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Abstract Water level prediction of rivers, especially in flood prone countries, can be helpful
to reduce losses from flooding. A precise prediction method can issue a forewarning of the
impending flood, to implement early evacuation measures, for residents near the river, when is
required. To this end, we design a new method to predict water level of river. This approach
relies on a novel method for prediction of water level named as RBF-FFA that is designed by
utilizing firefly algorithm (FFA) to train the radial basis function (RBF) and (FFA) is used to
interpolation RBF to predict the best solution. The predictions accuracy of the proposed RBF–
FFA model is validated compared to those of support vector machine (SVM) and multilayer
perceptron (MLP) models. In order to assess the models’ performance, we measured the
coefficient of determination (R2), correlation coefficient (r), root mean square error (RMSE)
and mean absolute percentage error (MAPE). The achieved results show that the developed
RBF–FFA model provides more precise predictions compared to different ANNs, namely
support vector machine (SVM) and multilayer perceptron (MLP). The performance of the
proposed model is analyzed through simulated and real time water stage measurements. The
results specify that the developed RBF–FFA model can be used as an efficient technique for
accurate prediction of water stage of river.

Water Resour Manage (2016) 30:3265–3283
DOI 10.1007/s11269-016-1347-1

* Mohammad Hossein Anisi
anisi@um.edu.my

1 Faculty of Computing, Universiti Teknologi Malaysia, UTM Johor Bahru, 81310 Johor, Malaysia
2 Communication System and Network (iKohza) Research Group, Malaysia-Japan International

Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala
Lumpur, Malaysia

3 Department of Computer System & Technology, Faculty of Computer Science & Information
Technology, University of Malaya, 50603 Kuala Lumpur, Malaysia

http://crossmark.crossref.org/dialog/?doi=10.1007/s11269-016-1347-1&domain=pdf


Keywords Water level prediction . Radial basis function (RBF) . Firefly algorithm (FFA)

1 Introduction

River flooding, as a natural disaster, occurs when rivers or streams overflow their banks. It
could cause serious damage to people and the places in which they live and work. During the
past decade, many solutions proposed to tackle river flooding, but it is clear that none of the
proposed methods can solve this issue, completely. For example, in the United States, where
flood mitigation is advanced, floods do about $6 billion worth of damage and kill about 140
people every year (National Geographic 2016). Prediction, as a part of statistical inference, is
one of the useful approaches in this regard. A precise method of prediction of water stage of
river can reduce losses from flooding using issue a forewarning for residents near the river,
when is required (Chau 2006; Li and Tan 2015; Qi et al. 2013).

Over the last decade, metaheuristic optimization algorithms such as the Genetic Algorithm
(GA), Ant Colony Optimization (ACO), Particle Swarm Optimization (PSO), Artificial Neural
Networks (ANN) and Support Vector Machine (SVM) (Yang 2010a, b) were applied in
prediction methods in different science. Also, there are various classes of ANN structure that
many researchers have used them in their findings (Yang et al. 1996, 1997, 2009; Coulibaly et
al. 2000, 2001; Daliakopoulose et al. 2005; Bhattacharjya and Datta 2005; Nayak et al. 2006;
Nourani et al. 2008; Kentel 2009; Ghose et al. 2010; Mohanty et al. 2010; Emamgholizadeh
2012; Emamgholizadeh et al. 2013a; Emamgholizadeh et al. 2014; Akrami et al. 2014).

To overcome disadvantages of heuristic algorithms in isolation, hybrid heuristics algorithms
also were widely used in different science, especially in hydrologic engineering. This is mainly
because hybrid heuristic algorithms provide more ability to exploitation and exploration
(Vasant 2012). Rogers et al. (1995) proposed the hybrid model include of the genetic algorithm
and ANN which utilized the genetic algorithm for remedying optimal field-scale groundwater
within ANN. Kisi et al. (2015) developed a novel method based on SVM coupled with firefly
algorithm (FA) to predict water level of Urmia Lake. In this model, FAwas applied to estimate
the optimal SVM parameters. A hybrid approach using FA, PSO and GA is also proposed for
sea water level prediction in (Long and Meesad 2013). Bazartseren et al. (2003) proposed a
model based on ANN. They found that both ANN and neuro-fuzzy systems outperformed the
other such as linear statistical models and they offered the results based on short-term water
level predictions on two different river reaches in Germany. In order to predict water level of
Shing Mun River, a neural network approach based on PSO also developed in (Chau 2006).
Siddiquee and Hossain (2014) proposed a prediction method based on artificial neural network
to provide an early flood warning system. This model predicts the water stage of Bahadurabad
River in Bangladesh.

In many practical situations, the main concern is making accurate and timely predictions at
specific locations. A simple Bblack-box^ model is then preferred in identifying a direct
mapping between inputs and outputs. In recent years, many nonlinear approaches, such as
the artificial neural network ANN, genetic algorithm GA, and fuzzy logic approaches, have
been used in solving flood forecasting problems. The following Table 1 shows the discussion
of previous works.

In this work, a hybrid method comprised of RBF and FFA is developed for river stage
prediction. RBF performs structural minimization whereas the traditional techniques use the
process of the minimization of the errors. Therefore, in the proposed hybrid method, while
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RBF is used to carry out structural minimization, the FFA searches the optimal hyper
parameters for RBF thus giving more reliable and accurate forecasts.

This combination of RBF and FFA is unique and thus has enhanced the performance of the
proposed RBF-FFA model compared with the other existing popular models. To the best of our
knowledge, this algorithm has never been applied to hydrological and water resources
problems. The new contributions made by this paper are the application of these two
algorithms on flood forecasting problems in real prototype cases and the comparison of their
performances with support vector machine (SVM) and multilayer perceptron (MLP) which are
two typical methods that have been widely applied to many real world applications. Figure 1
presents schematic diagram of the proposed RBF–FFA model. It is then used to predict water

Table 1 Discussion of previous works

Method Summary Ref

ANN Authors applied a back-propagation ANN model to predict discharge
and time to peak over a hypothetical watershed.

Smith and Eli 1995

ANN Authors compared ANN models with regression and simple conceptual
models.

Tokar and
Johnson 1999

ANN They employed an ANN approach for river stage forecasting in
Bangladesh. The advantage of ANN i.e., fast convergence and local
optimization.

Liong et al. 2000

ANN They performed a real-time prediction of water stage with an ANN
approach using an improved back-propagation algorithm.

Chau and Cheng 2002

PSO They employed particle swarm optimization in river stage forecasting
and rainfall-runoff correlation.

Chau 2004a,b

GA They employed a GA to formulate operating rules for multi-reservoir
systems. However, it requires the longest computation time.

