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Abstract In last two decades, multiobjective evolutionary algorithms (MOEAs) have shown
their merit for solving different optimization problems within the context of water resources
and environmental engineering. MOEAs mainly use the concept of Pareto dominance for
obtaining the trade-off solutions considering different criteria. A new alternative method for
solving multiobjective problems is multiobjective evolutionary algorithm based on decompo-
sition (MOEA/D) which uses scalarizing the objective functions. In this paper, decomposition
strategies are developed for the large-scale water distribution network (WDN) design problems
by integrating the concepts of harmony search (HS) and genetic algorithm (GA) within the
MOEA/D framework. The proposed algorithms are then compared with two well-known non-
dominance based MOEAs: NSGA2 and SPEA2 across four different WDN design problems.
Experimental results show that MOEA/D outperform the Pareto dominance methods in terms
of both non-domination and diversity criteria. MOEA/D-HS in particular could provide very
high quality solutions with a uniform distribution along the Pareto front preserving the
diversity and dominating the solutions of the other algorithms. It suggests that decomposition
based multiobjective evolutionary algorithms are very promising in dealing with complicated
large-scale WDN design problems.

Keywords MOEA/D .Water distribution network . NSGA2 . Optimization .MOEA

1 Introduction

Evolutionary algorithms (EAs) are known as the flexible and powerful optimization tools for
solving nonlinear, nonconvex, multi-modal and discrete problems. The flexibility of EAs for
solving multi-criteria problems and their capabilities for links with simulation models have led
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to develop and expand various types of multiobjective evolutionary algorithms (MOEAs) and
widely used applications in water resources and environmental engineering (Nicklow et al.
2010). Similarly, a significant increase in development and application of MOEAs for multi-
objective design of water distribution systems (WDSs) has also seen over the past decade
because of the high computational burden and complexity of water distribution network
(WDN) design problems with a large number of pipes or decision variables. In this direction,
although a few heuristic approaches have occasionally been introduced (e.g. see Shirzad et al.
2015), application of optimization tools is predominated. Keedwell and Khu (2004) highlight-
ed the ability of MOEAs for network design purposes. This approach makes it possible to
obtain a Pareto front of optimal solutions in the compromise among different criteria.
Montalvoa et al. (2010) for example considered costs and the nodal pressure deficits as the
main criteria minimizing by a multi-objective particle swarm optimization (PSO) algorithm.
‘Costs’ and ‘reliability’ are the main criteria which are used frequently in MOEAs for WDN
design. Kanakoudis et al. (2011) introduced new performance indices and methodology for the
assessment of water distribution systems. Zheng et al. (2014a) used the surplus head as the
reliability index. However, this indicator does not consider the reliable looped networks in
unexpected conditions such as pipe breaks. Todini (2000) introduced a Bresilience^ index to
consider the reliability associated to the looped systems under the pipe burst conditions. The
index was then improved by Prasad and Park (2004) considering the redundancy in the looped
systems. They used Non-dominated Sorting Genetic Algorithm (NSGA2) for WDN design
with the goal of minimizing network cost and maximizing the network resilience. Farmani
et al. (2005a) carried out a comparison between the performance of NSGA2 algorithm and
modified version of the Strength Pareto Evolutionary Algorithm (SPEA2) and reported that
SPEA2 performed slightly better than NSGA2 for WDN design. They also investigated the
application of MOEAs for obtaining the Pareto optimal curves considering total cost, surplus
head, and resiliency of a WDS (Farmani et al. 2005b). Perelman et al. (2008) developed a new
MOEA based on cross entropy and compared its performance against NSGA2. The method
was found to be robust and superior to NSGA-II algorithm. Zheng et al. (2014a) developed a
method for solving multi-objective optimization problem of WDN design based on the graph-
decomposition technique. In their method, NSGA-II was firstly employed to optimize the sub-
networks separately, thereby producing an optimal front for each sub-network. Then, another
NSGA-II implementation was used to drive the combined sub-network front (an approximate
optimal front) towards the Pareto front for the original complete WDN. Another approach used
in the literature for constructing more efficient search tools is hybridizing the algorithms and
combining the power of different methods. Some efforts have been made employing this
approach toward the least-cost design problem of WDNs (e.g. PSO–HS by Geem 2009; hybrid
discrete dynamically dimensioned search, HD–DDS, by Tolson et al. 2009; GA–LP by Cisty
2010 and Haghighi et al. 2011; SA-TS by Reca et al. 2008; PSF–HS by Geem and Cho 2011;
PSO by Spiliotis 2014; DE–PSO by Sedki and Ouazar 2012; and GA–PSO by Jinesh Babu
and Vijayalakshmi 2013). However, there have been less hybridized works for multi-objective
WDN design problems. Keedwell and Khu (2006) hybridize cellular automaton and genetic
approach for multi-objective design of WDN and showed that the new method, called as
CAMOGA, outperforms the NSGA2. Another hybrid method was proposed by Vrugt and
Robinson (2007), called a multialgorithm genetically adaptive multiobjective (AMALGAM).
AMALGAM simultaneously employs four different algorithms within a unified framework,
including NSGA2, PSO, adaptive metropolis search (AMS), and DE. The computational
results over some benchmark test functions showed that the hybrid method provides an
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improvement approaching a factor of 10 over current optimization algorithms for more
complex and higher dimensional problems. Wang et al. (2014a) compared two hybrid meth-
odologies, low-level hybrid algorithm (LLHA) and high-level hybrid algorithm (HLHA) for
design of water distribution systems. Applications to four case studies of increasing complex-
ity showed that for the small and intermediate problems, HLHA produces better Pareto fronts;
but when the network complexity increases, LLHA outperforms. di pierro et al. (2009) tested
two hybrid MOEAs: ParEGO and LEMMO on a medium-size, and a large-size WDN design
problem and reported that hybrid algorithms are superior to the PESA2 algorithm. The authors
however reported that improving the efficiency of two hybrid optimization methods against
PESA2 was at the expense of degrading the quality of optimal fronts. Raad et al. (2009)
applied AMALGAM, NSGA2, NSGA2-JG, and a greedy algorithm for benchmark WDN
design problems and stated that AMALGAM demonstrated the best performance overall
compared to three other MOEAs across three small and medium size network design
problems. Wang et al. (2014b) compared the AMALGAM and NSGA-II on a set of well-
known benchmark problems and showed that AMALGAM outperforms NSGA-II for the
small and medium size problems, but for the large networks, the hybrid method loses its
adaptive capabilities and its performance degrades. Zheng et al. (2014b) proposed a self-
adaptive multi-objective differential evolution (SAMODE) algorithm that is a hybridization of
differential evolution (DE) and nonlinear programming (NLP) techniques, which
outperformed NSGA2 in three different case studies. Recently, Wang et al. (2014b) attempted
to explore the best-known approximations of the global Pareto fronts (PFs) for a range of well-
known benchmark problems. They compared five MOEAs including NSGA2, AMALGAM,
Borg, ε ‐MOEA, and ε ‐NSGA2 with each other across different sizes of problems and
reported that there is no absolute superior algorithm among the considered MOEAs. They
also concluded that NSGA2 is a suitable choice, as it produced overall better results when all
benchmark problems are considered.

