2 Scenario exploration for FAR_Set demand patterns: a seasonal; b daily
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correlations, a MLR analysis was separately carried out for both regions. Obtained regressions
are presented in Table 4.

In the south region, domestic billed consumption is negatively influenced by the
Elderly families component (β2 = −25.8) showing that families with 3–4 elements
with adolescents consume more water for domestic uses, which is coherent with the
north region results. This variable also negatively relates with the Pipe size compo-
nent (β2 = −13.6), meaning that increases with higher pipe diameters (above
110 mm).

In terms of the average consumption per inhabitant, two seasonal scenarios were
analyzed: winter and summer. For both scenarios, the average consumption per
inhabitant is higher for individuals with higher mobility (β1 = 34.2) and monthly
consumptions above 25m3 (β2 = −21.3). Consumption is higher in the summer
(β0 = 220.5) than in winter (β0 = 172.1).

Table 3 Key-variables considered for MLR using network data from 53 areas in the south region and 33 areas
from the north region

Category Key-variable Relevant variable for the South
region (loading)

Relevant variable for the North
region (loading)

Socio-demography PC1: Elderly
families

Inactive workers (0.92); Elderly
(0.94); Families with 1–2
elements (0.95); Families with
3–4 elements (−0.96); Families
with adolescents (−0.97)

Elderly (0.90); Families with
adolescents (−0.77)

PC2: Individuals
mobility

Economic mobility (0.80);
University graduates (0.97);
People with 12 years of
education (−0.91)

Economic mobility (0.80);
University graduates (0.86);
Families with >5 elements
(− 0.81); Families with 1–2
elements (0.88)

Infrastructure PC1: Pipe material Plastic pipes (−0.82); AC pipes
(0.83); Service connection
density (0.74)

AC pipes (0.93)

PC2: Pipe size % Diameter 110–310 (0.77); %
Diameter ≤ 110 (−0.78)

Plastic pipes (0.77); % Diameter
110–310 (−0.41); % Diameter
≤ 110 (−0.93); Service
connection density (0.70)

Billed consumption PC1: Domestic
Billed
consumption

Domestic consumption per
inhabitant (−0.61); Domestic
Consumption 1st level (0.78);
Domestic Consumption 2nd
level (0.93); Domestic
Consumption 4th level (−0.91)

Domestic consumption per
inhabitant (0.87); Domestic
Consumption 1st level (−0.78);
Domestic Consumption
2nd level (−0.84); Domestic
Consumption 4th level (0.93)

Commerce and
industry billed
consumption

Commercial and industrial billed
consumption category (%)

Commercial and industrial billed
consumption category (%)

Public billed
consumption

Public billed consumption
category (%)

Public billed consumption
category (%)

Collective billed
consumption

Collective billed consumption
category (%)

Collective billed consumption
category (%)
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The daily peaking factor increases mostly with monthly consumptions above 25 m3

(β2 = −0.10), plastic pipes (β3 = 0.10) and families with 3–4 elements and adolescents
(β1 = −0.02).

The minimum night consumption is analyzed in the winter scenario, since the average
flows are generally lower and leakage becomes more significant. This variable is mainly
influenced by socio-demographic characteristics, since the infrastructure is recent and in
good condition, with low percentage of asbestos cement (AC) (< 30 %) Thus, the
minimum night consumption increases with the Elderly families component
(β1 = 74.1) and the Individuals’ mobility component (β2 = 54.0), as well as with
Commerce-industry consumption (β3 = 11.1).

Domestic billed consumption in the north tends to be higher than in the south. This is
explained by the family size: in the north, 66 % of the families have more than 3 elements,
while in the south this represents 40 %. In this region, domestic billed consumption relates

Table 4 Profiling models obtained through MLR

Model Region N.o

areas
Dependent
variable

Explaining component Regression
coefficient

Standard-
Deviation

p-
value R2

a

A North 33 Domestic billed
consumption
per client
(l/cl day)

Constant (β0) 318.0 15.5 0.0002 0.53

Elderly families (β1) −29.4 16.7

Individuals mobility (β2) 62.5 17.9

Pipe material (β3) 65.5 16.2

B South 53 Domestic billed
consumption
per client
[l/cl day]

