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Abstract Reservoir flood control operation (RFCO) is a challenging optimization prob-
lem with multiple conflicting decision goals and interdependent decision variables. With
the rapid development of multi-objective optimization techniques in recent years, more and
more research efforts have been devoted to optimize the conflicting decision goals in RFCO
problems simultaneously. However, most of these research works simply employ some
existing multi-objective optimization algorithms for solving RFCO problem, few of them
considers the characteristics of the RFCO problem itself. In this work, we consider the com-
plexity of the RFCO problem in both objective space and decision space, and develop an
immune inspired memetic algorithm, named M-NNIA2, to solve the multi-objective RFCO
problem. In the proposed M-NNIA2, a Pareto dominance based local search operator and
a differential evolution inspired local search operator are designed for the RFCO problem
to guide the search towards the and along the Pareto set respectively. On the basis of inher-
iting the good diversity preserving in immune inspired optimization algorithm, M-NNIA2
can obtain a representative set of best trade-off scheduling plans that covers the whole
Pareto front of the RFCO problem in the objective space. Experimental studies on bench-
mark problems and RFCO problem instances have illustrated the superiority of the proposed
algorithm.

Keywords Multi-objective optimization · Artificial immune algorithm · Memetic
algorithm · Reservoir flood control operation

� Yutao Qi
ytqi@xidian.edu.cn

1 School of Computer Science and Technology, Xidian University, No.2 South Taibai Road,
Xi’an Shaanxi, 710071, China

2 School of Software, Xidian University, No.2 South Taibai Road, Xi’an Shaanxi, 710071, China

3 Institute of Water Resources and Hydro-Electric Engineering, Xi’an University of Technology,
No.5 South Jinhua Road, Xi’an Shaanxi, 710048, China

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s11269-016-1317-7-x&domain=pdf
mailto:ytqi@xidian.edu.cn


2958 Y. Qi et al.

1 Introduction

Reservoir flood control operation (RFCO) is a scheduling problem which reduces flood
peaks, minimizes flood damages and reserves floods by making appropriate scheduling
plans on the dams’ water release sequences (Hajkowicz and Collins 2007). It is a chal-
lenging nonlinear and non-convex optimization problem in the field of water resource
management, which involves multiple decision goals and interdependent decision variables
(Luo et al. 2015).

At present, many research efforts have been done on RFCO problem solving from dif-
ferent points of view and under various assumptions. These existing research works can
be divided into the following five categories: 1) Single reservoir (Kumar and Reddy 2006;
Jain et al. 1992) or multiple reservoirs (Wang et al. 2014; Zhou et al. 2014). 2) Short-term
scheduling (Wang et al. 2013; Li and Ouyang 2015), long-term scheduling (Li et al. 2010;
Porse et al. 2015) or the mix of both in recent years (Akbari et al. 2014; Luo et al. 2015). 3)
Deterministic inflow (Luo et al. 2015; Li and Ouyang 2015) or stochastic inflow (Ding et al.
2015; Hashemi et al. 2014). 4) Simulation-optimization (Chang et al. 2014; De Paes and
Brandao 2013; Chou and Wu 2015) or model-optimization approaches (Wang et al. 2013;
Hsu andWei 2007). 5) Single-objective approaches (Qin et al. 2010; Chang et al. 2014; Ding
et al. 2015) or multi-objectives approaches (Malekmohammadi et al. 2011; Shokri et al.
2013; Li and Ouyang 2015). In this paper, we focus on the single reservoir flood control
operation problem with short-term scheduling time horizon and deterministic inflow fore-
casts. Following the model-optimization paradigm, a multi-objective scheduling approach
is developed for RFCO problem.