Most MOEAs like those enumerated above treat a multiobjective optimization problem
(MOP) as a whole and generally build upon nondomination concept for evaluating the solution
quality during search. MOEA/D is an alternative approach for solving multi-criteria problem,
which is fundamentally different from other commonly used MOEAs. Instead of non-
dominance criterion, this approach is based on the decomposition of the main multiobjective
problem into several single objective subproblems, which they are solved collaboratively and
simultaneously. Each single objective subproblem is minimized by the information just from
its neighboring subproblems. This gives the advantage of lower computational complexity at
each generation than the Pareto dominance based algorithms.

Compared to the Pareto dominance based MOEAs which have difficulties for fitness
assignment and keeping diversity in the population, MOEA/D framework easily handles these
tasks because it solves several optimization subproblems rather than directly optimizing a
multiobjective optimization as a whole (Zhang and Li 2007). Despite these advantages, it has
not been widely used in multiobjective optimization problems yet and there is little effort
within the environmental and water resources engineering applications. As far as the author
knows, to date this method has not been used in the context of WDN design problems. The
work presented here contributes towards developing a new hybrid MOEA combining harmony
search (HS) and genetic algorithm (GA) within the decomposition strategies for multi-
objective design of WDSs. The hybrid method applies the HS and GA operators for enhancing
the local search capabilities and uses the MOEA/D framework for the global search and
maintaining the diversity in the population. The efficiency and reliability of the new hybrid
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algorithms is compared with those of two well-known and widely used Pareto dominance
algorithms: NSGA2 and SPEA2 across four different WDN design problems with the aim of
seeking the superior method and investigating the credibility of the MOEA/D approach.

