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Abstract Involving a limited resource, the assessment of groundwater aquifers is of utmost
importance. A key component of any such assessment is the determination of key proper-
ties that permit water resource managers to estimate aquifer drawdown and safe yield. This
paper presents a particle filtering approach to estimate aquifer properties from transient data
sets, leveraging recently published analytically-derived models for confined aquifers and
using sample-based approximations of underlying probability distributions. The approach
is examined experimentally through validation against three common aquifer testing prob-
lems: determination of (i) transmissivity and storage coefficient from non-leaky confined
aquifer performance tests, (ii) transmissivity, storage coefficient, and vertical hydraulic con-
ductivity from leaky confined aquifer performance tests, and (iii) transmissivity and storage
coefficient from non-leaky confined aquifer performance tests with noisy data and bound-
ary effects. On the first two well-addressed problems, the results using the particle filter
approach compare favorably to those obtained by other published methods. The results to
the third problem, which the particle filter approach can tackle more naturally than the
previously-published methods, underscore the flexibility of particle filtering and, in turn,
the promise such methods offer for a myriad of other geoscience problems.

Keywords Water resources · Assessment · Groundwater hydrology · Particle filter ·
Aquifer testing

1 Introduction

Groundwater is a key component of the worldwide water supply. In the USA, the National
Groundwater Association estimates that up to 33 % of all water used is from a groundwater
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source (www.ngwa.org). Similar uses occur in many countries around the globe. Unfortu-
nately, groundwater aquifers are being depleted worldwide at an alarming rate (Qiu 2010;
Konikow 2013). Therefore, the assessment of remaining groundwater resources is of crit-
ical importance. Groundwater aquifers used for water supply or irrigation purposes are
primarily either unconfined, water-table aquifers or deeper confined aquifers. Confined
aquifers are typically preferred by water resource managers, owing to their isolation from
possible pollution sources due their protective confining layers. Ongoing assessment of
shrinking groundwater resources usually includes the determination of aquifer properties
and the development of yield estimates from the studied aquifer based upon acquired field
data.

Using transient monitoring data for the purposes of determining aquifer properties is a
common technique in the groundwater industry. The most common method is the aquifer
performance test, where a pumping well is used to stress the aquifer by removing water
at a high rate and causing drawdown of pressure levels in the aquifer. The drawdown is
measured at one or more observation wells placed at different radii from the pumping well.
The aquifer test itself results in a transient condition within the aquifer, where drawdown is
a function of time and space as well as various boundary conditions. In the most basic model
for this process, water is pumped from a homogeneous and isotropic confined aquifer of
infinite extent with no effect from boundary conditions. This so-called unsteady non-leaky
confined aquifer test, Theis (1935), has been studied extensively by a host of researchers
with the intent being to estimate the two primary aquifer parameters, the transmissivity (T )
and the storage coefficient (S). Another well-studied model, the so-called unsteady leaky
confined aquifer test, assumes that the well derives its pumped groundwater laterally from
within the primary confined aquifer and from leakage either above or below the primary
aquifer through a semi-pervious confining unit Hantush and Jacob (1955). In addition to
parameters T and S, estimating the vertical hydraulic conductivity of the confining unit
(Kv) is also of concern.

Numerous extensions to the two confined aquifer tests have been proposed and stud-
ied. Walton (1962) generalized the Theis solution and found graphical methods to estimate
transmissivity and storativity using a “type curve” approach. Dagan (1985) and Dagan
and Rubin (1988) have looked at flow in confined aquifers using a stochastic approach.
Lebbe and Breuck (1995) used inverse numerical modeling to estimate aquifer param-
eters along with factors that materially affect the accuracy of the estimates themselves.
Tumlinson et al. (2006) used numerical evaluations to develop estimates of aquifer param-
eters in laterally heterogeneous confined aquifers. Trinchero et al. (2008) have studied
pumping tests in leaky-confined aquifers, where the solution reverts to a confined aquifer
curve if leakance of the confining unit is very small. Veling and Maas (2010) re-evaluated
the Theis and Hantush well functions used in type curve matching mentioned earlier.
Singh (2010b) proposed an alternate approximate analytical solution to the unsteady leaky
confined aquifer case. Yeh and Chang (2013) recently examined research advances regard-
ing the modeling of well hydraulics including those for confined aquifers. Yang and
Yeh (2012) developed a general semi-analytical solution for partially penetrating aquifer
test wells in a confined aquifer. Brown (2013) used optimization routines in Microsoft
Excel and Solver to estimate aquifer properties in both non-leaky and leaky confined
models.