For a long time, the majority of scheduling approaches which follow model-optimization
paradigm for RFCO problem are single-objective ones (Nagesh Kumar et al. 2010).
Optimization techniques, such as linear programming (David et al. 2000), dynamic pro-
gramming (Yakowitz 1982) and non-linear programming (Unver and Mays 1990) were
employed to solve this single objective RFCO problem. These approaches usually need
some problem-specific settings and often obtain local optimal scheduling plans for RFCO
problem. Moreover, they are time consuming when dealing with RFCO problem with large
amount of decision variables. In recent years, the multi-objective optimization technique
has made great progress, more and more research efforts have been devoted to solve RFCO
problem by using multi-objective optimization methods directly (Fu 2008; Qin et al. 2010;
Qi et al. 2012). Among exiting research works, the nature inspired optimization algorithms
which known as the population based stochastic searching algorithms make up the majority
of the list. With the advantage of generating a set of non-dominated solutions in a single run,
these algorithms, particularly the evolutionary algorithms, have been recognized to be very
successful in solving multi-objective optimization problem (MOP) (Coello Coello 2006).
However, to the best of our knowledge, almost all of these approaches simply employ some
existing multi-objective optimization algorithms for solving RFCO problem, few of them
considers the characteristics of the RFCO problem itself.

The RFCO problem raises challenges to existing multi-objective optimization algorithms
in the following two aspects. One is in the objective space. In the RFCO problem, an
improvement on one objective is usually accompanied with an unstable degradation on
another one. That is, the RFCO problem usually has an irregularly-shaped Pareto front (PF)
which is the point set of all Pareto optimal solutions in the objective space. The complexity
in PF shape raises a big challenge to most multi-objective optimization algorithms (Qi et al.
2014; Jiang and Yang 2015). The other is in the decision space. In the RFCO problem, a
sequence of water release volumes which have chain-like interdependence with each other
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are regarded as the decision variables. The complexity of interdependence between deci-
sion variables is the major sources of complexity in many optimization problems (Omidvar
et al. 2015), it also challenges the multi-objective optimization algorithms a lot. Consider-
ing the complexity of the RFCO problem in both objective space and decision space, we
develop a new scheduling approaches using artificial immune algorithm for multi-objective
optimization. The major contributions of this paper are as follows.

1. An immune inspired memetic algorithm M-NNIA2 which considers the complexity of
the RFCO problem in both objective space and decision space is developed.

2. To cope with the complexity of the RFCO problem in the objective space, M-NNIA2
inherits the remarkable diversity preserving capability of immune inspired optimization
algorithm, and manages to obtain a good representative set of non-dominated solutions
that fully cover the irregularly-shaped PF of the RFCO problem and scatter evenly on
it.

3. To cope with the complexity of the RFCO problem in the decision space, a Pareto
dominance based local search operator and a differential evolution inspired local search
operator are designed for the RFCO problem to guide the search of M-NNIA2 towards
the and along the Pareto set respectively.

The rest of this paper is organized as follows. Section 2 gives some related back-
grounds. Section 3 provides the description of the proposed M-NNIA2. Section 4 shows
the experimental results on benchmark problems to validate the efficiency of M-NNIA2.
Section 5 further verifies the efficiency of M-NNIA2 on multi-objective RFCO instances.
Conclusions are presented in Section 6.

2 Related Backgrounds

To make it easier to understand, this section introduces some basic terms about MOP and
the framework of immune inspired multi-objective optimization algorithms. A complete list
of acronyms and symbols can be found in Tables 2 and 3 in the Appendix.

2.1 Definitions and Notations of Multi-objective Optimization

The target MOP can be formally described as follows.

Minimize F(x) = (f1(x), f2(x), · · · , fm(x))T

Subject to x ∈ �
(1)

In which� ⊂ Rn is the feasible region of the decision space, and x = (x1, x2, · · · , xn) ∈
� is the decision variable vector. The target function F(x) : x → Rm consists of m real-
valued objective functions f1(x), · · · , fm(x) and Rm is the objective space.