Olivera and Loucks
1997

GA They evaluated a GA for optimal reservoir system operation with the
advantage of GA i.e., global searching ability.

Wardlaw and
Sharif 1999

GA He calibrated flow and water quality modeling using a GA. Chau 2002

Fuzzy logic They developed some reservoir operating rules with fuzzy programming
and made a comparison with deterministic dynamic programming.

Russell and
Campbell 1996

Fuzzy logic They planned reservoir operations through fuzzy set theory. Forntane et al. 1997

Fuzzy logic They forecasted rainfalls with combined gray and fuzzy methods. Yu et al. 2000

Fuzzy logic They applied a fuzzy iteration methodology for reservoir flood control
operations.

Cheng and Chau 2001

Fuzzy logic They used total fuzzy similarity for real-time reservoir operations. Dubrovin et al. 2002

Fuzzy logic They compared reservoir operating policies from fuzzy and non-fuzzy
explicit stochastic dynamic programming.

Tilmant et al. 2002

Fuzzy logic They employed a fuzzy system to minimize variance of operation
benefits for reservoir systems.

Ponnambalam
et al. 2002

Real
Value

Predicted
Value

FFA RBF

Parameters selection by RBF

Fig. 1 Diagram of RBF–FFA
model
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levels in the Selangor River of Malaysia. To evaluate proposed method, the level of river,
measured by four existing stations during 24 hours, is applied.

The outline of this paper is as follows: First, the study area is described in Section 2. In
Section 3, the proposed prediction method based on RBF–FFA is explained. Then, in Section 4
the different neural modelling methods are introduced for performance evaluation. Section 5
analyzes and discusses the performance of the algorithm through simulation results. Finally,
section 6 concludes the paper.

2 Region and Data Description

These hydrographs presents daily records of water level from Selangor River. This river is a
major river in Selangor, Malaysia. As shown in Fig. 2, it runs from Kuala Kubu Bharu in the
east and empties into the Straits of Malacca at Kuala Selangor in the west. We extract the
required information from the hydrograph for different stations includes Sg. Buloh (as
Station1), Sg. Klang (as Station2), Sg. Rawang (as Station3) and Sg. Penchala (as Station4)
on Selangor River. The hydrograph presents statistics of the daily water level with specific
color on different positions (see Fig. 2). According to the existing hydrograph on 27 February
2016, the average water level measured by Station1 is about 26.48188. This value is about
2.832708, 33.04167 and 18.30313 that measured by Station2, Station3 and Station4, respec-
tively Online flood information website (2016)). Table 2 represents 48 samples of the river
level value that measured by four stations during 24 hours on this date.

2.1 Radial basis function (RBF)

Artificial Neural Network (ANN) has been related to develop, optimize, estimate, predict and
monitor of complicated systems. A new and effective feed forward neural network with three
layers called radial basis function (RBF) neural network, which has fine characteristics of
approximation performance and the global optimum (Ansong et al. 2013). Generally speaking,
the RBF network consists of the input layer, the hidden layer and the output layer. Each neuron
in the input layer is responsible to transfer the recorded signal to the hidden layer. In the hidden
layer, we often use the radial basis function as the transfer function, while we usually adopt a

Fig. 2 Map of Selangor River
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Table 2 Real value of water level

Time Sg. Buloh (Station 1) Sg. Kelang (Station 2) Sg. Rawang (Station 3) Sg. Penchala (Station 4)

River Level River Level River Level River Level

1 12.00 20.21 2.10 31.46 18.04

2 12.30 22.28 2.37 30.66 18.01

3 13.00 22.35 2.19 29.68 18.00

4 13.30 23.34 2.20 32.68 18.01

5 14.00 26.25 2.37 33.63 17.88

6 14.30 21.28 2.39 34.70 17.97

7 15.00 20.40 2.24 34.80 17.97

8 15.30 25.55 2.18 34.50 17.50

9 16.00 24.43 2.14 34.20 17.30

10 16.30 23.38 2.10 33.93 17.10

11 17.00 21.36 2.16 33.60 17.27

12 17.30 27.59 2.30 33.40 17.30

13 18.00 28.60 2.38 33.69 17.10

14 18.30 29.49 2.60 32.67 17.27

15 19.00 26.40 2.79 32.50 17.30

16 19.30 27.39 3.10 32.10 17.45

17 20.00 28.45 3.45 32.01 17.55

18 20.30 27.48 3.50 31.90 17.80

19 21.00 25.52 3.25 31.80 17.92

20 21.30 24.54 3.33 32.00 17.89

21 22.00 23.51 3.19 32.39 17.80

22 22.30 21.47 3.05 32.50 18.00

23 23.00 22.40 2.98 32.80 18.10

24 23.30 24.43 2.88 32.70 18.30

25 24.00 26.44 2.75 33.40 18.52

26 01.00 28.45 2.60 33.80 18.53

27 01.30 29.52 2.55 33.99 18.58

28 02.00 30.53 2.70 34.20 18.65

29 02.30 29.41 2.85 34.10 18.68

30 03.00 27.40 2.99 34.11 18.71

31 03.30 24.43 3.15 34.20 18.69

32 04.00 23.45 3.19 34.00 18.50

33 04.30 27.47 3.36 34.10 18.54

34 05.00 29.49 3.43 33.87 18.61

35 05.30 30.51 3.20 33.60 18.70

36 06.00 29.53 3.21 33.50 18.79

37 06.30 28.55 3.19 33.55 18.90

38 07.00 31.56 3.10 33.40 18.98

39 07.30 28.54 3.03 33.28 19.10

40 08.00 25.53 3.00 33.10 19.25

41 08.30 28.52 3.16 32.80 19.30

42 09.00 29.50 3.18 32.75 19.33

43 09.30 29.49 3.27 32.65 19.30
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simple linear function in the output layer. The RBF program was implemented in MATLAB.
The main reasons for choosing RBF are its good computationally performance, simplicity,
reliability, high level of adaptation to optimization and other adaptive methods and also its
adaptability in handling parameters which are very complicated (Yu et al. 2011).

Basically, the RBF network consists of the three layers includes input layer, the hidden
layer and the output layer. ANN executes nominal computation to offer an output. Computa-
tion comprises one-pass arithmetic steps. No iterative and nonlinear computations are compli-
cated in offering an output. We have chosen RBF networks because this method is simple
design that it has just three layers. In this study, the number of neurons in the hidden layer is set
to 15; the Mean Squared Error (MSE) is 0.1 according to the actual training process and σ
(sigma) parameter is width of RBF by 0.02.

The main advantage is that RBF has a hidden layer that includes nodes named RBF units.
Each RBF has main factors that designate the location, deviation or width of the function’s
center. The hidden component processes the distance from input data vector and the center of
its RBF. If the distance from specific center to the input data vector is zero then RBF has own
peak and if the distance increases then the peak of RBF will be declined steadily.