While these unsteady (non-leaky and leaky) confined aquifer tests lend themselves to
well-developed methods for estimating aquifer properties from data, it is also well-known
that they neglect many real-world issues. Thus, richer models and techniques for deriv-
ing estimates from such models remain of interest. For example, aquifer performance tests
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in the field are often subject to “signal noise” from another nearby well or from bound-
ary effects, which can result in an erratic drawdown at the primary monitoring well that
may be difficult to interpret within existing solution approaches. This paper describes
a relatively new computational technique called “particle filtering” in combination with
previously-published analytical solutions to efficiently estimate confined aquifer parameters
from field drawdown data measured at one or more observation wells. To our knowl-
edge, this technique has not been used to solve these problems previously, yet we find
when applied properly that it is no less accurate than previously published methods but
also more flexible in the sense that it readily extends to richer models not easily solved
otherwise. The technique is demonstrated and validated using three aquifer testing sce-
narios, namely the aforementioned canonical non-leaky and leaky confined aquifer tests
as well as a third test in which signal noise is introduced into the data. The results pro-
vide strong evidence that the particle filtering method provides accurate estimates in all
cases, including the third case in which previously-published methods are not as applica-
ble. Further uses of particle filtering in groundwater hydrology are suggested for future
research.

2 Particle Filtering Approach

2.1 Technical Rationale

The use of particle filters in the geosciences is fairly new, but the related Kalman filter
has been used to study various groundwater problems since the 1990s. The Kalman filter
equations are derived assuming that the measurement model is linear and all noise sources
are Gaussian, neither of which is necessarily the case in aquifer drawdown tests. Thus, its
application to groundwater problems introduces numerous additional considerations, such
as how to approximate the models before processing each measurement or how to correct
the Kalman filter equations to maintain acceptable performance when involving a non-
linear model. In one of the first geoscience applications of the Kalman filter, Ferraresi
et al. (1996) estimated hydrogeological parameters for aquifers in Libya. Hantush (1997)
looked at spatially varying aquifer parameters using a Kalman filtering approach. Yeh and
Huang (2005) use a modified Kalman filtering approach to develop estimates for leaky-
confined aquifer pumping tests. Yeh et al. (2007) compared global optimization methods
to extended Kalman filter solutions for leaky-confined aquifer parameter problems. Singh
(2010a) developed diagnostic curves for identifying leaky confined aquifer parameters using
a Kalman filter among other techniques. Nan and Wu (2011) used an ensemble Kalman fil-
ter with localization to estimate hydrogeologic parameter fields in two dimensions and three
dimensions. Zhou et al. (2011) proposed new approaches of handling limitations inherent
in the ensemble Kalman filter. Xu et al. (2013) used an ensemble Kalman filter to evalu-
ate hydraulic conductivity, using parallel computing to increase computational power and
decrease computational time.

As the limitations regarding the linear assumptions underlying the Kalman filter were
being characterized, other researchers were investigating alternate approaches to study
groundwater hydrology problems. Shigidi and Garcia (2003) used artificial neural networks
to estimate aquifer parameters. Camp and Walraevens (2009) used a sampling approach
employing Latin hypercube parameter sampling to develop estimates of key aquifer param-
eters during field testing. They used numerical inversion of LaPlace space solutions using
the well-known Stehfest algorithm to develop analytical solutions that were linked to the
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parameter sampling approach. Wang and Huang (2011) used a Monte-Carlo approach to
study the effect of aquifer heterogeneity on flow and solute transport in two-dimensional
isotropic porous media. Recently, new data assimilation techniques have been used to
improve hydrologic and hydrogeologic predictions. Included in these new techniques are
“Sequential Monte Carlo (SMC)” methods in statistics, which are closely related to parti-
cle filtering methods in the sense that both employ sampled-based approximations for the
probability distributions from which estimates are derived. A particle filter, however, orga-
nizes its computations more akin to the Kalman filter for linear-Gaussian models, while
placing no restriction on the underlying models as long as they can be efficiently imple-
mented as a computer program to be invoked repeatedly within each step of the filter. Recent
work along these lines in the geoscience literature includes Noh et al. (2011), studying sur-
face water hydrologic problems, and Pasetto et al. (2012), comparing the performance of
the ensemble Kalman filter and a particle filter for a synthetic hydrogeologic case. Particle
filtering is especially popular for object tracking and robotic navigation problems in elec-
trical engineering and computer science, where numerous survey papers are now available
(Arulampalam et al. 2002; Doucet and Johansen 2011).