Constant (β0) 228.9 5.8 0.0001 0.35

Elderly families (β1) −25.8 6.0

Pipe size (β2) −13.6 6.0

C South 12 Daily peaking
factor [−]

Constant (β0) 1.39 0.04 0.0009 0.81

Elderly families −0.02 0.03

(β1) Domestic consumption
(β2)

−0.10 0.03

Pipe material (β3) 0.10 0.04

D South 12 Average
consumption
per inhabitant
[l/inh day] –
winter

Constant (β0) 57.3 21.0 0.004 0.72

Individuals mobility (β1) 16.5 10.3

Domestic consumption (β2) 20.1 7.7

Commerce and industry
consumption (β3)

8.1 1.8

E South 12 Average
consumption
per inhabitant
[l/inh day] –
summer

Constant (β0) 220.5 12.1 0.015 0.90

Individuals mobility (β1) 34.8 16.6

Domestic consumption (β2) −55.4 14.7

F South 12 Minimum night
consumption
per service
connection
[l/sc day] –
winter

Constant (β0) 105.5 109.7 0.003 0.73

Elderly families (β1) 74.1 42.7

Individuals mobility (β2) 54.0 46.0

Commerce and industry
consumption (β3)

28.6 9.9
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positively with Individuals Mobility component and negatively with the Elderly Families.
Tertiary sector Employees typically have higher incomes, leading to higher water consump-
tions with less conservation attitudes (Beal and Stewart 2011). This regression also indicates
that consumption relates positively with Pipe material, increasing in network areas where AC
pipes predominates.

Results are encouraging and should be explored with a large number of network areas.

4.4 Classification of Daily Consumption Patterns

A cluster analysis was firstly used to group dimensionless patterns obtained in the different
areas. This CA considered only the winter period, due to the more homogeneous consumption
and only the working days, due to the difference of consumption behaviour between working
days and weekends. The instantaneous consumption was characterized by the median and the
10th and the 90th percentiles of dimensionless consumption. A total of 18 areas (out of the
initial 21) was used for CA.

Four types of daily consumption patterns were obtained (Fig. 3). Consumption is charac-
terized at six periods: transition (6-7 h and 22-1 h), night (1-6 h), morning (7-10 h), lunch (10-
15 h), afternoon (15-19 h) and dinner (19-22 h). Obtained patterns are:

& Type 1: maximum value of the consumption in the morning (2.2), lower consumption at
lunch and afternoon and a significant consumption at dinner (1.5);

& Type 2: largest consumption during the day (morning, lunch, afternoon and dinner factor
higher than 1.0) and morning and dinner peaks with identical c (1.5);

Fig. 3 Daily consumption patterns for working days: a Type 1, b Type 2, c Type 3, and d Type 4
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& Type 3: higher consumption in the morning and lunch periods (1.5–1.7) and lower
consumption in the dinner period (1.4);

& Type 4: largest and identical consumption at lunch and dinner (1.6) and a significant
consumption during the morning period (1.4).

Types 1 and 2 correspond to the areas from the south region, wherein the
economic and individuals’ mobility is higher and the individuals spend most time
out. This fact justifies morning and dinner peaks and lower consumption during the
day.

Types 3 and 4 correspond to the areas from the north region, wherein the consumption
factors are higher throughout the day (morning, lunch, afternoon and dinner period), more
similar to consumption patterns in the weekends. These areas present a lower percentage of
active population of 47 % (against 68 % from the south), allowing consumption throughout the
day.

Decision tree results used to classify the daily demand pattern on working days is
presented in Fig. 4. The decision tree was constructed only using two variables to
classify the consumption patterns: public billed consumption and individuals’ mobility.

4.5 Validation

The regression models have been tested and validated using three new network areas.
A relative error given by the absolute difference between the real and the estimated
value divided by the estimated value was used. A network area in the north region
(VIL_Bra) has been used to validate the Model A (domestic billed consumption). Two
network areas in the south region were selected to validate Models C (daily peaking
factor) and Model D (per capita consumption in the summer). Table 5 presents the
relative errors, showing that the models have a good prediction performance, partic-

ularly for the south region, since theses models have a higher R2
a.

