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Abstract Estimation of suspended sediment loads (SSL) in rivers is an important issue in
water resources management and planning. This study proposes a hybrid double feedforward
neural network (HDFNN) model for daily SSL estimation, by combining fuzzy pattern-
recognition and continuity equation into a structure of double neural networks. A comparison
is performed between HDFNN, multi-layer feedforward neural network (MFNN), double
parallel feedforward neural network (DPFNN) and hybrid feedforward neural network
(HFNN) models. Based on a case study on the Muddy Creek in Montana of USA, it is found
that the HDFNNmodel is strongly superior to the other three benchmarking models in terms of
root mean squared error (RMSE) and Nash-Sutcliffe efficiency coefficient (NSEC). HDFNN
model demonstrates the best generalization and estimation ability due to its configuration and
capability of physically dealing with different inputs. The peak value of SSL is closely
estimated by the HDFNN model as well. The performances of HDFNN model in low and
medium loads are satisfactory when investigated by partitioning analysis. Thus, the HDFNN is
appropriate for modeling the sediment transport process with nonlinear, fuzzy and time-
varying characteristics. It explores a practical alternative for use and can be recommended as
an efficient estimation model for SSL.

Keywords Hybrid neural network . Double parallel feedforward . Suspended sediment load .

River flow. Differential evolution

1 Introduction

The estimation of suspended sediment loads (SSL) is required in river restoration,
stable channel design and water quality assessment. It is a difficult and sophisticated
task in practice, however, since the sediment transport is highly nonlinear and
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governed by many factors including strength of flow, sediment supply, river bed, etc.
Conventional sediment rating curves (SRC) are incapable of providing sufficiently
accurate estimates attributed to the misleading practice of using sediment load versus
discharge (McBean and Al-Nassri 1988; Demirci and Baltaci 2013). Artificial intelli-
gence techniques have been proven to be efficient tools in modeling sediment loads.
Alp and Cigizoglu (2007) employed two artificial neural network (ANN) models, i.e.
feedforward back propagation (FFBP) method and radial basis functions (RBF) to
estimate daily SSL. The use of support vector machine (SVM) was investigated by
Cimen (2008) for SSL estimation in rivers. Lafdani et al. (2013) used a combination
of gamma test and genetic algorithm (GT-GA) to identify the best input of SVM and
ANN models for daily SSL prediction. These models could capture the nonlinear
behavior of sediment data without going into the details of physical processes in
watershed. Nevertheless, in reverse, the totally implicit and physically meaningless
features are also the major criticisms. It is still necessary to develop estimation
models with conceptual ideas to reflect the characteristics of sediments.

The fuzzy nature of SSL series necessitates the utilization of fuzzy and highly
nonlinear methods for sediment simulation. Fuzzy logic was accepted as a good
procedure in suspended sediment estimation (Tayfur et al. 2003; Kisi et al. 2006;
Demirci and Baltaci 2013). It yielded better results than SRC and ANN models since
the degree of ‘belongingness’ to a set or category is described by a membership
number. Neuro-fuzzy models for suspended sediment estimation were found to pro-
vide good performances as well (Cobaner et al. 2009; Kisi et al. 2009; Rajaee et al.
2009). However, these approaches suffer from difficulties in their manipulation as
they need different membership functions in different cases. A flexible and transparent
model which allows implementing the fuzzy concept in activation functions is
appreciated. Qiu et al. (1998) introduced a fuzzy pattern-recognition activation func-
tion (from the input layer to the hidden layer) into an ANN model for annual runoff
forecasting. This function classified inputs into a number of categories in terms of
different patterns. In this way, the fuzziness of runoff was considered with respect to
the seasonal characteristic of the river system. Zhao and Chen (2008) further applied
this model for predictions in ungauged basins using hydrological data in gauged
basins that were similar. In their study, the fuzzy pattern-recognition activation
function was employed to connect the hidden nodes and the network output. This
method offers practically significant advantage over other fuzzy-based models and is
employed in this study for SSL estimation.