2.2 General Solution Methodology

Estimating parameters using a particle filter depends upon characterizing the unknown
parameters and the available data within a general stochastic dynamic systemmodel in state-
space form. In such models, each stage k = 0, 1, . . . is comprised of two equations that
together characterize the evolution of a (latent) state vector xk (representing the unknown
values in stage k) as well as how the (observed) measurement vector yk (representing the
data received in stage k) depends upon that state:

System Equation: xk+1 = f (xk, dk) (1)

Measurement Equation: yk = h(xk, vk) (2)

This is analogous to the setup underlying the Kalman filter except that (i) the functions f

and h need not be linear and (ii) the random vectors dk and vk , which model uncertainty in
the state evolution and in the measurement process, respectively, need not be described by
Gaussian distributions. Another component of such models is a given distribution for the
initial state vector x0, which also need not be Gaussian as is assumed by the Kalman filter.

A particle filter begins with using the given initial state distribution to generate N

equally-weighted samples, or particles, denoted by the collection {xi
0}Ni=1. Then, upon

receiving the initial measurement y0, the weights of all particles are reassigned by compar-
ing their simulated measurements yi

0 = h(xi
0, v0) to the observed measurement y0, where

particles in areas of the state space that produce simulated measurements close to what
is actually observed become more highly weighted. These updated weights are then nor-
malized so that they sum to unity and the collection of weighted particles {(xi

0, w
i
0)}Ni=1

approximate the state distribution conditioned on the observed measurement. Specifically,
the associated minimum-mean-square-error estimate x̂0 is approximated by the weighted
average of all the particles i.e.,

x̂0 ≈
N∑

i=1

wi
0x

i
0 (3)
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and, denoting A′ as the transpose operation of a matrix A, the associated error covariance is
approximated by

�̂0 ≈
N∑

i=1

wi
0

(
xi
0 − x̂0

) (
xi
0 − x̂0

)′
. (4)

The particle filter then proceeds to the so-called resampling step, in which a new collection
of N particles is generated in a manner that allows for the deletion of lowly-weighted par-
ticles in favor of the replication of highly-weighted particles. These resampled particles are
then simulated through the system equation xi

1 = f (xi
0, d0), predicting the next state by

a new collection of equally-weighted particles {xi
1} in preparation for another reweighting

by the subsequent measurement y1. This procedure continues for k = 1, 2, 3, . . . until the
final measurement is processed, the sequence of estimates x̂1, x̂2, x̂3, . . . and the associated
error covariances computed analogously to Eqs. 3 and 4 for the initial stage. In short, the
algorithm sequentially evolves its solution according to a “survival of the fittest” process in
which particles with unlikely parameter estimates are discarded and those whose estimates
produce simulated measurements resembling the observations are retained. Key algorith-
mic considerations in the implementation of a particle filter include how many particles to
use and what type of sampling/resampling procedures to invoke in each iteration, design
choices which are application-dependent to the extent that they are entwined with proper-
ties of the model’s functions f and h as well as the distributions characterizing the system
disturbances dk , measurement noises vk and initial state x0. The reader interested in more
details is encouraged to consult available tutorial papers and texts (Arulampalam et al. 2002;
Doucet and Johansen 2011). The following sections present a particle filter that solves the
parameter estimation problems for both non-leaky and leaky unsteady aquifer cases.

3 Methodology Applied to Aquifer Parameter Estimation

In this section, the general particle filtering methodology described in Section 2 is special-
ized to the problem of aquifer parameter estimation. We start with the well-studied unsteady
non-leaky confined aquifer scenario of Theis (1935), where the unknown aquifer parameters
of interest are its transmissivity T and storativity S, while the observations are a sequence
y0, y1, y2, . . . of (scalar) drawdownmeasurements taken during an aquifer performance test.
Our state-space model utilizes the well function defined by Theis (1935), which relates the
transmissivity T and storativity S to synthetic drawdown s via the series approximation

s =
(

Q

4πT

) [
−0.5772 − ln(u) + u − u2

2 × 2! + u3

3 × 3! − ...