Pattern validation included two steps: decision tree application to classify two new
sectors (ALF_Lis and QTE_Lis were classified as Type1); and comparison with the
median pattern of the classified pattern. Figure. 5 shows that the real patterns are
close to the median of Type 1 pattern.

Fig. 4 Decision tree to classify the daily demand pattern for working days
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5 Concluding Remarks

This research aims at developing a comprehensive approach for spatial and temporal
profiling of water consumption variables and patterns in WDS. The approach is
applied to 86 network areas considering 49 initial socio-demographic, billing and
infrastructure variables. Scenario exploration allowed the identification of seasonal
(winter and summer) and daily scenarios (working days, Saturdays and Sundays).

Principal Components Analysis was carried out to define the most relevant socio-
demographic, billing and infrastructure variables (reducing the number of variables to
8), followed by Multiple Linear Regression models to estimate average, peaking and
minimum consumption. The most important components obtained were socio-
demographics and indicate that family structures (i.e., families with elderly or adoles-
cents), individuals’ mobility (i.e., people employed in the tertiary sector and university
graduates) and public consumption (i.e., public spaces’ irrigation) are key-variables to
profile water demand.

Four different consumption patterns have been identified, clearly showing that different
daily consumption behaviours are mainly associated with different family structures (families
with adolescents or elderly).

Results are encouraging and should be explored with a larger number of areas.
This research considerably reduces the uncertainty in planning and operation of water
distribution systems, thereby improving their efficiency and sustainability.
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Fig. 5 Pattern validation using
ALF_Lis and QTE_Lis

Table 5 Relative errors for the
validation models Model Network area Relative error [%]

Model A VIL_Bra 21

Model C ALF_Bra 9

QTE_Lis 7

Model D ALF_Bra 14

QTE_Lis 7

A comprehensive approach for water demand profiling 3455



References

Alcocer-Yamanaka VH, Tzatchkov VG (2012) Modeling of drinking water distribution networks using stochastic
demand. Water Resour Manag 26:1779–1792

Alvisi S, Franchini M, Marinelli A (2007) A short-term, pattern-based model for water-demand forecasting. J
Hydroinf 9:39–50

Al-Zahrani MA, Abo-Monasar A (2015) Urban residential water demand prediction based on artificial neural
networks and time series models. Water Resour Manag 29:3651–3662

Arbués F, Villanúa I, Barberán R (2010) Household size and residential water demand: an empirical approach*.
Aust J Agric Resour Econ 54(1):61–80

Beal C, Stewart RA (2011) South East Queensland residential end use study: final report. Griffith University
Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and regression trees. Wadsworth & Brooks/

Cole Advanced Books & Software, Monterey, CA
Browne A, MeddW, Anderson B (2013) Developing novel approaches to tracking domestic water demand under

uncertainty—a reflection on the Bup scaling^ of social science approaches in the United Kingdom. Water
Resour Manag 27:1013–1035. doi:10.1007/s11269-012-0117-y

Cabral M, Loureiro D, Mamade A, Covas D (2014) Water demand projection in distribution systems using a
novel scenario planning approach. Procedia Engineering 89:950–957

Donkor EA, Mazzuchi TA, Soyer R, Alan Roberson J (2012) Urban water demand forecasting: review of
methods and models. J Water Resour Plan Manag 140:146–159. doi:10.1061/(ASCE)WR.1943-5452.
0000314

Espinoza M, Joye C, Belmans R, De Moor B (2005) Short-term load forecasting, profile identification, and
customer segmentation: a methodology based on periodic time series power systems. IEEE Transactions on
20:1622–1630

Farley M, Trow S (2003) ) Losses in water distribution networks. A practitioner’s guide to assessment,
monitoring and control. IWA Publishing, London

Fontdecaba S, Grima P, Marco L, Rodero L, Sánchez-Espigares J, Solé I, Tort-Martorell X, Demessence D,
Martínez De Pablo V, Zubelzu J (2012) A methodology to model water demand based on the identification
of homogenous client segments. Application to the city of Barcelona. Water Resour Manag 26:499–516. doi:
10.1007/s11269-011-9928-5

Grafton RQ, Ward MB, To H, Kompas T (2011) Determinants of residential water consumption:
evidence and analysis from a 10-country household survey. Water Resour Res 47. doi:10.1029/
2010WR009685