In addition, the time-varying nature of sediment transport process can be consid-
ered by adding a continuity equation in the ANN structure, as inspired by Yang et al.
(1998) and Li and Gu (2003). In their works, the nodes in the hidden/output layers
were regarded as storage reservoirs, and continuity equation was satisfied when river
flows from upstream to downstream sections. Yang et al. (1998) successfully fore-
casted monthly river flow of Salford University station in Irwell River basin. Li and
Gu (2003) expanded this method to the sediment yield forecasting. They obtained
satisfactory results and encouraged the use of continuity equation in modeling the
sediment loads. The spatial and temporal factors were taken into account in the
sediment transport process by continuity equation, which can shed light on the effect
of upstream sediment loads. Thus, this method can build a relationship between
upstream and downstream sediment loads, and is feasible and acclaimed in an SSL
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estimation model. It is preferred to completely physics-based approaches in which the
detailed environmental data are generally not available and simplified assumptions are
unrealistic (Kothyari et al. 1997; Kouassı et al. 2013).

Traditional multi-layer feedforward neural network (MFNN) has some drawbacks in its
architecture and regularization. He (1993) proposed double parallel feedforward neural net-
work (DPFNN), which involves a paratactic relationship between linear and nonlinear map-
ping. It is a parallel connection of a multi-layer feedforward neural network and a two-layer
feedforward neural network. The multi-layer network uses its hidden nodes to adjust the
solution and thus improves nonlinear mapping performance; and the two-layer network can
give high learning speed for linear solution (He 1994). It was demonstrated that DPFNN has
faster convergence speed and better generalization capability than MFNN (Zhong and Ding
2005; Wang et al. 2011). When using particle swarm optimization for feature selection, the
DPFNN model could rectify over-fitting problem as well (Huang and He 2007). It has been
used for hyperspectral data classification (He and Huang 2005), concentration estimation of
gas mixture (Zhao et al. 2010) and water diversion demand estimate (Khan et al. 2014), which
has been proved to be a promising method for regression and prediction.

The purpose of this paper is to develop a novel estimation model with a combination of
fuzzy pattern-recognition, continuity equation and double feedforward neural network. In
addition to river flows, the influence of sediment loads in the upstream river sections is
investigated in this study. Two sediment stations on the Muddy Creek in Montana of USA
are used as case study sites.

2 Description of Estimation Models

2.1 Multi-Layer Feedforward Neural Network (MFNN)

The three-layer feedforward neural network consisting of the input, hidden and output layers,
is the most widely used MFNN model. The input layer introduces input data {p1,p2,…,pk} to
the network. The weighted sum of inputs and bias are passed with a predetermined activation
function f(.) to the nodes in the hidden layer (Thirumalaiah and Deo 1998):

ti ¼ f
Xk

j¼1

pjwji þ bi

 !
ð1Þ

where ti (i=1, 2, …, s) represent nodes in the hidden layer and pj (j=1, 2, …, k) represent
nodes in the input layer. The weight parameter connecting the input layer and the hidden layer
is denoted by wji, and bi is the bias value. Similarly, the node in the output layer is computed
from nodes in the hidden layers (Thirumalaiah and Deo 1998):

y ¼ F
Xs

i¼1

tiwi þ b

 !
ð2Þ

in which y represents a single node in the output layer and F(.) is the activation
function for the output layer. The weight parameters from the hidden layer to the

output layer and bias are denoted by wi and b, respectively. For traditional MFNN
models, the activation function f(.) is usually a radial basis function or sigmoid
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function, and F(.) is a linear function, respectively. They reveal relation of nodes
between two layers, although having no physical meanings. The MFNN model for
SSL estimation has limitations attributed to the negligence of sediment properties.

2.2 Double Parallel Feedforward Neural Network (DPFNN)

As can be seen in Fig. 1a, DPFNN model is developed from MFNN model in which
two networks connect each other in parallel with the same k input nodes. For the
three-layer neural network of DPFNN, the nodes in the hidden layer (t1, t2,…, ts) are
computed by Eq. (1) and then connected to the output with wi in the same manner.
Analogously for the two-layer neural network, the weight parameters directly from the
input layer to the output layer are denoted by vj (j = 1, 2, …, k). The node in the
output layer is acquired in the following equation (Zhong and Ding 2005):

y ¼
Xs

i¼1

tiwi þ
Xk

j¼1

pjv j ð3Þ

That is, the output is a summary of two parallel neural networks. The procedure of
computing y from its inputs is demonstrated in Fig. 1a, for the MFNN and DPFNN
models respectively, whilst the calibration process for searching optimized parameters
is shown in Fig. 1b. For a given set of training samples (pn, Yn) supplied to the
model, the error function is defined as:

E Wð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

n¼1

yn‐Ynð Þ2
vuut ð4Þ

where the vector W is a collection of all unknown parameters, and varies with the
estimation model; yn and Yn are computed and desired output (n = 1,2,…, N), respec-
tively, and N is the number of training samples. The objective of network training,
hence, is to find Wopt which satisfies that E(Wopt) =minE(W). As shown in Fig. 1b,
the vector W is updated with the updated fitness value of E(W) and is finally
outputted if stopping criteria is satisfied. In the present paper, differential evolution
(DE) is employed as an optimization technique to find the minimum value of error
function and the corresponding Wopt. The DE is a widely used population-based
optimization algorithm, which is favourable for searching parameters of non-
differentiable and time-varying models (Storn and Price 1995; Rocca et al. 2011; Li
et al. 2013). It conducts mutation, crossover and selection operations based on the
differences of randomly sampled pairs of solutions in the population, thus avoids local
optima and allows fast convergence, details of which can be found in Chen et al.
(2015).

2.3 Hybrid Feedforward Neural Network (HFNN)

The above two models are incapable of distinguishing the influences of different
inputs, thus {p1, p2,…, pk} is employed to represent any potential inputs for SSL
estimation. In practice, some previous studies estimated sediment based on the river
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flow and sediment data at its own station (Aytek and Kisi 2008; Afan et al. 2014),
while others focused on the estimation of downstream sediment data by using data
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from both upstream and downstream stations (Kisi 2004; Partal and Cigizoglu 2008).
For the case of this study, river flows Q either at the upstream or downstream stations
and SSL from upstream stations are involved as inputs. When fed with various inputs,
the output SSL at the downstream station is obtained in different manners.

In this section, a hybrid feedforward neural network (HFNN) is developed with
respect to river flow inputs (Q1

in, Q2
in ,…, Qk

in). A conceptual activation function based
on fuzzy pattern-recognition is introduced as follows (Qiu et al. 1998):

Qi ¼
1

XC

l¼1

Xk

j¼1

wji Qin
j −Mi

� �h i2

Xk

j¼1

wji Qin
j −Ml

� �h i2

ð5Þ

where Qi (i= 1, 2, …, s) are nodes in the hidden layer and Qj
in (j = 1, 2, …, k) are

nodes in the input layer. Model vector M = [Mi] = [Ml] contains a number of patterns in
the hidden layer. It entertains fuzzy pattern-recognition idea in the hidden layer, since
the inputs are classified into a number of categories in terms of different patterns. The
parameter C refers to the number of elements in the model vector as well as the
number of nodes in the hidden layer (i.e. C= s). Generally, a higher value of C
generates a higher precision for the estimation result, since it implies that there are
more categories in the hidden layer and represents a higher degree of nonlinearity. We
further give a general expression for the vector M: if the number of the nodes in the

hidden layer equals to C (≥2), then M ¼ 1:0; C−2
C−1 ;

C−3
C−1 ; …; 1

C−1 ; 0
� �

. The degree of

membership is 1.0 for Bwet^ model in wet season and 0 for Bdry^ model in dry
season, thus, the defined vector would fully cover the models ranging from Bwet^ to
Bdry^ season. Meanwhile, the activation function from the hidden layer to the output
layer is given as follows:

SSL 1ð Þ ¼ a0 �
Xs

i¼1

Qiwi þ b

 !b0

ð6Þ

where SSL(1) represents node in the output layer; wi and b denote the weight
parameters and bias for the output layer, respectively. The activation function in
Eq. (6) expresses an exponential relationship between river flows and sediment loads,
which is generally a functional relationship representing the SRC. Values of a0 and b0
for a specific river are to be optimized in the training process of neural network. The
structure of HFNN model is depicted in the framework of Fig. 1c, where SSL(1) is
considered as the final output with inputs (Q1

in, Q2
in ,…, Qk

in). Accordingly, HFNN
model examines the relationship of Q and SSL by considering the fuzzy property of
sediment loads in an MFNN structure.

2184 X.Y. Chen, K.W. Chau



2.4 Hybrid Double Feedforward Neural Network (HDFNN)

In this section, a hybrid double feedforward neural network (HDFNN) is developed
when the sediment data at the upstream river stations are included as inputs. These
sediment inputs directly work on the output in a two-layer neural network. In the
representation of a river system, upstream stations are regarded as nodes in the input
layer and downstream station as node in the output layer. Thus, mass conservation is
satisfied over the river network by the following continuity equation (Li and Gu
2003):