]
(5)

u = r2S

4T t
(6)

where Q denotes the known pumping rate, r denotes the known radius from the pump to the
observation well and t denotes the known observation time. It should be noted that Eq. 5 is
not the only way to approximate Theis’ well function; for example, Abramowitz and Stegun
(1964) provide efficient polynomial approximations instead of the series solution. While
the results in this paper are based on using the series approximation, the particle filtering
methodology applies equally well when using other approximations for the governing well
function.
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Armed with a well function, let the state vector xk = [S T ]′ contain the unknown
aquifer parameters of interest. Then, the measurement equation h of our state space model in
successive stages k = 0, 1, 2, . . ., in correspondence with a sequence of observation times
t0 < t1 < t2 < . . . with which to evaluate Eqs. 5 and 6, can be expressed as

yk = h(xk, vk) = sk + vk, k = 0, 1, 2, . . . . (7)

Here, random variable vk captures drawdown measurement error as well as modeling errors
arising within Theis’ approximation, which we assume is described by a zero-mean Gaus-
sian distribution with known standard deviation σv . This measurement equation is linear in
synthetic drawdown sk and measurement noise vk , but it is worth noting that the former is
a highly nonlinear function of the state vector xk , or the aquifer parameters S and T to be
estimated.

It remains to specify the system equation f of our state-space model. Because the
unknown parameters are assumed to have fixed values during the aquifer performance test,
the static model xk+1 = xk is appropriate in principle. However, static models are prob-
lematic for a particle filtering approach because the dynamics of the system equation are
the mechanism by which a particle filer judiciously explores the state space; that is, in the
case of static state dynamics, the candidate state values are entirely determined by the stage-
0 samples from the initial state distribution—only their weights, not their locations, are
revised as observations are processed. Satisfactory performance with static models depends
on luck that at least one initial particle location takes its value near the correct one, the
chance of which can be increased only by increasing the number of particles used (and
incurring the associated computational overhead). This phenomenon for static models is
referred to as “particle impoverishment” and is a known limitation of the approach. The use
of “artificial dynamics,” introduced by Liu and West (2001), overcomes this limitation of
static models by rather perturbing the state vector in each iteration e.g.,

xk+1 = f (xk, dk) = xk + dk, k = 0, 1, 2, . . . , (8)

where we assume that the disturbance dk is a zero-mean Gaussian random vector with
known covariance matrix �d . The initial state distribution is taken to be jointly uniform
over given lower and upper bounds on the two parameters, storativity S and tranmissivity
T , based on knowledge of the region under test.

Algorithm 1 summarizes the particle filter implementation specified above for the
described unsteady non-leaky confined aquifer scenario, while Fig. 1 visualizes its behav-
ior at five selected iterations after initialization. The figure shows six scatter plots of all
particle locations in the state space, the horizontal and vertical axes in each plot correspond-
ing to storativity S and transmissivity T , respectively. Specifically, Fig. 1a visualizes the
N = 2000 samples drawn from a given uniform initial state distribution across the bounded
state space [10−5, 10−2] × [5, 1000], each such initial particle is assigned equal weight and
thus the initial parameter estimate (the blue triangle marker) is simply the central value.
Fig. 1b–f visualize the collection of weighted particles {xi

k, w
i
k}Ni=1 as drawdown observa-

tions are sequentially processed, each subfigure showing (i) the particle locations occupying
smaller and smaller portions of the state space, (ii) the particle weights coded relatively by
color (with red and blue indicating high and low, respectively) and (iii) the implied param-
eter estimate (i.e., the sample mean and sample covariance via Eqs. 3 and 4, respectively)
evolving to the upper-left region of the state space. This dataset has thirteen stages and the
final state estimate x̂12 after the thirteenth iteration is [1.09 × 10−3 708]′, which compares
well with previously-published answers of [1.06×10−3 712]′ derived from graphical curve
fitting methods (the black square marker).
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Observe in Fig. 1 how the initial set of particles sparsely cover the entirety of the state
space. After several observations, particle locations are updated such that coverage density
about the likely area of the state space is increased. This desirable property occurs because
of the artificial dynamics—the particle filter with a static state equation would not alter the
initial locations and thus the density of particles in likely regions of the state space would
never increase from that implied by Fig. 1a. This behavior, namely the concentration of
computational resources to the most likely areas of the state space, is an important feature of
particle filters, especially for models having higher dimensional state vectors. For example,
the leaky confined aquifer scenario assumes flow during a performance test can also arise
from vertical leakage through confining units from aquifers above or below the zone of
interest, and thus introduces vertical hydraulic conductivity Kv as a third state variable. The
above particle filter extends readily to this scenario, modifying the measurement equation h