In RBF, hidden layer have different sets of weights that divided into the two sets. These
weights can connect the hidden layer to the input layer and the hidden layer to the output layer
as linkages. The subjects of the basis functions fixed into the weights those connect to the input
layer. The issues of the network outputs fixed into the weights those connect to the hidden
layer to the output layer. Since the hidden units are nonlinear, the outputs of the hidden layer
can be merged linearly and subsequently processing is fast. The output of the network is
resultant from (Foody 2004).

yk xð Þ ¼
XN
j¼1

wk j∅ j xð Þ þ wk0 ð1Þ

where N , in Eq (1), is the number of basic functions, wk j represents a weighted connection
between the basis function and output layer, x the input data vector, and ∅j is the nonlinear
function of unit j, which is typically a Gaussian of the form (Foody 2004).

∅ j xð Þ ¼ exp −
x−μ2

2σ2
j

 !
ð2Þ

where x and μ are the input and the center of RBF unit, respectively. In Eq (2), the spread of
the Gaussian basis function Foody (2004) shows by σj. The weights can be optimized by least

Table 2 (continued)

Time Sg. Buloh (Station 1) Sg. Kelang (Station 2) Sg. Rawang (Station 3) Sg. Penchala (Station 4)

River Level River Level River Level River Level

44 10.00 31.52 3.16 32.40 19.31

45 10.30 32.53 3.10 32.45 19.28

46 11.00 29.54 3.01 32.20 19.18

47 11.30 26.55 2.80 32.15 19.15

48 12.00 24.57 2.75 32.10 19.14
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mean square LMS algorithm once the centers of RBF units are determined. The centers are
selected randomly or through clustering algorithms.

2.2 Firefly Optimization Algorithm

Firefly Algorithm (FFA) is a meta-heuristic search algorithm, which is based on the social
dashing behavior of fireflies in nature (Łukasik and Żak 2009;Yang 2010a, 2010b). In the FA,
there are two important issues: the difference of light intensity and formulation of the
attractiveness. We can consider that the attractiveness of a firefly is assessed by its light
intensity that in turn is related with the encoded objective function. For simplicity, the light
intensity L(d) varies with the distance d monotonically and exponentially based on Eq (3):

L ¼ L0 e
−γd ð3Þ

Where light intensity and absorption coefficient are presented by L0 and γ respectively. The
light intensity L(r) varies with distance r monotonically and exponentially. Where L0 the
original light intensity and γ is the light absorption coefficient.

As a firefly’s attractiveness is proportional to the light intensity seen by adjacent fireflies,
we can now define the attractiveness β of a firefly by Eq. (4):

β ¼ β0 e
−γd2 ð4Þ

Where β0 is the attractiveness at d = 0. β0 is their attractiveness at r = 0 i.e. when
twofireflies are found at the same point of search space. In general β0∈ [0, 1] should be
usedand two limiting cases can be defined: whenβ0 =0, that is only non-cooperative distrib-
uted random search is applied and when β0 = 1 which is equivalent to the scheme of
cooperative local search with the brightest firefly strongly determining other fireflies positions,
especially in its neighborhood. The value of γ determines the variation of attractiveness with
increasing distance from communicated firefly. Using γ=0 corresponds to no variation or
constant attractiveness and conversely setting γ→∞ results in attractiveness being close to
zero which again is equivalent to the complete random search. In general γ∈ [0, 10] could be
suggested (Yang 2008).

The distance between any two fireflies i and j at xi and xj can be the Cartesian distance
dij= ‖xi− xj‖2 or the 2-norm. The movement of a firefly i is attracted to another more attractive
(brighter) firefly j is determined by Eq. (5):

X i ¼ X i þ β0e
−γd2 X j−X i

� �þ αϵi ð5Þ
Where the second term is due to the attraction, while the third term is randomization with

the vector of random variables ϵi being drawn from a Gaussian distribution.
The optimal solution found by FFA is far better than the best solution obtained previously

in literature. FFA is a population based search algorithm inspired by the flashing behavior of
fireflies. It has been successfully employed to solve the nonlinear and non-convex optimization
problems [10–12]. Recent research shows that FFA is a very efficient and could outperform
other metaheuristic algorithms. The superiority of FFA over ABC and PSO has also been
reported in the literature (Fister et al. 2013).

FFA is simple, flexible and versatile, which is very efficient in solving a wide range of
diverse real-world problems. FFA has an ability to control its modality and adapt to problem
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landscape by controlling its scaling parameter. For anymeta-heuristic algorithm, a good balance
between exploitation and exploration during search process should be maintained to achieve
good performance. FFA being a global optimizing method is designed to explore the search
space and most likely gives an optimal/near-optimal solution if used alone (Fister et al. 2013).

In this study, we have developed a novel algorithm for prediction water stage of river to
reduce the risk of river flooding via hybridization of RBF and Firefly Algorithm (FFA). We
used Firefly Algorithm (FFA) for determining optimal RBF solutions. To achieve this, four
stations on the Selangor River to analyze the influence of water level on the capability of the
developed method.

3 RBF Parameters Selection Using FFA

In this study, FFA is used to interpolation RBF. In other words, we want to train RBF by FFA
as an optimization problem to forecast river flooding using water stage of river. FFA was
implemented in this study to optimize the connection weights of the RBF system.

Artificial neural network with radial basis function (RBF) based on FFA have been utilized
to interpolation RBF in order to approximate the solution and RBF is combined with firefly
optimization algorithm to estimate level of water. In this section, the explanation of experiment
by RBF–FFA model is shown. It should be mentioned that here, number of kernel RBFs was
set to 10. Also, the mean square error (MSE) was used as cost function in the FFA. The ability
of the RBF-FFA to make good predictions is related on input parameters selection. The water
level of river will be considered as inputs into RBF-FFA in order to examine the best
prediction by this method. In this combination, we train the RBF by FFA. In other words, in
order to improve the accuracy of the prediction, the responsibility of RBF’s training.

4 Model Performance Evaluation

Different neural modelling methods namely support vector machine (SVM) and multilayer
perceptron (MLP) are tested to model RBF–FFA. The support vector is a supervised learning
method that is used for classification and regression analysis. A multilayer perceptron is a
feedforward artificial neural network model that maps sets of input data onto a set of
appropriate outputs. In this study, MLP with a single hidden layer is used, as a general
approximation when enough number of hidden neurons are employed. To evaluate the
performance of proposed model and two famous prediction methods MLP and SVM; some
statistical indicators were examined as root mean squared error (RMSE), coefficient of
determination (R2), correlation coefficient (r) and mean absolute percentage error (MAPE).
Structurally, the evaluated networks consist of a single input and output layers; a single hidden
layers for MLP, RBF–FFA and SVM. We have postponed an evaluation and comparison of the
approaches until Section 5.