2 Descriptions of MOEAs Considered

The concept of non-domination is used in most of MOEAs to sort the population according to
the values of objective functions. Some examples of well-known MOEAs which uses non-
dominance sorting criteria for generating Pareto-optimal solutions are PAES, microGA,
NPGA, MOPSO, SPEA2, and NSGA2. We selected NSGA2 and SPEA2 among this group
of MOEAs to compare them with the decomposition approach for solving MOPs.

2.1 Non-Dominated Sorting Genetic Algorithm (NSGA2)

NSGA2 is probably the most popular MOEA among the evolutionary algorithms developed so
far. It is a fast elicit EA based on genetic algorithm which uses the non-domination and
crowding distance (Deb et al. 2000) criteria for sorting the population.

2.2 Improving the Strength Pareto Evolutionary Algorithm (SPEA2)

SPEA2, developed by Zitzler et al. (2001), is an improved version of SPEA in which non-
dominated solutions are maintained in a solution archive and updated in each generation by
new non-dominated solutions. In comparison with the initial version, SPEA2 defines a new
fitness assignment strategy in which both nondominated and dominated solutions affect the
fitness value. In addition, it uses the K Nearest Neighbourhood (KNN) technique as the second
criterion of population sorting. Furthermore, instead of archive truncation, an approach based
on density information is used for controlling the size of the solution archive. This algorithm is
known as one of the state-of-the-art MOEA used for performance assessment of new
algorithms.

2.3 Multiobjective Evolutionary Algorithm based on Decomposition (MOEA/D)

MOEA/D (developed by Zhang and Li 2007) decomposes a MOP into a number of
scalar optimization subproblems and they are optimized simultaneously (Fig. 1a, b). A
weighting vector is defined for each subproblem and objective functions are aggregated to
a single objective function using this vector. The number of subproblems is usually
assumed equal to the population size and therefore each member of the population is
representative of a solution generated by an aggregation vector. Each supproblem theo-
retically explores only one solution of the Pareto front at the end of the search. At each
generation, the population is composed of the best solutions found so far for each
subproblem. The neighbourhood similarity among the subproblems is defined based on
the distance between the weighting vectors of subproblems. During the search, the
solution of each subproblem is generated by the collaboration of the neighbouring
members as illustrated in Fig. 1c. We called this task as the co-operation phase.
Furthermore, the solution of neighbour subproblem(s) is suggested to the current subprob-
lem (Fig. 1c) with its own aggregation vector and if the neighbour’s solution is better
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than the subproblem solution, it is replaced by the current one. We called this task as the
competition phase. Both co-operation and completion tasks are performed for all subproblems.
Therefore, there is an exchange of information among the neighbours in MOEA/D and each
subproblem (i.e., scalar aggregation function) is optimized by using information only from its
neighboring subproblems. Zhang and Li (2007) reported that MOEA/D has lower computa-
tional complexity at each generation than NSGA-II and has better performance according to the
experimental results of well-known benchmark optimization tests. Details of the MOEA/D
method and the main steps are described in the following section.

2.3.1 General Framework of MOEA/D

General form of a multiobjective problem can be expressed as:

Min F
→
xð Þ ¼ f 1 xð Þ; … ; f n xð Þ½ �T
Subject to x∈D

ð1Þ

where D is the decision variable space, F :D→Rn consists of n scalar objective functions and
Rn is called the objective space. The above optimization problem can be decomposed into m
scalar optimization subproblems. The task of decomposition can be carried out by different
approaches (Zhang and Li 2007). We used herein the Tchebycheff method. Let w1,… ,wm be a
set of uniformly distributed weight vectors and z* be a reference vector including the ideal
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Fig. 1 a) Decomposition of a multi-objective optimization problem by the weighted sum method, b) Decom-
position of a multi-objective optimization problem by the weighted p-norm method, c) The evolutionary search
of the MOEA/D approach
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values of the objective functions. In Tchebycheff method, the scalar optimization problem for a
weight vector w is in the form:

Min gte xjw; z*; p� � ¼ F xð Þ−z*�� ��
w;p

Subject to x∈D
ð2Þ

where z*= (z1
*,… , zn

*)T is the ideal point, i.e., zi
* =min{fi(x)|x∈D} for i=1,… , n when the goal

is minimization and ‖. ‖w,p denotes the weighted p-norm of a vector. This norm is mathemat-
ically defined as:

F xð Þ−z*�� ��
w;p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

wi f i xð Þ−z*�� ��pp

vuut ð3Þ

The extreme value of the pth norm is used in this study so that its value when p→∞ is:

F xð Þ−z*�� ��
w;p

¼ max
1≤ i≤n

wi f i xð Þ−z*i
�� ��� � ð4Þ

Therefore, the objective function of the j th scalar subproblem is in the form:

Min gte xjwj; z*
� � ¼ max

1≤ i≤n
wj
i f i xð Þ−z*i
�� ��� � ð5Þ

where w j= (w1
j,… ,wn

j ). MOEA/D minimizes all these m objective functions simultaneously
in a single run. It is noticeable that the optimal solution of gte(x|wi, z*) should be close to that of
gte(x|wi, z*) if wi and w j close to each other. Therefore, any information about these gte s with
weight vectors close to wi should be helpful for optimizing gte(x|wi, z*). This is the main
feature of MOEA/D framework.

In MOEA/D, a neighbourhood of aggregation vector wi is defined as a set of its several
nearest aggregation coefficient vectors in {w1,… ,wm}. The neighbourhood of ith subproblem
includes all subproblems with the aggregation vectors from the neighbourhood of wi. The
population consists of the best solutions found so far for each subproblem. As mentioned
earlier, for optimizing a subproblem in MOEA/D only the current solutions of neighboring
subproblems are exploited.

The main stages of this algorithm are shown in Fig. 2 and are summarized as follows:

Stage 1 Initialization

1.1 Set Ep=∅ where Ep is the archive of the estimated Pareto front
1.2 Generate uniformly the set of w1,… ,wm and after calculating Euclidian distance

among them, for each i=1,… ,m, set A(i) = {i1,… , iQ}, and define wi1 ; … ; wiQ as
the Q closest weight vectors to wi.

1.3 Generate an initial population x1,… , xm and evaluate their objective functions.
1.4 Initialize the ideal vector z

Stage 2 Updating (main loop)
For i=1,… ,m:

2.1 Do the co-evolution task: generate a new solution vector y by cooperating the
neighbour solutions in xi1 ; … ; xiQf g

2.2 Update the ideal vector z: For each j=1,… , n, if z(j) < fj(y), then set zj= fj(y).
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Fig. 2 The main stages of the
MOEA/D approach
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2.3 Do the competition task and update the current solution i: for each index j∈A(i), if
gte(y|w j, z) <gte(x j|w j, z), then set x j= y and F(x j) = y

2.4 Update Ep: Add y to Ep and remove the dominated vectors
Stage 3 Check the stopping criteria

If stopping criteria is met, then stop; otherwise go to the stage 2.
In the co-evolutionary stage (stage 2.1), different approaches can be used to

generate a new solution vector y. Here we proposed two methods, one based on the
genetic algorithm operators and the other harmony search operators, which are
briefly described as follows:

Method a Genetic operators

a.1 Select randomly two vectors y1 and y2 among Q neighbours of the solution vector
xi: {x1, x2… , x i,… , xQ}

a.2 Generate a new solution vector y = (y1, y2,… , yn) by crossover operator:
y=Crossover(y1, y2)

a.3 Adjust the new solution by mutation operator if rand<Pm (Pm is the mutation
probability):

For j=1 :μ, do:

yM jð Þ ¼ yM jð Þ þΔ :N 0; 1ð Þ
where μ is the number of variables that will be mutated, and its value depends on
the mutation rate, Rm.M is a vector including the indices of variables that randomly
are mutated. The parameter Δ is called the step size and its value is deemed as a
percentage of the variable limits of yj; and N(0, 1) is a random number generated
using a zero-mean normal distribution and having a standard deviation one.

Method b Harmony search

b.1 Generate randomly a new solution y= (y1, y2,… , yn)
For j=1 :nVar, do:

b.2 If (rand>HMCR), replace yj by a value randomly chosen among Q neighboured
solutions of the solution vector xi i.e. the set {xj

1, xj
2… , xj

i,… , xj
Q}.

b.3 Else if (rand>PAR), adjust the value of variable yj as:

y j ¼ y j þ Fw:N 0; 1ð Þ

where nVar is the number of decision variables, Fw is called Bband width^ and its
value is assumed as a percentage of the variable limits of yj. HMCR and PAR are
the main parameters of harmony search algorithm (Geem et al. 2001), called as
‘harmony memory consideration rate’ and ‘pitch adjustment rate’ respectively.