with formulas to efficiently estimate the Hantush well function (Hantush and Jacob (1955)).
Specifically, letting drawdown s, rate Q, radius r and time t be defined as in the Theis
model and defining m′ as the thickness of the confining bed through which leakage occurs,
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(a) Initial Particles: Uniformly Weighted
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(b) Updated Particles: Second Observation
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(c) Updated Particles: Seventh Observation
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(d) Updated Particles: Eighth Observation
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(e) Updated Particles: Eleventh Observation
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(f) Updated Particles: Thirteenth Observation

Fig. 1 Visualization of five selected iterations after initialization of our particle filtering solution for the
unsteady non-leaky confined aquifer scenario of Mays (2011). Each subfigure shows a collection of weighted
particles (with red and blue indicating high and low weights, respectively) over the two-dimensional state
space, the horizontal and vertical axes corresponding to storativity S and transmissivity T , respectively.
Each subfigure also indicates the minimum-mean-square parameter estimate and its error covariance (the
blue triangle and two-sigma ellipse) implied by the shown set of particles, which clearly converges to a
previously-published answer (the black square) derived from graphical curve-fitting methods on the entire
dataset

Veling and Maas (2010) propose a computationally efficient approximation in terms of the
exponential integral E1 and the modified Bessel Function K0,

s =
(

Q

4πT

)
F(ρ, τ) (9)

where,

F(ρ, τ) =
{
2K0(ρ) − J (ρ, τ ) τ > 0
J (ρ, −τ) τ ≤ 0

(10)
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Table 1 Mays Particle Filter Parameters

Q[m3/min] r[m] N range � σ

1.89 61 2000

[
10−5 10−2

5 1000

] [
10−9 0

0 863

]
0.03048

and

J (ρ, τ ) = ω(ρ)E1

(ρ

2
exp(−τ)

)
+ (1 − ω(ρ))E1(ρ cosh(τ )),

ω(ρ) = E1(ρ) − K0(ρ)

E1(ρ) − E1(
ρ
2 )

, ρ = r√
T c

, τ = ln

(
2

ρ

t

Sc

)
, c = m′

Kv

. (11)

In turn, augmenting the state to xk = [S T Kv]′ and employing (9) in Step 2 of Algorithm
1 extends the particle filter solution to the leaky confined problem.

4 Results

4.1 Unsteady Non-Leaky Confined Aquifers

The solution methodology presented herein is first validated via two well known and previ-
ously published benchmark non-leaky confined aquifer parameter estimation problems. In
the first, from Mays (2011), a test well screened in a confined aquifer is pumped at a rate
of 31.5 × 10−3 m3/sec for 4,000 minutes. Time-drawdown data was collected at an obser-
vation well located 61 m from the test well. After 4,000 minutes the maximum drawdown
measured at the observation well was 2.13 m. Mays’ graphical curve fitting solution pro-
vides an estimate of the aquifer properties as 1.06 × 10−3 and 712 m2/day for S and T

respectively.
When provided the input parameters collected in Table 1, the particle filter estimates an

S of 1.08×10−3 and a T of 714m2/day. A visual representation of the output of Algorithm
1, after having sequentially processed all observations in the data set, is provided in Fig. 1f
and reproduced in Fig. 2.
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Fig. 2 Final particle cloud for the Mays (2011) aquifer test. Particles, colored in accordance to their respec-
tive likelihoods where red is more likely than blue, are presented relative to the previously published solution
(black square) as well as the particle filter’s estimate and error covariance (blue triangle and ellipse)
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Fig. 3 Drawdown vs time plot of the Mays (2011) data set with the synthetic drawdown curves produced by
the parameter estimates from both the observed results (red) and the particle filter estimator (blue) overlain

The time-drawdown data for this aquifer test, accompanied by synthetic drawdown
curves produced by the parameter estimates of both the published Mays solution and the
particle filtering solution, is presented in Fig. 3 with the sum of squared error metric for
both sets of parameter estimates.