5 Results and Discussions

In this section, we try to show the importance of each independent input variable on the output.
Some experimental works were executed to do the evaluation of proposed model. Root-mean-
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square error (RMSE), coefficient of determination (R2), correlation coefficient (r) and mean
absolute percentage error (MAPE) served to evaluate the differences between the predicted and
actual values for both SVMs models. Table 4 shows the comparison of RBF–FFAwith SVM
and MLP.

The radial basis artificial neural network model was trained to minimize the mean squared
error (MSE) with parameter (water level of river) as input and the desired output
(predicted water level). To design and verify the reliability of the proposed model, the
dataset was divided into two different sets includes of training and test data that are
80% and 20% of the total data, respectively. The test data are not presented to the
network in the training process. Afterwards, when the training process is done, the
reliability and over fitting of the network was verified with test data. The overall
performance of the proposed models in estimating the water stage of four stations has
been graphically depicted in Fig. 3.

In order to acquire correct assessment, RBF–FFA model are tested with data set that have
not been used during the training process. The real and predicted water stage values for four
stations during 48 times have been stated in Table 3. By looking at this table, we can observe
that the RBF–FFA model can estimate this value very quickly about 700 ms before the actual
time.

In order to assess the performance of fit in our RBF–FFA, residual analysis has been
changed and used. This is to justify in what way the RBF–FFA can predict new water stage
values, with a great degree of certainty, resulting from extremely variable data (water level)
collected from stations on Selangor River. To evaluate the performance of the RBF–FFA, three
statistical estimators that are the mean squared error (MSE) in Eq. (6), coefficient of

Fig. 3 Overall performance of RBF–FFA for Station1, Station2, Station3, and Station4
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Table 3 Real and predicted value of water level

Time Station 1 Station 2 Station 3 Station 4

Real
Value

Predicted Real
Value

Predicted Real
Value

Predicted Real
Value

Predicted

1 20.21 2.10 31.46 18.04

1.7 20.207083457 2.1500000000 31.455000009 18.04000000000

2 22.28 2.37 30.66 18.01

2.5 22.283060000 2.3700000000 30.660000000 18.01000088800

3 22.35 2.19 29.68 18

3.2 22.346700000 2.1788030793 29.675000000 18.00000000000

4 23.34 2.20 32.68 18.01

4.4 22.880000000 2.2000000000 32.680000000 18.01000099900

5 26.25 2.37 33.63 17.88

5.6 25.895000000 2.3500000000 33.620000055 17.88800000000

6 21.28 2.39 34.7 17.97

6.8 22.250033000 2.3900000000 34.700000000 17.97000000000

7 20.40 2.24 34.8 17.97

7.5 20.270000000 2.2290000214 34.800000000 17.97000000000

8 25.55 2.18 34.5 17.5

8.6 25.250000000 2.1800000000 34.500000009 17.50000000000

9 24.43 2.14 34.2 17.3

9.2 24.400000000 2.1500000000 34.200000000 17.29555500000

10 23.38 2.10 33.93 17.10

10.4 23.453354913 2.1064807000 33.930000000 17.09012489900

11 21.36 2.16 33.6 17.27

11.6 21.380000000 2.1578035683 33.600000000 17.26830919900

12 27.59 2.30 33.4 17.30

12.8 26.070000000 2.3000000000 33.410000000 17.30000000000

13 28.60 2.38 33.69 17.10

13.4 28.400000000 2.3700000000 33.685550000 17.10000086400

14 29.49 2.60 32.67 17.27

14.6 29.602232116 2.5500000000 32.670000000 17.27000000000

15 26.40 2.79 32.5 17.30

15.3 26.207083457 2.7800000000 32.500000000 17.30455000000

16 27.39 3.10 32.1 17.45

16.7 27.287430000 3.0500000000 32.100000000 17.45000000000

17 28.45 3.45 32.01 17.55

17.4 28.450000000 3.4500030793 32.010000002 17.55000000000

18 27.48 3.50 31.9 17.80

18.6 27.880000000 3.5000000000 31.880000000 17.79000000000

19 25.52 3.25 31.8 17.92

19.3 25.660000000 3.2500000000 31.800000000 17.90000000000

20 24.54 3.33 32 17.89

20.4 24.444100000 3.3250000000 32.000000090 17.87000000000

21 23.51 3.19 32.39 17.80
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Table 3 (continued)

Time Station 1 Station 2 Station 3 Station 4

Real
Value

Predicted Real
Value

Predicted Real
Value

Predicted Real
Value

Predicted

21.6 23.299000000 3.1875000000 32.390000000 17.80900000000

22 21.47 3.05 32.5 18.00

22.7 21.250000000 3.0600000000 32.500000009 17.96000000000

23 22.40 2.98 32.8 18.10

23.4 22.400000000 3.0140000000 32.800000005 18.09607944900

24 24.43 2.88 32.7 18.30

24.5 24.450000000 2.8999900000 32.700550000 18.30002489900

25 26.44 2.75 33.4 18.52

25.6 26.380000000 2.7500000000 33.400000000 18.51000019900

26 28.45 2.60 33.8 18.53

26.3 28.470000000 2.6200000000 33.800008551 18.53000000000

27 29.52 2.55 33.99 18.58

27.5 28.880000000 2.5500000000 33.987550000 18.57000096400

28 30.53 2.70 34.2 18.65

28.7 29.902232116 2.6900000000 34.200988000 18.65000000000

29 29.41 2.85 34.1 18.68

29.5 29.207000000 2.8500000000 34.100000088 18.66000000000

30 27.40 2.99 34.11 18.71

30.4 27.283000000 2.9855550000 34.110000000 18.70100000000

31 24.43 3.15 34.2 18.69

31.3 24.346700000 3.1200000003 34.200005555 18.68999000000

32 23.45 3.19 34 18.50

32.6 23.400000000 3.1855000000 34.008000000 18.51000000000

33 27.47 3.36 34.1 18.54

33.3 27.895000000 3.3500000000 34.100089911 18.54000000000

34 29.49 3.43 33.87 18.61

34.6 29.250000000 3.4300000009 33.865000000 18.60000000000

35 30.51 3.20 33.6 18.70

35.3 30.270000000 3.2050000000 33.600000000 18.71000000000

36 29.53 3.21 33.5 18.79

36.6 29.250000000 3.2100000000 33.501000000 18.76000000000

37 28.55 3.19 33.55 18.90

37.5 28.500000000 3.1900000000 33.550088880 18.90500000049

38 31.56 3.10 33.4 18.98

38.4 30.450000000 3.1000000000 33.400000000 18.97112489900

39 28.54 3.03 33.28 19.10

39.7 28.380000000 3.0400000003 33.290000000 19.09091000000

40 25.53 3.00 33.1 19.25

40.3 26.070000000 3.0000000000 33.005000088 19.25000000000

41 28.52 3.16 32.8 19.30

41.4 28.550000000 3.1655000000 32.805550000 19.29152000000
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determination (R2) in Eq. (7) and root mean square error (RMSE), that if RMSE is zero then the
method has outstanding performance, in Eq. (8) were used:

MSE ¼ 1

r

X r

i
vpi−vai
� �2 ð6Þ

R2 ¼ 1−

X r

i¼1
vpi−vai
� �2

X r

i¼1
vpi− vav

� �2 ð7Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
.
r
Xr

i¼1

vpi−vai
� �2

vuut ð8Þ

Where r the number of points is, vpi is the estimated value, vai is the actual value, and vav is
the average of the actual values. The coefficient of determination, R2, of the linear regression
line between the estimated values of the neural network model and the required output was
also used as a measure of performance. The use of R2, the coefficient of determination, also
called the multiple correlation coefficient, is well established in classical regression analysis
(Rao 1973). Its definition as the proportion of variance 'explained' by the regression model
makes it useful as a measure of success of predicting the dependent variable from the
independent variables. The closer the R2 value is to 1, the better the model fits to the actual
data (Goudarzi et al. 2015). Express differently, R-square is the square of the correlation
between the response values and the predicted response values. It is also named the square of
the multiple correlation coefficients and the coefficient of multiple determinations. Also, the
root-mean-square error (RMSE) is a frequently used measure of the differences between values
(sample and population values) predicted by a model or an estimator and the values actually
observed. This measurement processes how successful the fit is in describing the change of the

Table 3 (continued)

Time Station 1 Station 2 Station 3 Station 4

Real
Value

Predicted Real
Value

Predicted Real
Value

Predicted Real
Value

Predicted

42 29.50 3.18 32.75 19.33

42.5 29.600000000 3.1800000000 32.750000000 19.34000000000

43 29.49 3.27 32.65 19.30

43.7 29.490003457 3.2650000000 32.650000087 19.30566000000

44 31.52 3.16 32.4 19.31

44.6 30.583060000 3.1550500000 32.410000000 19.31000000000

45 32.53 3.10 32.45 19.28

45.4 32.340000000 3.1000000700 32.450261742 19.28000000000

46 29.54 3.01 32.2 19.18

46.7 30.400000000 3.0100000000 32.190000000 19.18000000000

47 26.55 2.80 32.15 19.15

47.3 25.900000000 2.8200000000 32.150000911 19.14999000000

48 24.57 2.75 32.1 19.14
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data. The Mean Squared Error (MSE) is a measure of how close a fitted line is to data points.
For every data point, we take the distance vertically from the point to the corresponding y
value on the curve fit (the error), and square the value. The smaller the Mean Squared Error,
the closer the fit is to the data. Table 3 shows more details for four Station1, Station2, Station3
and Station4. Note that in suitable selection of initial weights may cause the local minimum
data. In order to prevent of this unfavorable phenomenon, 30 runs for each method were
applied and in each run different random values of initial weights were measured. Finally, in
RBF the best-trained network, which had minimum MSE of validation data, was selected as
the trained network. The estimation performance of RBF–FFA, SVM and MLP are assessed
by R2 and MSE the output values are stated in Table 4. This table shows the results in 30
different running times with Iteration = 100.

Table 4 shows R2 values of all data sets for the RBF–FFA, SVM and MLP. It is clear that
the fit is rationally suitable for all data sets with R-values about 1 for the RBF–FFA. The SVM
and MLP were found to be as sufficient for estimation of the water stage, whereas the RBF–
FFA model showed a significantly high degree of accuracy in the estimation of R2 between
0.97 and 0.99. Also, root of MSE was founded that the smaller the RMSE of the test data set,
the higher is the predictive quality. The assessment of the aforementioned models shows the
suitable predictive capabilities of RBF–FFA model.

In continue, we show the results of comparison based on correlation coefficient (r) and
mean absolute percentage error (MAPE) that MAPE is the mean absolute percentage error, i.e.,
the average absolute error in predicting cumulative data, divided by the actual cumulative data
(Lam et al. 2001). This comparison is served to evaluate the differences between the predicted
and actual values for RBF–FFA, SVM and MLP models. Table 4 shows the results of
comparison based on (r) and (MAPE).

r ¼
X n

i¼1
vpi−���vpi
� �

: vai−���vai
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX n

i¼1
vpi−���vpi
� �

:
X n

i¼1
vai−���vai
� �r ð9Þ

MAPE ¼ 1

r

X n

i¼1

vpi−vai
vai

����
����� 100 ð10Þ

Where n the number of points is, vpi is the estimated value, vai is the actual value, and �vpi
and �vai are the mean value of vpi and vai respectively. The smaller value ofMAPE has the better
performance model and vice versa in the case of r.

Tables 4 and 5 indicate that the RBF–FFA model has the best capabilities of estimating the
water stage of river. Based on the results of comparisons we can find that the performance of
proposed model is different between the two considered approaches. The main point is that we
compared RBF–FFA model to the SVM and MLP and obtained better results and the results
expressed that is the superior method.

6 Conclusion

In this study, a novel hybrid prediction model is proposed. For this purpose, in order to
improve the prediction accuracy, we integrated (FFA) to train the (RBF). The simulation