In method b, step 1 does the task of exploration and step 2 works out for both
exploration and exploitation based on the size of the bandwidth, Fw. The perfor-
mance of step 3 depends on the size of Fw. A large value for Fw is assumed in the
first iteration and then during the next iterations it is adaptively decreased by a
multiplicative factor. Using this approach, step 3 helps for better exploration in
early iterations and then it moves towards improvising the exploitation task as
reaching to the last iterations.
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3 Performance Metrics

Different comparative metrics are introduced in the literature to quantitatively compare
the performance of MOEAs. To evaluate the results of MOEAs, we used two metrics:
Hyper Volume (HV), and two-set coverage (CS), which are suitable measures when
the global Pareto front is unknown.

3.1 Hyper Volume (HV)

This metric computes the area enveloped by the optimal solutions found with respect
to a typical point and is a criterion of both convergence and diversity. The reference
point can be considered as a vector of the worst objective function values. This metric
is mathematically defined as (Van Veldhuizen 1999):

HV ¼ volume ∪ni¼1vi
� � ð6Þ

where vi is the hyper-volume constructed by the solution i and the reference point in
the objective function space.

3.2 Two-Set Coverage (CS)

This metric, introduced by Zitzler et al. (2000), is used for pairwise comparison of
two Pareto sets when the true Pareto front is unknown. If X ′ and X″ are two Pareto
sets and is considered as the non-domination solutions in X′ ∪X″, then CS metric is
defined as a mapping from the ordered pair (X′,X″) to the interval [0, 1] using the
following formula:

CS X
0
;X ″

	 

¼ a″∈X ″;∃a0∈X 0

: a
0
⪰a″

� ��� ��
Xj j ð7Þ

If all solutions in X′ are equal to those in X″ or dominate them, then, by the above
definition, CS metric is equal to one. A CS value of 0 implies the opposite.
Ordinarily, both CS(X′,X″) and CS(X″,X′) need to be considered, because the set
intersections are not necessarily empty.

4 Multi-Objective Design of WDNs

4.1 Mathematical Formulation

‘Network cost’ and ‘reliability’ are two major objectives that have frequently been used in
the multi-objective design of water distribution systems. The same criteria are taken as the
objective functions in this study, with the ‘network resilience’ indicator, proposed by
Prasad and Park (2004), as the reliability measure. The first objective function involves
economic considerations and the latter one provides a measure for assessing both surplus
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head and reliable loops in the networks with various sizes. Therefore, the objective
functions can be written as:

Minimize Cost ¼
Xn

i¼1

f Dið Þ:Li

MaximizeIn ¼

Xm
j¼1

U jQj H j−Hl
j

	 

XR

r¼1

QrHr þ
Xnp
i¼1

Pi

γ

" #
−
Xm
j¼1

QjH
l
j

ð8Þ

where f(Di)= the cost function for the pipe with diameter i per unit length, n and Li=number of
pipes and length of the pipe i, respectively. In= the network resilience, m=number of nodes,
Uj= the uniformity of the node j, Qj=demand in node j, Hj=pressure head of the node j, Hj

l =
minimum required pressure head, R= number of reservoirs, np= number of pumps and
Pi=power supplied by the pump i. In the above formulation, the uniformity is defined as:

U j ¼

Xn

i¼1

Di

nj �max Dið Þ ð9Þ

The constraints of the optimization problem include:

1) The continuity equation should by satisfied in each junction node:X
Qin−

X
Qout ¼ Qd ð10Þ

where Qin and Qout are inflow and outflow of a node, respectively, and Qd is the demand
of the node.

2) Head loss constraint that can be written for each loop as:X
j∈Loop i

Δhj ¼ 0 ∀i∈nl ð11Þ

whereΔhj is the head loss in pipe j, and nl is the number of loops of the network. In each
pipe, the head loss is a function of discharge, pipe diameter, and roughness coefficient of
the pipe. Head loss is usually calculated using empirical equations such as the Darcy–
Weisbach or the Hazen–Williams equation.

3) The pressure constraint between a minimum and maximum value is written as:

Hl
j≤H j≤Hu

j ∀ j ¼ 1; 2;…; n ð12Þ
where Hj is the pressure head at node j; Hj

l is the minimum required pressure head at node
j; Hj

u is the maximum allowed pressure head at node j; and n is the number of demand
nodes in the system.

4) The pipe diameter must be selected among a set of discrete commercial sizes:

Di∈ Af g ∀i ¼ 1; 2;…; k ð13Þ
where Di is the diameter of pipe i, and {A} denotes the set of commercially available pipe
diameters, and k the number of pipe sizes.
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Using the penalty function method, the above constraint optimization model is easily
converted to an unconstraint case. For this purpose, the pressure violations from the maximum
and minimum values are added to the Bcost^ objective function after multiplying by a large
number, assumed equal to 106 in this study. The continuity and head loss constraints are
automatically satisfied using a simulator engine, (EPANET2.0 software herein).