In the second problem, a data set collected from an aquifer test carried out in 1953
on a village well in Gridley, Illinois, in which the effects of a constant-rate excitation
of 13.879 × 10−3m3/sec located 251m from the observation well were recorded. Walton
(1962) presents transmissivity and storativity parameter estimates for this dataset com-
puted from the superposition of time-drawdown field data onto the non-leaky artesian
type curve, arriving at S and T estimates of 2.2 × 10−5 and 125.45 m2/day respectively.
Additional parameter estimates were generated by the AQTESOLV pumping test software
(HydroSOLVE, Inc.), producing 2.095 × 10−5 and 123 m2/day.

When provided the input parameters similar to those of Table 1, the particle filtering
methodology presented herein produces estimates of 2.12 × 10−5 and 122.6 m2/day for S

and T respectively.

4.2 Unsteady Leaky Confined Aquifers

Validation of the proposed solution methodology is continued through the use of two pre-
viously published benchmark leaky confined aquifer tests. The two necessary adaptations
to Algorithm 1 are (i) an increase in the dimension of the latent state variable x in order
to accommodate the vertical hydraulic conductivity term kv , and (ii) the substitution of the
measurement function in Step 2 of Algorithm 1 with that which is presented in Eq. 9.

First, a dataset presented by Walton (1962) originating from a controlled pump test made
under leaky artesian conditions in glacial drift aquifers near Dieterich Illinois. The test well

Table 2 Walton - Dieterich Particle Filter Parameters

Q[m3/min] r[m] m′[m] N range � σ

0.0944 96 4.27 2000

⎡

⎢⎣
10−5 10−2

5 1000

10−7 1

⎤

⎥⎦

⎡

⎢⎣
10−9 0 0

0 863 0

0 0 9 × 10−6

⎤

⎥⎦ 0.03048
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was pumped at a constant rate of 135.9 m3/day for 1,185 minutes while the effect of said
excitation was observed in a well located 29.3 m from the test well. The thickness of the
overlying confining unit was 4.27 m. After 1,185 minutes the maximum drawdown mea-
sured at the observation well was 1.96 m. Walton reports aquifer parameter estimates of
2.0 × 10−4 for S, a T of 18.754 m2/day, and a Kv value of 4.482 × 10−3 m/day.

Parameter estimates found by the methodology presented in this paper are 1.74 × 10−4,
21.54 m2/day, and 3.28 × 10−3 m/day for S, T , and Kv , respectively. Input parameters
to the modified Algorithm 1 are collected in Table 2 and a comparison of synthetic draw-
down curves produced by the previously published estimation results and those found by
the particle filter are presented in Fig. 4.

For the second benchmark estimation problem under leaky artesian conditions, a test well
screened in a leaky confined aquifer Cooper (1963) is pumped at a rate of 5, 451m3/day for
1,000 minutes. The thickness of the overlying confining unit was 30.48 m. Time-drawdown
data was collected at an observation well located 30.48 m from the test well. After 1,000
minutes the maximum drawdown measured at the observation well was 2.2 m. Lohman
(1972) reports the aquifer properties as an S of 9.95 × 10−5, a T of 1, 236 m2/day, and a
Kv value of 0.1 m/day.

Given similar input parameters to those found in Table 2, the herein presented method-
ology produces values of 1.08 × 10−4, 1, 193 m2/day, and 0.124 m/day for S, T, and Kv,
respectively.

4.3 Unsteady Confined Aquifer with Noise and Boundary Effects

Synthetic validation data was developed using the three dimensional finite-difference
groundwater modeling code MODFLOWMcDonald and Harbaugh (1988). This validation
experiment includes a pumping well withdrawing water from a non-leaky confined aquifer
at a rate of 1, 136 m3/day. The aquifer is 30 m thick with T value of 850 m2/day and an S
value of 5 × 10−4. Aquifer drawdown is monitored in an observation well located 45.72 m

directly east of the pumping well. For the sake of computational efficiency, the model grid
is one quadrant with the pumping well located at the origin. The model grid size is unimodal
with grid cells at 7.62 m × 7.62 m. The MODFLOW model was validated against the Theis
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Fig. 4 Drawdown vs time plot of the Walton - Dieterich data set with the synthetic drawdown curves pro-
duced by the parameter estimates from both the previously published (red) and particle filter solutions (blue)
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provide the (red) drawdown curve in the absence of the corrupting well, while the (blue) drawdown curve is
produced by the particle filter’s parameter estimates derived from the entire data set

analytical solution discussed above and matched the exact solution closely underestimat-
ing the exact drawdown by 0.015m on average. Once the initial validation was completed,
the base model was modified to include a second pumping well located 140.5 m northeast
from the model observation well. This well withdraws water from the non-leaky confined
aquifer at a rate of 70.8 m3/day, however, due to the model boundaries on the quadrant
model, the effective drawdown is about double what an actual field drawdown would be in
an infinite aquifer. This well also only pumps every 12 hours versus continuously for the
first pumping well. Therefore, this second pumping well imparts a sinusoidal noise factor
to the observation well.