Suppose that xA, xB ∈ � are two different solutions of the target MOP. One solution xA

is said to dominate the other one xB (noted as xA ≺ xB ) if and only if fi(xA) ≤ fi(xB),
∀i ∈ {1, · · · ,m}, and there exists a j ∈ {1, · · · ,m} that makes fj (xA) < fj (xB). We say
that a solution x∗ ∈ � is a Pareto optimal solution if there is no other solution x ∈ � that
dominates x∗. Then the Pareto set (PS) can be stated as PS = {x∗ | ¬∃x ∈ �, x ≺ x∗}. The
corresponding objective vectors of the solutions in PS is named as the Pareto front (PF).
The aim of a multi-objective optimization algorithm is to obtain a set of good representative
solutions that uniformly scattered along the true PF.
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2.2 Multi-objective Immune Algorithm and the Framework of NNIA2

Considering the target optimization problem as antigen and the coding of its solution as
antibody, the artificial immune system can be used to solve optimization problems by
simulating the immunological recognition procedure. Yoo and Hajela proposed the first
attempt to solve MOP using immune inspired ideas (Yoo and Hajela 1999). Coello devel-
oped the fist multi-objective immune system algorithm (MISA) based on the the immune
clonal selection principle (Burnet 1959). Following the clonal selection paradigm, Gong
suggested an efficient immune algorithm for MOP, the multi-objective immune algorithm
with non-dominated neighbor-based selection (NNIA) (Gong et al. 2008). NNIA devotes
more computing efforts to antibodies within the less-crowded regions of the current trade-
off front. Experimental results have shown the good performance of NNIA, however, this
algorithm might lose diversity when current non-dominated antibodies selected for propor-
tional cloning are very few because it ignores all the dominated antibodies. To improve its
robustness and adaptability, Yang developed an enhanced version, named as NNIA2, by
introducing an adaptive ranks clone scheme which takes dominated antibodies into consid-
eration and a k-nearest neighbor list strategy which help to improve the population diversity
(Yang et al. 2010).

Figure 1 illustrates the workflow of NNIA2. In NNIA2, a k-nearest neighbor list (k-NNL)
based diversity preserving strategy is adapted in both the steps of the adaptive selection
(step 7 in Fig. 1) and the adaptive ranks clone (step 4 in Fig. 1). This diversity preserving
strategy is based on the vicinity distance (Kukkonen and Deb 2006), with which the adap-
tive selection step trends to keep low rank and less crowded antibodies to survive. In the
adaptive ranks clone step, the clone size of a certain antibody is proportional to its vicinity
distance.

Fig. 1 The workflow of NNIA2
Random Initialization

Evaluate Antibodies

Select Antibodies from Different Ranks

Calculate Vicinity Distance and Perform 

Adaptive Ranks Clone

Recombination and Mutation Operations

Evaluate Antibodies

Adaptive Selection and k-Nearest Neighbor 

List based Diversity Maintenance

Termination Test Stop
seYON



M-NNIA2 for Reservoir Flood Control Operation 2961

3 Multi-objective Optimization Model for RFCO

During floods, the most important decision goal of reservoir flood control operation (RFCO)
is to guarantee the safety of both upstream and downstream of the dam by scheduling the
sequence of discharge water volume. Taking the discharge water volumes during T schedul-
ing periods Q = (Q1, Q2, ..., QT ) as the decision vector, a multi-objective RFCO problem
can be modeled as follows (Qi et al. 2012; Qin et al. 2010).

Minimize F(Q) = (f1(Q), f2(Q))

f1(Q) = max{Zt }
f2(Q) = max{Qt }

Subject to
Zmin ≤ Zt ≤ Zmax

0 ≤ Qt ≤ Qmax

Vt = Vt−1 + It − Qt

t = 1, 2, ..., T

(2)

In which,Zt is the upstream water level of the t-th period, it has a value between its lower
bound Zmin and upper bound Zmax . Qmax is the upper limit of discharge water volume.
Vt = Vt−1 + It − Qt is the water balance equation, in this equation, Vt and Vt−1 are the
reservoir storage of the t-th and the (t − 1)-th periods, It which is the input of the RFCO
problem means the reservoir inflow volume of the t-th period. The first objective function
f1(Q) is to minimize the highest upstream water level during the T scheduling periods and
ensure the safety of the dam and its upstream side. The other optimization target f2(Q) is
to minimize the largest discharge water volume during scheduling periods and protect the
dam’s downstream side.
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4 M-NNIA2: The Proposed Algorithm for RFCO