4.2 Experimental Tests on WDNs

To justify the use of MOEA/D approach in solvingWDN design problems, four relatively large
size design problems were considered in this work, which are briefly described in the following.

4.2.1 Pescara Network (PES)

As shown in Fig. 3a, this network includes 99 pipes, 68 nodal demands and three reservoirs with
constant head between 53.08 and 57.00 m. The pipes are made of cast iron with a Hazen-
Williams coefficient of 130. The minimum head requirement is assumed as 20 m for all nodal
demands and the maximum pressure heads of the nodes in this network can be found in http://
www.exeter.ac.uk/benchmarks-pareto-fronts. Maximum velocity in pipes is 2 m/s. The available
commercial pipe sizes with corresponding unit costs for the PES network is presented in Table 1.

4.2.2 Saemangeum Network (SIN)

SIN network is an irrigation water supply system, located in the Saemangeum region, southern
part of the South Korea. This network consists of 365 pipes and a reservoir with constant head
in 35 m. As shown in Fig. 3b, some parts of the network, has looped configuration and some
others are branched. The Hazen-Wiliams roughness coefficient is 100 for all the pipes. The total
costs per length of the pipes are presented in Table 1 for different pipe diameters. The minimum
and maximum pressure requirements for the nodal demands are assumed as 10 and 35 m
respectively and the permissible range of flow velocity in pipes is between 0.01 and 2.5 m/s.

4.2.3 Balerma Irrigation Network (BIN)

This network is another large-sizewater supply system for irrigationwhich includes 454 PVCpipes,
443 nodal demands and four reservoirs with constant heads at the elevations 112, 117, 122 and
127 m. All pipes are assumed to have a Darcy-Weisbach coefficient of 0.0025 and the minimum
pressure head in all nodal demands is 20 m. The commercial pipe sizes with their corresponding
unit costs are presented in the Table 1. Figure 3c shows the scheme of the Balerma network.

4.2.4 West Zone Network (WZN)

The largest network studied in this work is a water distribution system in UK consisting of 632
pipes, 535 demand nodes and a reservoir with constant head at 146.68 m, introduced by Savic
et al. (2000). Each pipe can select a diameter among 20 discrete values of commercial sizes
and this leads to a large search space with 20623 pipe size combinations. The minimum
pressure head requirement for all demand nodes is equal to 15 m and the costs per length of
the pipes are selected the same as in Keedwell and Khu (2006). Figure 3d depicts the layout of
WZN.
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5 Experimental Results and Discussion

This section demonstrates the computational results obtained by executing the selected
MOEAs for the four water distribution networks introduced in the previous section.

The MOEAs were coded in MATLAB and coupled with EPANET 2.0 hydraulic solver to
estimate the WDS resilience and necessary hydraulic constraints during evaluating different
network designs. Shown in Table 2 are the size of the search space, the number of decision

Fig. 3 Scheme of a) Pescara water distribution network (PES), b) Saemangeum irrigation network (SIN), c)
Balerma irrigation network (BIN), d) West zone water distribution network (WZN)
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variables and population size, as well as the number of function evaluations (NFE), number of
iterations (NI) and pipe diameter options, for each of the four benchmark networks. The
parameters of NSGA2 and SPEA2 were set based on the widely used settings in the literature,
while parameter values for the MOEA/D algorithms were chosen based on both values in the
literature and the results of several trial runs. The parameter values are shown in Table 3. Each
MOEAwas run 10 times independently to solve each problem.

The task of optimization was carried out on Intel(R) Core(TM) i7-3770 CPU @ 3.4GHz
with 8GB RAM.