A Novel Method to Water Level Prediction using RBF and FFA 3277



T
ab

le
4

T
he

pe
rf
or
m
an
ce
s
of

R
B
F–

FF
A

m
od
el
ba
se
d
on

R
2
an
d
R
M
SE

co
m
pa
re
s
to

ot
he
r
m
et
ho
do
lo
gi
es

R
un

no
R
B
F–

FF
A

SV
M

M
L
P

R
2

R
M
SE

R
2

R
M
SE

R
2

R
M
SE

S1
S2

S3
S4

S1
S2

S3
S4

S1
S2

S3
S4

S1
S2

S3
S4

S1
S2

S3
S4

S1
S2

S3
S4

1
0.
99

0.
98

0.
99

0.
99

0.
69

0.
78

0.
69

0.
63

0.
79

0.
88

0.
89

0.
79

2.
69

1.
78

1.
69

1.
63

0.
93

0.
72

0.
78

0.
72

1.
36

1.
98

1.
98

1.
98

2
0.
98

0.
98

0.
98

0.
99

0.
78

0.
78

0.
78

0.
69

0.
88

0.
88

0.
88

0.
79

1.
78

1.
78

1.
78

1.
69

0.
91

0.
72

0.
66

0.
82

0.
98

1.
98

1.
56

1.
90

3
0.
97

0.
98

0.
99

0.
99

0.
79

0.
59

0.
69

0.
69

0.
77

0.
88

0.
89

0.
79

1.
79

1.
59

1.
69

1.
69

0.
80

0.
69

0.
67

0.
72

0.
90

1.
02

0.
98

1.
02

4
0.
99

0.
99

0.
99

0.
99

0.
69

0.
69

0.
69

0.
69

0.
89

0.
89

0.
89

0.
79

1.
69

1.
69

1.
69

1.
69

0.
92

0.
72

0.
68

0.
80

0.
98

1.
98

1.
43

1.
02

5
0.
99

0.
98

0.
98

0.
99

0.
69

0.
79

0.
59

0.
59

0.
79

0.
88

0.
88

0.
79

1.
69

2.
79

1.
59

2.
59

0.
88

0.
70

0.
78

0.
86

0.
99

1.
36

1.
98

1.
98

6
0.
97

0.
98

0.
99

0.
99

0.
79

0.
69

0.
69

0.
69

0.
77

0.
88

0.
89

0.
79

1.
79

2.
69

1.
69

1.
69

0.
86

0.
70

0.
64

0.
82

1.
02

0.
98

1.
99

1.
98

7
0.
99

0.
98

0.
99

0.
99

0.
69

0.
69

0.
69

0.
69

0.
79

0.
88

0.
89

0.
79

2.
69

1.
69

1.
69

1.
69

0.
93

0.
68

0.
77

0.
82

1.
36

1.
36

1.
36

0.
98

8
0.
99

0.
98

0.
98

0.
99

0.
69

0.
59

0.
59

0.
69

0.
89

0.
88

0.
88

0.
79

2.
69

2.
59

2.
59

1.
69

0.
93

0.
72

0.
68

0.
74

1.
36

1.
98

0.
98

0.
99

9
0.
97

0.
99

0.
99

0.
98

0.
79

0.
59

0.
69

0.
89

0.
87

0.
89

0.
89

0.
78

2.
79

1.
59

2.
69

1.
89

0.
91

0.
72

0.
76

0.
74

0.
98

1.
98

1.
43

1.
02

10
0.
99

0.
98

0.
99

0.
99

0.
69

0.
69

0.
69

0.
69

0.
89

0.
88

0.
89

0.
79

2.
69

16
9

1.
69

1.
69

0.
90

0.
69

0.
67

0.
72

1.
43

1.
33

1.
36

1.
36

11
0.
99

0.
98

0.
99

0.
99

0.
69

0.
69

0.
69

0.
69

0.
89

0.
88

0.
89

0.
99

2.
69

1.
69

1.
69

1.
69

0.
72

0.
72

0.
68

0.
70

1.
35

1.
98

1.
36

1.
98

12
0.
99

0.
98

0.
99

0.
99

0.
69

0.
69

0.
69

0.
69

0.
89

0.
88

0.
89

0.
89

1.
69

1.
69

1.
69

2.
69

0.
98

0.
70

0.
68

0.
76

0.
99

1.
33

1.
89

1.
98

13
0.
99

0.
99

0.
99

0.
98

0.
59

0.
69

0.
59

0.
80

0.
79

0.
89

0.
89

0.
88

1.
59

2.
69

1.
59

2.
80

0.
96

0.
70

0.
64

0.
72

1.
33

1.
36

0.
98

1.
89

14
0.
99

0.
99

0.
99

0.
99

0.
69

0.
69

0.
69

0.
59

0.
79

0.
89

0.
89

0.
79

1.
69

2.
69

2.
69

2.
59

0.
93

0.
68

0.
67

0.
72

1.
36

0.
98

1.
36

1.
36

15
0.
99

0.
98

0.
99

0.
98

0.
69

0.
69

0.
69

0.
79

0.
79

0.
88

0.
89

0.
78

1.
69

2.
69

2.
69

2.
79

0.
93

0.
72

0.
58

0.
72

1.
36

1.
98

0.
98

1.
36

16
0.
99

0.
98

0.
99

0.
99

0.
58

0.
69

0.
79

0.
69

0.
89

0.
88

0.
89

0.
99

1.
58

1.
69

1.
79

2.
69

0.
93

0.
72

0.
56

0.
83

1.
36

1.
98

0.
99

1.
89

17
0.
99

0.
98

0.
99

0.
99

0.
69

0.
59

0.
69

0.
69

0.
89

0.
88

0.
89

0.
79

2.
69

1.
59

1.
69

1.
69

0.
90

0.
69

0.
85

0.
82

1.
89

1.
89

1.
02

0.
98

18
0.
98

0.
99

0.
99

0.
97

0.
78

0.
69

0.
69

0.
79

0.
78

0.
89

0.
89

0.
77

27
8

1.
69

1.
69

1.
79

0.
82

0.
72

0.
58

0.
80

0.
98

1.
98

1.
36

1.
89

19
0.
99

0.
99

0.
97

0.
99

0.
69

0.
69

0.
69

0.
69

0.
89

0.
89

0.
87

0.
89

2.
69

1.
69

1.
69

1.
69

0.
88

0.
70

0.
58

0.
86

0.
99

1.
36

1.
36

0.
98

20
0.
96

0.
98

0.
99

0.
99

0.
80

0.
69

0.
79

0.
59

0.
76

0.
88

0.
89

0.
89

2.
80

16
9

1.
79

1.
59

0.
86

0.
70

0.
54

0.
87

1.
02

1.
36

1.
98

1.
36

21
0.
99

0.
98

0.
99

0.
99

0.
69

0.
69

0.
69

0.
69

0.
89

0.
88

0.
89

0.
89

2.
69

1.
69

1.
69

2.
69

0.
93

0.
68

0.
57

0.
82

1.
36

0.
98

1.
98

0.
98

22
0.
98

0.
99

0.
99

0.
99

0.
69

0.
69

0.
59

0.
69

0.
88

0.
89

0.
89

0.
89

2.
69

1.
69

2.
59

2.
69

0.
93

0.
72

0.
58

0.
72

1.
36

1.
98

1.
89

1.
98

3278 S.A. Soleymani et al.



T
ab

le
4

(c
on
tin

ue
d)