Following the main workflow of NNIA2, the Pareto dominance based local search operator
and the differential evolution (DE) inspired local search operator are designed and employed
to guide the search towards and along the current found PS respectively. The workflow of
the proposed M-NNIA2 is summarized in Algorithm 1.

The memetic operator in step 3.2 of Algorithm 1 is the key step that the proposed M-
NNIA2 enhances NNIA2. It consists of two newly designed local search operators. For each
antibody Abi in clone population Ct , the memetic operator performs a local search which is
based on the dominance relationships between Abi and its neighbors if there are, or a local
search inspired by differential evolution on it, giving rise to a new antibody Ab′

i which is
then added into C′

t . The details of the newly designed memetic operator can be described in
Algorithm 2.

Figure 2 illustrates the basic ideas of the two newly designed local search operators. As
shown in Fig. 2a, the Pareto dominance based local search operator determines a potential
hill-climbing searching area according to the dominance relationships between Abi and
its neighbors that dominated by it. Different from most existing hill-climbing local search
methods, the developed local search operator utilizes more than one descent directions to
guide the search, which is expected to provide a more accurate estimation of the potential
hill-climbing area. When the searching procedure converges to a certain degree, Abi and
its neighbors become incomparable. In this case, the DE inspired local search operator will
play an important role. As is shown in Fig. 2b, the DE inspired local search operator guides
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Fig. 2 Illustration of the two local search operators

the search towards different areas when the relative location between Abi and its neighbors
Abp and Abq changes. The DE inspired local search operator is expected to provide search
directions along the current found Pareto set, and thus guide the search towards even wider
areas to generate more diversity.

5 Experimental Studies on Benchmark Problems

In this section, we will compare the proposed M-NNIA2 with four other algorithms. Among
which, NSGAII (Deb et al. 2002) and MOEA/D (Zhang and Li 2007) are outstanding
evolutionary multi-objective optimization algorithms with different types. To illustrate the
efficiency of the suggested enhancements, the original NNIA (Gong et al. 2008) and NNIA2
(Yang et al. 2010) are also included in the compared algorithm list.

5.1 Test Problems

In the experimental study, seven benchmark problems are investigated to validate the supe-
riority of the proposed M-NNIA2. They are five widely used bi-objective ZDT problems
(Zitzler et al. 2000) and two test problems with nonlinear variable linkages which are sug-
gested by Qingfu Zhang and noted as F5 and F6 (Zhang et al. 2008). Detailed descriptions
of these problems are listed in Table 1 in the Appendix.

5.2 Performance Metrics

Two comprehensive metrics are employed to evaluate the performance of the compared
algorithms. For benchmark problems whose ideal PFs can be available, the inverted gen-
erational distance (IGD) metric (Zitzler et al. 2003) is employed. For the multi-objective
RFCO problem with unknown PF, the hypervolume (HV) indicator (Zitzler and Thiele
1999) is used to evaluate the performance. Given an approximation set of the PF with

size np, noted as P =
(
p1,p2, · · · ,pnp

)
, the IGD and HV metrics can be defined as

follows.



2964 Y. Qi et al.

IGD Metric Suppose P∗ is a set of evenly distributed points over the idea PF of the target
MOPs, the IGD value from P∗ to P can be calculated by the following Eq. 6.

IGD(P∗,P) =
∑

ν∈P∗ d(ν,P)

|P∗| (6)

In which, d(ν,P) is the minimum Euclidean distance between ν and the points in P. The
IGD metric measures both the uniformity and the convergence of the approximation set P.
A low value of IGD(P∗,P) indicates that P is close to the ideal PF and covers most of the
whole PF.