Firstly, we considered the minimum values of objective functions in each generation as the
Bideal point^ in MOEA/D, but the results showed that this strategy is not efficient. Therefore, a

Table 1 Commercial diameters and corresponding unit costs of PES, SIN and BIN networks

Pescara network (PES)

Diameter (mm) Unit Cost (€/m) Diameter (mm) Unit Cost (€/m) Diameter (mm) Unit Cost (€/m)

100 27.7 250 75.0 450 169.3

125 38.0 300 92.4 500 191.5

150 40.5 350 123.1 600 246.0

200 55.4 400 141.9 700 319.6

800 391.1

Saemangeum irrigation network (SIN)

Diameter (mm) Unit Cost (Won/m) Diameter (mm) Unit Cost
(Won/m)

Diameter (mm) Unit Cost (Won/m)

80 86,500 350 250,307 800 678,144

100 100,182 400 288,313 900 779,572

150 124,737 450 305,397 1000 909,204

200 153,347 500 344,394 1100 1,077,505

250 186,909 600 400,586 1200 1,241,372

300 219,089 700 506,082 1350 1,472,204

Balerma irrigation network (BIN)

Diameter (mm) Unit Cost (€/m) Diameter (mm) Unit Cost (€/m) Diameter (mm) Unit Cost (€/m)

113 7.22 162.8 14.84 285 45.39

126.6 9.10 180.8 18.38 361.8 76.32

144.6 11.92 226.2 28.6 452.2 124.64

581.8 215.85

Table 2 The number of function evaluation and sizes of the search space for WDN design problems

Problem NFE Population size DV PD NI Search space size

Pesserca network 500,000 400 99 13 1250 1.91 × 10110

Saemangeum network 1,000,000 400 356 18 2500 18356

Balerma network 1,000,000 400 454 10 2500 10454

West zone network 2,000,000 800 623 20 5000 20623

NFE number of function evaluations, DV number of decision variables, PD number of pipe diameter options, NI
Number of Iterations
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fixed global ideal point was considered for each of the WDN design problems considering the
objective function values (zero value for the cost and resiliency index equal 1). By this
approach, MOEA/D could move successfully towards an evenly distribution of solutions
along the Pareto front.

The results of a typical run of each algorithm are shown in Fig. 4. As it can be visually
observed, MOEA/D methods generally provided better Pareto fronts than two other well-
known algorithms for all studied networks. SPEA2 outperforms NSGA2 for the PES network,
i.e. the smallest network, however, for the larger problems, its performance becomes local and
cannot find the tails of Pareto front like NSGA2 and two others as the complexity of the
problem increases. It is obvious that MOEA/D frameworks and especially MOEA/D-HS could
provide large and very even distribution of representative Pareto optimal solutions for all
considered networks and NSGA2 presents the median results.

In order to compare the algorithms quantitatively, two performance metrics described in
Section 3 were used. The last column of Table 4 shows the average values of the HV metric
obtained by 10 times performing the algorithms for each of the benchmark network problems.
This metric shows the quality of the solutions in terms of both diversity and non-domination
strength. Higher values of HV metric mean better performance. According to the contents of
last column, NSGA2 gives slightly better results than SPEA2 for all network problems except
the smallest one. This superiority is attributable to the ability of NSGA2 for maintaining the
diversity rather than non-domination strength (Fig. 4). However, both algorithms

Table 3 Parameters used in multi-objective evolutionary algorithms (MOEAs)

Algorithm Parameter Value

NSGA2 Mutation rate 1/(no. of variables)

Crossover prob. 0.9

Mutation prob. 0.1

Tournament size 2

Mutation step size 0.1 ×Variable range

SPEA2 Mutation rate 1/(no. of variables)

Crossover prob. 0.9

Mutation prob. 0.1

Tournament size 0.05 × Pop. size

Mutation step size 0.1 ×Variable range

MOEA/D-GA Mutation prob. 0.1

Mutation rate 1/(no. of variables)

Tournament size 2

Q (number of neighbours) 0.2 × Pop size

Z* (Ideal point) The ideal values for objective functions
(zero for costs, one for the resilience index)

MOEA/D-HS HMCR 0.98

PAR 0.4

Band width 0.05 × 0.005Variable range

Q (number of neighbours) 0.2 × Pop size

Z* (Ideal point) The ideal values for objective functions
(zero for costs, one for the resilience index)

2762 J. Yazdi



underperform the MOEA/D methods and MOEA/D-HS outperforms the others for all network
problems based on the HV values.