Hollermann B, Giertz S, Diekkruger B (2010) Benin 2025-balancing future water availability and
demand using the WEAP 'Water evaluation and Planning' system. Water Resour Manag 24:3591–
3613

Idowu OA, Awomeso JA, Martins O (2012) An evaluation of demand for and supply of potable water in an
Urban Centre of Abeokuta and environs, southwestern Nigeria. Water Resour Manag 26:2109–2121

INE (2012) Census 2011: final results - Portugal. Instituto Nacional de Estatística - Statistics Portugal, Lisbon
Jankovic-Nišic B, Maksimovic C, Butler D, Graham NJ (2004) Use of flow meters for managing water supply

networks. J Water Resour Plan Manag 130:171–179
Jolliffe I D2002] Principal component analysis. Wiley Online Library
Kaiser HF (1970) A second generation little jiffy. Psychometrika 35:401–415
Loureiro D (2010) Consumption analysis methodologies for the efficient management of water distribution

systems (in portuguese). PhD Thesis, Universidade Técnica de Lisboa
Loureiro D, Amado C, Martins A, Vitorino D, Mamade A, Coelho ST (2015) Water distribution systems flow

monitoring and anomalous event detection: A practical approach. Urban Water J:1–11. doi:10.1080/
1573062X.2014.988733

Mamade A (2013) Profiling consumption patterns using extensive measurements - a spatial and
temporal forecasting approach for water distribution systems. Universidade Técnica de Lisboa,
MSc Thesis

March H, Perarnau J, Saurí D (2010) Exploring the links between immigration, ageing and domestic water
consumption: the case of the metropolitan area of Barcelona. Reg Stud 46:229–244. doi:10.1080/00343404.
2010.487859

Parker J, Wilby R (2013) Quantifying household water demand: a review of theory and practice in the UK. Water
Resour Manag 27:981–1011. doi:10.1007/s11269-012-0190-2

Polebitski AS, Palmer RN (2010) Seasonal residential water demand forecasting for census tracts. J Water Resour
Plan Manag 136:27–36

Polycarpou A, Zachariadis T (2013) An econometric analysis of residential water demand in Cyprus. Water
Resour Manag 27:309–317

3456 Loureiro D. et al.

http://dx.doi.org/10.1007/s11269-012-0117-y
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000314
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000314
http://dx.doi.org/10.1007/s11269-011-9928-5
http://dx.doi.org/10.1029/2010WR009685
http://dx.doi.org/10.1029/2010WR009685
http://dx.doi.org/10.1080/1573062X.2014.988733
http://dx.doi.org/10.1080/1573062X.2014.988733
http://dx.doi.org/10.1080/00343404.2010.487859
http://dx.doi.org/10.1080/00343404.2010.487859
http://dx.doi.org/10.1007/s11269-012-0190-2


Scheepers H, Jacobs H (2014) Simulating residential indoor water demand by means of a probability based end-
use model. J Water Supply Res Technol AQUA 63(6):476–488

Tanverakul SA, Lee J (2012) Historical review of U.S. residential water demand. In: World Environmental and
Water Resources Congress 2012:3122–3136. doi:10.1061/9780784412312.313

Vandekerckhove J, Matzke D, Wagenmakers EJ D2014] Model comparison and the principle of parsimony. In:
Busemeyer JR, Townsend Z, Wang J, Eidels A Deds] Oxford handbook of computational and mathematical
psychology. Oxford University Press, Oxford In press

Wright D (2009) Profiling the European Citizen: Cross-Disciplinary Perspectives info 11:96–98

A comprehensive approach for water demand profiling 3457

http://dx.doi.org/10.1061/9780784412312.313

	A Comprehensive Approach for Spatial and Temporal Water Demand Profiling to Improve Management in Network Areas
	Abstract
	Introduction
	Methodology
	Data Collection
	Data Processing
	Data Characterization
	Spatial and Temporal Consumption Profiling

	Case-Studies
	Results from Spatial and Temporal Profiling
	Consumption Scenarios
	Data Reduction
	Regression Models
	Classification of Daily Consumption Patterns
	Validation

	Concluding Remarks
	References