HV Metric Given a reference point pR in the m-dimensional objective space, the HV
indicator is a measure of the region which is simultaneously dominated by the approxi-
mation set P and bounded above by the reference point pR . A high HV value means that
P is a good approximation of the unknown ideal PF. In this work, the reference point
pR is set as maximum values of non-dominated solutions obtained by all the compared
algorithms.

5.3 Parameter Settings

In the experimental studies, the simulated binary crossover (SBX) and polynomial mutation
(PM) operators (Deb et al. 2002) are employed in all the compared algorithms. Param-
eters for SBX and PM are set as follows. The crossover probability pc is set as 0.8.
The distribution index for SBX is set as 15. The mutation probability pm is set as 1/n,
in which n is the number of decision variables. The distribution index for PM is set
as 20.

For M-NNIA2, NNIA and NNIA2, the size of non-dominated population nD is set as
100, the size of active population nA is set as 20, the size of clone population nC is set
as 100. For M-NNIA2 and NNIA2, the size of neighbor list is set as 20. For NSGAII,
the population size is set as 100. For MOEA/D, the Tchebycheff decomposition approach
is employed, the population size is set as 100, the size of neighborhood is set as 20. All
the compared algorithms stop when the number of function evaluation reaches the same
maximum number of 50000.

5.4 Experimental Studies on M-NNIA2 and Comparisons

This part of experiments are designed to illustrate the superiority of the proposed M-NNIA2
over the compared algorithms. The data in the following experiments are statistic results of
30 independent runs.

Figure 3 shows the plot of the non-dominated fronts with the lowest IGD value found
by the compared algorithms on bi-objective ZDT problems, each group end with a box-plot
of IGD values over 30 independent runs. In these box-plots, the bottom and top of the box
are the first and third quartiles, the the bands inside the boxes represent robust estimates
of the uncertainty about the medians for box-to-box comparison. The ends of the whiskers
represent possible alternative values and the symbol ”+” denotes outliers.

In Fig. 3, the first and the second box-plots in each group are the non-dominated solu-
tion sets found by the compared algorithm with function evaluations of 2000 and 5000
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Fig. 3 The final non-dominated fronts with the lowest IGD values found by the compared algorithms on
bi-objective ZDT problems
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Fig. 3 (continued)
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Fig. 3 (continued)

respectively. The the third column is the final IGD box-plots of the compared algorithms
over 30 independent runs.

It can be seen from Fig. 3 that the proposed M-NNIA2 converges to the ideal PFs of
ZDT problems after 2000 function evaluations when the other compared algorithms have
not yet converged. When the function evaluations comes to 5000, M-NNIA2 obtains non-
dominated solution sets with better uniformity than the other compared algorithms. As
shown by the IGD box-plots, M-NNIA2 has lower IGD values than NNIA and NNIA2 on
four of the five ZDT problems except for ZDT6 problem whose Pareto-optimal solutions
are non-uniformly scattered along the ideal PF. It is superior to all the compared algorithms
on ZDT3 which has a discontinuous PF.

Figure 4 gives the non-dominated fronts obtained by the compared algorithms on
bi-objective F5 and F6 problems. At the end of each sub-figure, a box-plot of IGD val-
ues over 30 independent runs is given. On these two complex problems with nonlinear
interdependence between decision variables, the proposed M-NNIA2 significantly out-
performs the compared algorithms in term of spreadability, and thus it has the lowest
IGD value.
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Fig. 4 The final non-dominated fronts with the lowest IGD values found by the compared algorithms on F5
and F6 problems with nonlinear variable linkages

To conclude, from this part of experimental studies we can come to the conclusion that
the proposed M-NNIA2 converges faster than the compared algorithms. It performs as good
as or superior to the compared algorithms on most of the benchmark problems, especially
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Fig. 4 (continued)

on complex problems with nonlinear interdependence between decision variables. The pro-
posed M-NNIA2 has good capability of diversity preserving in the objective space and
dealing whit variable interdependence in the decision space, it can be expected to be suitable
for solving the RFCO problem.
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6 Experimental Studies on Reservoir Flood Control Operation

After validating the superiority of the proposed M-NNIA2 on benchmark problems, this
part of experimental studies are designed to investigate the performance of M-NNIA2 on
the RFCO problems.