R
un

no
R
B
F–

FF
A

SV
M

M
L
P

R
2

R
M
SE

R
2

R
M
SE

R
2

R
M
SE

S1
S2

S3
S4

S1
S2

S3
S4

S1
S2

S3
S4

S1
S2

S3
S4

S1
S2

S3
S4

S1
S2

S3
S4

23
0.
99

0.
99

0.
99

0.
98

0.
69

0.
69

0.
69

0.
79

0.
89

0.
89

0.
89

0.
88

2.
69

1.
69

2.
69

2.
79

0.
91

0.
73

0.
56

0.
87

0.
98

0.
98

0.
98

1.
98

24
0.
98

0.
99

0.
99

0.
99

0.
78

0.
59

0.
69

0.
69

0.
88

0.
89

0.
89

0.
79

1.
78

1.
59

2.
69

1.
69

0.
90

0.
79

0.
57

0.
82

1.
89

1.
43

1.
36

1.
89

25
0.
97

0.
98

0.
99

0.
99

0.
79

0.
69

0.
69

0.
79

0.
87

0.
88

0.
89

0.
79

1.
79

2.
69

1.
69

2.
79

0.
91

0.
72

0.
58

0.
80

0.
98

1.
98

0.
98

1.
89

26
0.
90

0.
98

0.
99

0.
98

0.
88

0.
69

0.
69

0.
79

0.
70

0.
88

0.
89

0.
78

1.
88

2.
69

0.
99

2.
79

0.
93

0.
70

0.
58

0.
87

1.
36

0.
98

1.
35

0.
98

27
0.
99

0.
99

0.
97

0.
99

0.
69

0.
79

0.
79

0.
69

0.
89

0.
89

0.
87

0.
79

1.
69

2.
79

0.
99

1.
69

0.
92

0.
70

0.
54

0.
88

0.
98

1.
36

0.
98

1.
36

28
0.
98

0.
99

0.
99

0.
99

0.
69

0.
69

0.
69

0.
59

0.
78

0.
89

0.
89

0.
79

1.
69

2.
69

0.
99

1.
59

0.
97

0.
70

0.
47

0.
88

1.
35

0.
98

0.
99

0.
98

29
0.
99

0.
99

0.
99

0.
98

0.
69

0.
69

0.
69

0.
79

0.
89

0.
89

0.
89

0.
78

2.
69

2.
69

1.
69

1.
79

0.
95

0.
72

0.
58

0.
82

1.
01

1.
98

1.
02

1.
35

30
0.
98

0.
98

0.
99

0.
99

0.
69

0.
69

0.
69

0.
69

0.
88

0.
88

0.
89

0.
89

1.
69

2.
69

1.
69

1.
69

0.
91

0.
72

0.
56

0.
89

0.
98

1.
98

1.
36

1.
89

A Novel Method to Water Level Prediction using RBF and FFA 3279



T
ab

le
5

T
he

pe
rf
or
m
an
ce
s
of

R
B
F–

FF
A

m
od
el
ba
se
d
on

r
an
d
M
A
P
E
co
m
pa
re
s
to

ot
he
r
m
et
ho
do
lo
gi
es

R
un

no
R
B
F–

FF
A

SV
M

M
L
P

r
M
A
PE

r
M
A
PE

r
M
A
PE

S1
S2

S3
S4

S1
S2

S3
S4

S1
S2

S3
S4

S1
S2

S3
S4

S1
S2

S3
S4

S1
S2

S3
S4

1
0.
99

0.
98

0.
99

0.
99

0.
26

0.
29

0.
22

0.
26

0.
89

0.
78

0.
99

0.
89

0.
69

0.
78

0.
69

0.
63

0.
93

0.
72

0.
78

0.
72

1.
36

1.
98

1.
98

1.
98

2
0.
98

0.
98

0.
98

0.
99

0.
28

0.
28

0.
22

0.
27

0.
88

0.
88

0.
88

0.
89

0.
78

0.
78

0.
78

0.
69

0.
91

0.
72

0.
66

0.
82

0.
98

1.
98

1.
56

1.
90

3
0.
97

0.
98

0.
99

0.
99

0.
26

0.
28

0.
24

0.
27

0.
87

0.
78

0.
89

0.
89

0.
79

0.
59

0.
69

0.
69

0.
80

0.
69

0.
67

0.
72

0.
90

1.
02

0.
98

1.
02

4
0.
99

0.
99

0.
99

0.
99

0.
27

0.
29

0.
22

0.
26

0.
89

0.
89

0.
89

0.
89

0.
69

0.
69

0.
69

0.
69

0.
92

0.
72

0.
68

0.
80

0.
98

1.
98

1.
43

1.
02

5
0.
99

0.
98

0.
98

0.
99

0.
26

0.
30

0.
25

0.
27

0.
88

0.
78

0.
88

0.
89

0.
69

0.
79

0.
59

0.
59

0.
88

0.
70

0.
78

0.
86

0.
99

1.
36

1.
98

1.
98

6
0.
97

0.
98

0.
99

0.
99

0.
26

0.
30

0.
25

0.
26

0.
87

0.
88

0.
99

0.
99

0.
79

0.
69

0.
69

0.
69

0.
86

0.
70

0.
64

0.
82

1.
02

0.
98

1.
99

1.
98

7
0.
99

0.
98

0.
99

0.
99

0.
29

0.
30

0.
22

0.
28

0.
89

0.
78

0.
89

0.
89

0.
69

0.
69

0.
69

0.
69

0.
93

0.
68

0.
77

0.
82

1.
36

1.
36

1.
36

0.
98

8
0.
99

0.
98

0.
98

0.
99

0.
28

0.
29

0.
24

0.
26

0.
89

0.
88

0.
88

0.
89

0.
69

0.
59

0.
59

0.
69

0.
93

0.
72

0.
68

0.
74

1.
36

1.
98

0.
98

0.
99

9
0.
97

0.
99

0.
99

0.
98

0.
26

0.
28

0.
22

0.
26

0.
87

0.
89

0.
89

0.
88

0.
79

0.
59

0.
69

0.
89

0.
91

0.
72

0.
76

0.
74

0.
98

1.
98

1.
43

1.
02

10
0.
99

0.
98

0.
99

0.
99

0.
26

0.
29

0.
24

0.
28

0.
89

0.
88

0.
89

0.
98

0.
69

0.
69

0.
69

0.
69

0.
90

0.
69

0.
67

0.
72

1.
43

1.
33

1.
36

1.
36

11
0.
99

0.
98

0.
99

0.
99

0.
28

0.
28

0.
24

0.
27

0.
89

0.
88

0.
89

0.
89

0.
69

0.
69

0.
69

0.
69

0.
72

0.
72

0.
68

0.
70

1.
35

1.
98

1.
36

1.
98

12
0.
99

0.
98

0.
99

0.
99

0.
26

0.
28

0.
22

0.
26

0.
89

0.
88

0.
89

0.
89

0.
69

0.
69

0.
69

0.
69

0.
98

0.
70

0.
68

0.
76

0.
99

1.
33

1.
89

1.
98

13
0.
99

0.
99

0.
99

0.
98

0.
28

0.
28

0.
24

0.
26

0.
89

0.
89

0.
89

0.
88

0.
59

0.
69

0.
59

0.
80

0.
96

0.
70

0.
64

0.
72

1.
33

1.
36

0.
98

1.
89

14
0.
99

0.
99

0.
99

0.
99

0.
26

0.
29

0.
24

0.
27

0.
89

0.
89

0.
89

0.
89

0.
69

0.
69

0.
69

0.
59

0.
93

0.
68

0.