In order to make this validation test totally blind, the solution methodology presented
herein utilizes neither the “noise” well’s position nor pumping rate. This simulation is com-
parable to real-world aquifer tests when a local irrigation well is known to exist nearby
but the exact location cannot be established due to access restrictions. Therefore, in order
to estimate the S and T values, the methodology contends with observation well data sub-
ject to three different types of noise simulating real-world issues including unidirectional
low bias from the actual numerical model results; no-flow boundary effects that multiply
the assigned model pumping rate; and, sinusoidal drawdowns due to temporal pumping rate
without an exact location. Accuracy of the presented methodology largely depends on the
ability to classify those data points which are corrupted by the secondary excitations and
increase accordingly the parameter which encapsulates the filter’s measurement uncertainty,
σv , for those filter iterations.

Figure 5 presents the time-drawdown data for this problem as well as the drawdown
curves produced by the known parameter values and particle filtering estimate when
initialized with the input parameters collected in Table 3.

Table 3 Noise/Boundary Effects Particle Filter Parameters

Q[m3/min] r[m] N range � σ

1136 45.72 2000

[
10−5 10−2

5 2000

] [
10−9 0

0 863

]
0.03048,0.3048
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5 Conclusion and Future Work

This paper has applied the particle filtering methodology to estimate properties of con-
fined aquifers using transient data from aquifer performance tests. Experimental results
demonstrate (i) an accuracy that matches that of previously-published solution methods in
numerous well-studied scenarios and (ii) an ability to generalize to scenarios not as easily
addressed by previously-published methods. Particle filtering as a means to address mea-
surement uncertainty is common practice in the sub-disciplines of electrical engineering
and applied mathematics, but it is only beginning to find application in the water research
community. The widespread familiarity of the first four data sets that we considered, two
under non-leaky assumptions using the Theis well function and two under leaky assump-
tions using the Hantush well function, affords an accessible introduction of the particle
filtering approach. Its true usefulness, however, becomes evident in the fifth data set that
we considered, which injects noise into the drawdown data in a manner that challenges
previously-published solution methods but is readily addressed by the particle filtering
approach.

An interesting extension of the work presented here is to estimate properties of tidally
responsive aquifers, as first described by Jacob (1950). The effect of earth tides on aquifer
response at groundwater monitoring wells was further studied by Bredehoeft (1967), who
introduced specific storage and porosity estimates. Of particular interest are the recent adap-
tations of Jacob’s original models for coastal confined aquifers presented by Dong et al.
(2012).

Recall the results in Fig. 1, which illustrate a particle filters ability to provide esti-
mates (and the associated error intervals) sequentially during the performance test (in
contrast with solutions that operate on the drawdown data in-batch after the test). A
sequential algorithm presents the opportunity to avoid unnecessarily long performance
tests if diminishing marginal improvement in estimation accuracy is observed or if it can
otherwise be inferred that neither surface water bodies nor impervious boundaries will
likely be reached by continuing the test. Quantifying the extent to which a particle fil-
ter can adequately inform an online decision process for when to terminate a performance
test, potentially avoiding unnecessary expense, is another interesting direction for future
work.

Finally, the particle filtering approach taken in this paper should be applicable to
parameter estimation problems that arise within other hydrogeology applications. Solu-
tions based on classical approaches (e.g., the Kalman filter, least-squares) carry the
risk of oversimplifying the underlying models to satisfy the needed linear-Gaussian
assumptions. That said, there are examples in the hydrogeology literature that address
nonlinear estimation problems using the so-called extended Kalman filter, Huang and
Yeh (2012), and its variations. Thus, a related line of inquiry could be to com-
pare (both in estimation accuracy and in computational overhead) a particle filtering
solution to previously-published nonlinear estimation techniques in the hydrogeology
literature.
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