The compared algorithms are applied to deal with two typical floods at Ankang reser-
voir in Shanxi province of China. Figure 5a illustrates the water level to volume curve
of Ankang reservoir. Figure 5b shows the design flood hydrographs for Ankang reservoir.
Figures 5c and d are the reservoir inflow volumes of the two investigated floods on October
12, 2000 and August 28, 2003. According to the design flood hydrographs in Fig. 5b,
the flood on October 12, 2000 is a 5 % frequency flood with return period of 20 years,

(a) Water level to volume curve of Ankang reservoir (b) The design flood hydrograph of Ankang reservoir

(c) Inflow volume of flood on October 12, 2000        (d) Inflow volume of flood on August 28, 2003 
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Fig. 5 The water level to volume curve of Ankang reservoir, the design design flood hydrograph and the
inflow volumes of investigated floods
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Fig. 6 The final non-dominated fronts with the highest HV values found by the compared algorithms on the
flood on October 12, 2000 and August 28, 2003
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Fig. 6 (continued)

and the flood on August 28, 2003 is a 20 % frequency flood with return period 5 years.
Given the sequence of reservoir inflow volumes during a flood, the reservoir storage can be
estimated by using the discharge water volume and the the water balance equation. After
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that, the dam’s upstream water level can be calculated according to the water level to volume
curve.

As shown in Fig. 5, the flood on October 12, 2000 is a big flood with a single peak
of more than 17000 cubic meters water inflow per second. Unlike this flood, the flood on
August 28, 2003 has two flood peaks with maximum inflow water volume of more than
12000 cubic meters per second.

In this part of experimental studies, the total dispatching times of the two floods are
97 hours and 44 hours, and the dispatching time intervals are set as 6 hours and 3 hours
respectively. All the compared algorithms have the same parameter setting and stopping
criterion as have been described in section 4.3. The HV indicator (Zitzler and Thiele 1999)
is employed to evaluate the performances of the compared algorithms.

Figure 6 illustrates the experimental results of the compared algorithms on the two multi-
objective RFCO problems over 30 independent runs. In this figure, the ideal Pareto fronts
of the two problems are the non-dominated solution sets obtained by running NNIA with
2,000,000 function evaluations over 30 runs.

As shown in Fig. 6, the HV box ofM-NNIA2 locate higher and are more flat than those of
the compared algorithms. The final non-dominated fronts found by the compared algorithms
indicate that M-NNIA2 can obtain non-dominated solution set with better convergence and
uniformity. Moreover, M-NNIA2 has more stable performances on the two investigated
floods, because its HV box-plots are flat.

7 Conclusions

Considering the complexity of the multi-objective reservoir flood control operation (RFCO)
problem in both objective space and decision space, an immune inspired memetic algorithm,
namedM-NNIA2, is developed for decision making in flood control. To cope with complex-
ity of RFCO in the objective space, M-NNIA2 inherits the remarkable diversity preserving
capability of immune inspired optimization algorithm, and manages to obtain a good rep-
resentative set of non-dominated solutions that fully cover the irregularly-shaped PF of the
RFCO problem and scatter evenly on it. On the other hand, M-NNIA2 employs two newly
developed local search operators to cope with the complexity of the RFCO problem in the
decision space.