67

0.
72

1.
36

0.
98

1.
36

1.
36

15
0.
99

0.
98

0.
99

0.
98

0.
26

0.
29

0.
23

0.
26

0.
89

0.
88

0.
89

0.
88

0.
69

0.
69

0.
69

0.
79

0.
93

0.
72

0.
58

0.
72

1.
36

1.
98

0.
98

1.
36

16
0.
99

0.
98

0.
99

0.
99

0.
29

0.
30

0.
22

0.
28

0.
89

0.
88

0.
89

0.
89

0.
58

0.
69

0.
79

0.
69

0.
93

0.
72

0.
56

0.
83

1.
36

1.
98

0.
99

1.
89

17
0.
99

0.
98

0.
99

0.
99

0.
26

0.
30

0.
24

0.
26

0.
89

0.
88

0.
89

0.
89

0.
69

0.
59

0.
69

0.
69

0.
90

0.
69

0.
85

0.
82

1.
89

1.
89

1.
02

0.
98

18
0.
98

0.
99

0.
99

0.
97

0.
26

0.
28

0.
22

0.
26

0.
88

0.
89

0.
89

0.
87

0.
78

0.
69

0.
69

0.
79

0.
82

0.
72

0.
58

0.
80

0.
98

1.
98

1.
36

1.
89

19
0.
99

0.
99

0.
97

0.
99

0.
28

0.
29

0.
21

0.
27

0.
89

0.
89

0.
87

0.
89

0.
69

0.
69

0.
69

0.
69

0.
88

0.
70

0.
58

0.
86

0.
99

1.
36

1.
36

0.
98

20
0.
96

0.
98

0.
99

0.
99

0.
26

0.
29

0.
24

0.
28

0.
86

0.
88

0.
89

0.
89

0.
80

0.
69

0.
79

0.
59

0.
86

0.
70

0.
54

0.
87

1.
02

1.
36

1.
98

1.
36

21
0.
99

0.
98

0.
99

0.
99

0.
26

0.
29

0.
22

0.
26

0.
89

0.
88

0.
89

0.
89

0.
69

0.
69

0.
69

0.
69

0.
93

0.
68

0.
57

0.
82

1.
36

0.
98

1.
98

0.
98

22
0.
98

0.
99

0.
99

0.
99

0.
26

0.
30

0.
21

0.
26

0.
88

0.
89

0.
89

0.
89

0.
69

0.
69

0.
59

0.
69

0.
93

0.
72

0.
58

0.
72

1.
36

1.
98

1.
89

1.
98

3280 S.A. Soleymani et al.



T
ab

le
5

(c
on
tin

ue
d)

R
un

no
R
B
F–

FF
A

SV
M

M
L
P

r
M
A
PE

r
M
A
PE

r
M
A
PE

S1
S2

S3
S4

S1
S2

S3
S4

S1
S2

S3
S4

S1
S2

S3
S4

S1
S2

S3
S4

S1
S2

S3
S4

23
0.
99

0.
99

0.
99

0.
98

0.
28

0.
30

0.
22

0.
26

0.
89

0.
89

0.
99

0.
88

0.
69

0.
69

0.
69

0.
79

0.
91

0.
73

0.
56

0.
87

0.
98

0.
98

0.
98

1.
98

24
0.
98

0.
99

0.
99

0.
99

0.
28

0.
29

0.
21

0.
28

0.
88

0.
89

0.
89

0.
89

0.
78

0.
59

0.
69

0.
69

0.
90

0.
79

0.
57

0.
82

1.
89

1.
43

1.
36

1.
89

25
0.
97

0.
98

0.
99

0.
99

0.
26

0.
29

0.
21

0.
27

0.
87

0.
88

0.
89

0.
89

0.
79

0.
69

0.
69

0.
79

0.
91

0.
72

0.
58

0.
80

0.
98

1.
98

0.
98

1.
89

26
0.
90

0.
98

0.
99

0.
98

0.
26

0.
30

0.
21

0.
27

0.
80

0.
88

0.
89

0.
88

0.
88

0.
69

0.
69

0.
79

0.
93

0.
70

0.
58

0.
87

1.
36

0.
98

1.
35

0.
98

27
0.
99

0.
99

0.
97

0.
99

0.
27

0.
30

0.
22

0.
28

0.
89

0.
89

0.
87

0.
89

0.
69

0.
79

0.
79

0.
69

0.
92

0.
70

0.
54

0.
88

0.
98

1.
36

0.
98

1.
36

28
0.
98

0.
99

0.
99

0.
99

0.
26

0.
29

0.
22

0.
28

0.
88

0.
89

0.
89

0.
89

0.
69

0.
69

0.
69

0.
59

0.
97

0.
70

0.
47

0.
88

1.
35

0.
98

0.
99

0.
98

29
0.
99

0.
99

0.
99

0.
98

0.
27

0.
29

0.
22

0.
26

0.
89

0.
89

0.
89

0.
88

0.
69

0.
69

0.
69

0.
79

0.
95

0.
72

0.
58

0.
82

1.
01

1.
98

1.
02

1.
35

30
0.
98

0.
98

0.
99

0.
99

0.
27

0.
30

0.
21

0.
26

0.
88

0.
88

0.
89

0.
89

0.
69

0.
69

0.
69

0.
69

0.
91

0.
72

0.
56

0.
89

0.
98

1.
98

1.
36

1.
89

A Novel Method to Water Level Prediction using RBF and FFA 3281



studies measured stage of water obtained from four stations on Selangor River. The main idea
of the study focuses on examination of the feasibility of the proposed hybrid technique in
comparison with other techniques. To validate the precision of developed RBF–FFA model its
performance is compared to (SVM) and (MLP) models. After the analysis we could show that
proposed model has better performance. The statistical indicator used for performance eval-
uation of the proposed model indicates lower values of RMSE andMAPE and higher values of
R2 and r when compared to SVM and MLP models for all the nodes considered. The achieved
results revealed that the proposed hybrid RBF–FFA approach would be an appealing option to
predict water level since the results were favorable for all 30 running times studies despite
different nodes characterizes. Based on these, the proposed RBF–FFA model can therefore be
allocated an efficient approach for accurate prediction of water level. In addition, other
techniques to solve Water level prediction of rivers such as reinforcement learning will also
be considered in the future.
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