A pairwise comparison was also carried out among the results of the algorithms based on
the CS metric for all four experimental networks. The results are represented in Table 4. This
metric emphasizes on the non-domination strength and by looking at the table contents, it can
be realized that when the non-domination criterion is considered SPEA2 slightly outperform
NSGA2 for all problems except SIN network. The pairwise comparison (diagonal values in
this table) again shows that MOEA/D frameworks outperforms NSGA2 and SPEA2 for the
considered WDN design problems. According to the the CS values, MOEA/D-HS slightly
underperform MOEA/D-GA for the WZN problem, but it has better performance for three
other networks. This confirms the general superiority of MOEA/D-HS when the non-
domination criterion is considered as well, and also demonstrates the high capability of the
harmony search for the local search. These results are consistent with those obtained by Yazdi
et al. (2014) where NSGA2 is compared with Nondominated Sorting Harmony Search
(NSHS) algorithm for the sewer pipe network application. They reported that NSHS could
not find the tails of the Pareto front, as it suffered from its inability to preserve the
diversity of the population during the evolutionary search steps. MOEA/D provides a
platform for the local optimizer to search all parts of the search space through the
aggregation vectors. This brings the advantage of generating wide Pareto fronts with
extreme points and keeping the diversity in the solutions. As demonstrated in Fig. 4
and Table 4, hybridizing HS with MOEA/D in this study keeps both the quality and
diversity of solutions and provides considerably better performance for solving multi-
objective problems than non-dominance -based MOEAs.
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Fig. 4 The Pareto fronts found for network problems: a) PES network, b) SIN network c) BIN network, d)
WZN network
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At the end, to improve the performance of MOEA/D, following ideas are recommended to
investigate in future research:

& Although the aggregation weight vectors are kept fixed in this study, the results of the
algorithm is sensitive to these values and thus giving adaptive values to them during the
search might be more efficient.

& MOEA/D is a very flexible framework to adapt different search operators. Other successful
optimizer such as PSO and DE can be hybridized within the MOEA/D platform and their
capabilities are explored for the large-scale WDN design problems.

& The search ability of theMOEA/D algorithm depends also on the choice of a scalarizing function.
The idea of using simultaneously different types of scalarizing functions can be investigated.

& The performance of the approach can also be examined by developing strategies for
allocating different computational resources to different subproblems during the search.

6 Conclusions

Multiobjective evolutionary algorithms based on decomposition were developed herein for the
large-scale WDN design problems and their results were compared with those of non-

Table 4 Comparison of multi-objective algorithms using the HV and two-set coverage (CS) metrics

Problem
CS

HV
Algorithm NSGA2 SPEA2 MOEA/D-GA MOEA/D-HS

PES

NSGA2 - 0 0 0 1.66

SPEA2 1 - 0.046 0 1.97

MOEA/D-GA 1 0.95 - 0 2.76

MOEA/D-HS 1 1 1 - 2.84

Algorithm NSGA2 SPEA2 MOEA/D-GA MOEA/D-HS

SIN

NSGA2 - 0.64 0 0 1.70

SPEA2 0.36 - 0 0 1.61

MOEA/D-GA 1 1 - 0.49 1.98

MOEA/D-HS 1 1 0.51 - 2.12

Algorithm NSGA2 SPEA2 MOEA/D-GA MOEA/D-HS

BIN

NSGA2 - 0.41 0 0 2.03

SPEA2 0.59 - 0 0 1.99

MOEA/D-GA 1 1 - 0.04 2.51

MOEA/D-HS 1 1 0.96 - 2.55

Algorithm NSGA2 SPEA2 MOEA/D-GA MOEA/D-HS

WZN

NSGA2 - 0.49 0 0 0.046

SPEA2 0.51 - 0.47 0 0.035

MOEA/D-GA 1 0.53 - 0.63 0.062

MOEA/D-HS 1 1 0.37 - 0.066
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dominance based MOEAs: NSGA2, and SPEA2. MOEA/D algorithms give noticeably better
performance than NSGA2 and SPEA2 with regard to the both non-domination and diversity
criteria. This framework divides the computational resources in all parts of the search space
through the aggregation vectors and this enables MOEA/D algorithms to give better diversity
and well-spread Pareto fronts with extreme point as demonstrated in Fig. 4 and Table 4. This is
a major advantage of the MOEA/D compared to the Pareto dominance algorithms particularly
for complicated optimization problems with large number of decision variables where they
often fail to preserve the diversity and trap to partial-local Pareto fronts. MOEA/D also
provides a flexible platform for employing local optimizers for the reproduction new solutions
during the search. This study successfully exploited the local search capability of harmony
search operators within the MOEA/D framework and as illustrated, the hybrid method
outperformed the MOEA/D-GA, NSGA2 and SPEA2 algorithms.

Overall, the results of this study demonstrate that the MOEA/D framework can be
successfully used for solving large-scale multiobjective design problems of WDS with greater
efficiency than non-dominance based MOEAs. There are much potential to achieve more
efficient and sophisticated implementations of MOEA/D. Some ideas were enumerated in this
work and can be investigated in future research.
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