Experimental studies have been done on well-known benchmark problems with dif-
ferent features. The results indicate that M-NNIA2 can obtain non-dominated solution
sets with better coverage and uniformity than the other four compared algorithms. In
addition, it performs significantly better on complex problems with nonlinear interdepen-
dence between decision variables. We have also validated the superiority of M-NNIA2
on RFCO problems with different return periods. Experiments conducted on two typical
floods at Ankang reservoir demonstrate that M-NNIA2 performs better and more stable
than the compared algorithms, it is a highly competitive algorithm for solving the RFCO
problems.
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Appendix

Table 1 Details of the Test problems

Instances Var. Bound Objective functions

ZDT1 [0, 1]n f1(x) = x1

n = 30 f2(x) = g(x)[1 − √
x1/g(x)]

g(x) = 1 + 9
∑n

i=2 xi/(n − 1)

ZDT2 [0, 1]n f1(x) = x1

n = 30 f2(x) = g(x)[1 − (x1/g(x))2]
g(x) = 1 + 9

∑n
i=2 xi/(n − 1)

ZDT3 [0, 1]n f1(x) = x1

n = 30 f2(x) = g(x)[1 − √
x1/g(x) − x1 sin(10πx1)/g(x)]

g(x) = 1 + 9
∑n

i=2 xi/(n − 1)

ZDT4 x1 ∈ [0, 1] f1(x) = x1

xi ∈ [−5, 5] f2(x) = g(x)[1 − √
x1/g(x)]

i = 2, ..., 30 g(x) = 1 + 10(n − 1) + ∑n
i=2[x2 − 10 cos(4πxi)]

ZDT6 [0, 1]n f1(x) = 1 − e(−4x1)×[sin(6πx1)]6

n = 10 f2(x) = g(x)[1 − (f1(x)/g(x))2]
g(x) = 1 + 9(

∑n
i=2 xi/(n − 1))0.25

F5 [0, 1]n f1(x) = x1

n = 30 f2(x) = g(x)[1 − √
x1/g(x)]

g(x) = 1 + 9
∑n

i=2(xi − x1)
2/(n − 1)

F6 [0, 1]n f1(x) = √
x1

n = 30 f2(x) = g(x)[1 − (f1(x)/g(x))2]
g(x) = 1 + 9

∑n
i=2(xi − x1)

2/(n − 1)

Table 2 List of acronyms

Acronyms Definition

RFCO Reservoir Flood Control Operation

MOP Multi-objective Optimization Problem

PF Pareto Front

PS Pareto Set

MAs Memetic Algorithms

MOEAs Multi-objective Evolutionary Algorithms

NNIA The Multi-objective Immune Algorithm with Non-dominated Neighbor-based Selection

NNIA2 An Enhanced NNIA

M-NNIA2 Memetic Algorihtm based on NNIA2

IGD Inverted Generational Distance

HV Hypervolume

SBX Simulated Binary Crossover

PM Polynomial Mutation
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Table 3 List of symbols

Symbols Description

x = (x1, x2, · · · , xn) n-dimensional decision variable vector

F(x) = (f1(x), f2(x), · · · , fm(x))T m real-valued objective functions

� the feasible region of the decision space

T scheduling periods of the RFCO problem

Q = (Q1,Q2, ...,QT ) Discharge water volumes at T periods

Qmax Upper limit of discharge water volume

Zt Upstream water level of the t-th period

Zmin, Zmax lower bound and upper bound of Zt

Vt Reservoir storages of the t-th period

f1(Q) Highest upstream water level during scheduling periods

f2(Q) Largest discharge water volume during scheduling periods

MaxFuncEval Maximum number of function evaluations

nD Maximum size of non-dominated population

nA Maximum size of active population

nC Size of clone population

s size of neighbor list

t Iteration times

P0, A0, C0, Pt , At , Ct , C′
t , Pt+1 Antibody populations

Abi , Ab′
i , Ab

p , Abq Antibodies

NB(Abi ) Neighbor list of antibody Abi

D(Abi ) Antibodies dominated by Abi in NB(Abi )

d = {d1, · · · , dr } Hill climbing direction set

L Searching step length

P =
(
p1,p2, · · · ,pnp

)
Approximation set of the target PF

P∗ An ideal set of evenly distributed points over the target PF

pR Reference point for calculating the HV metric value

pc Crossover probability

pm Mutation probability
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