∂SD
∂T

¼
Xh

i¼1

viQ
s
i−Q

s ð7Þ

where SD and Qs are respectively the sediment deposition and sediment transport rate
at the downstream station, and T is time. Meanwhile, Qi

s is the sediment transport rate
at each upstream station, wherein i (1, 2, …, h) refers to the index of each node in
the input layer. The fraction of sediment from a node in the input layer entering into
the node in the output layer is denoted by vi. In the physical point of view, Eq. (7)
implies that the rate of change of sediment deposition in the current river section is
determined by the difference with the source sediment transport rate at the upstream
river reaches, which reveals the sediment mass conservation over the entire river
system. After discretization, the SD at time T+ΔT is determined by the following
equation:

SD TþΔTð Þ ¼ SD Tð Þ þ
Xh

i¼1

viQ
s
i Tð Þ−Q

s
Tð Þ

 !
�ΔT ð8Þ

Multiplying the sediment transport rate Qs by a time stepΔT produces a change in the mass
during the time step, thus daily SSL could be denoted by the equation SSL=Qs×ΔT when
ΔT=1 day. Accordingly, Eq. (8) could be written as follows:

SD Tþ1ð Þ ¼ SD Tð Þ þ
Xh

i¼1

viSSLi Tð Þ−SSL Tð Þ

 !
ð9Þ

Equation (9) in its simplified form is given by:

SD Tþ1ð Þ ¼ λ Tð Þ � SD Tð Þ þ P Tð Þ
� � ð10Þ

wherein λ Tð Þ ¼ 1− SSL Tð Þ
SD Tð ÞþP Tð Þ

and P Tð Þ ¼ ∑
h

i¼1
viSSLi Tð Þ. Here λ could be regarded as a

recession coefficient, which is assumed to be independent of time (Yang et al. 1998). An
initial value of sediment deposition SD0 is given in advance, and the value of SD at each time
step could be computed from Eq. (10). The SSL in the output layer is evaluated as a nonlinear
function of sediment deposition (Li and Gu 2003)

SSL 2ð Þ
Tð Þ ¼ 1

1þ exp − SD Tð Þ þ P Tð Þ
� �� � ð11Þ
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The HDFNN model adopts two separate neural networks with different influences
of river flows and upstream sediment loads on downstream SSL, which is different
from the DPFNN model using the same input variables in two parallel networks. This
is tantamount to say that two neural networks with respect to (Q1

in, Q2
in ,…, Qk

in) and
(SSL1

in, SSL2
in ,…, SSLh

in) are involved, as shown in Fig. 1c. The final output SSL is a
summary of SSL(1) and SSL(2). Accordingly, HDFNN model allows for dealing with
two separate inputs due to the double networks used. Besides, the inclusion of fuzzy
pattern-recognition and continuity equation in the neural networks enables consider-
ation of fuzzy and time-varying feature of sediment loads.

3 Study Area

The time series of daily river flow and suspended sediment data used in this study
belong to two stations on the Muddy Creek near Vaughn in Montana, USA. The
drainage areas at these sites are 730.377 km2 for the upstream station (station No.
06088300) and 813.256 km2 for the downstream station (station No. 06088500), as
shown in Fig. 2. These two stations have been studied in several works (Browning
et al. 2005; Kisi Ö and Fedakar 2014), which ensures the reliability of our collected
data. The objective of this work is to estimate the suspended sediment loads at the
downstream station (SSLd) based on river flows either at the upstream or downstream
station (Qu or Qd) and sediment loads at the upstream station (SSLu).

The daily dataset was collated from US Geological Survey (USGS), covering a
time period of 4 years from 1st January 1977 to 31st December 1980. The discharge
and sediment data for the upstream and downstream stations are plotted in Fig. 3. It
can be seen that there is a highly nonlinear relationship between discharge and

Fig. 2 Locations of stations on the Muddy Creek near Vaughn in Montana, USA
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sediment data for both stations. The presence of outliers is detected as well, partic-
ularly for the sediment data. In the downstream dataset, only four values above or
near 40,000 ton/day are observed while the others are below 20,000 ton/day. These
outliers of data may give difficulty to the estimation models.

For the purpose of calibration and estimation, data of years 1977 and 1978 are
chosen in the training period, whilst those of year 1980 are chosen in the testing
period. The remaining data of year 1979 (around 25 % of the whole data) are used
for validation, which is an indispensible process to avoid over-fitting. The statistical
parameters of river flow and sediment data for the two stations are summarized in
Table 1, in which Xmean, Xmedian, SX, Xmax and Xmin denote the mean, median, standard
deviation, maximum and minimum, respectively. A noticeable difference between
Xmean and Xmedian is detected for the sediment data, which provides supporting
evidence for the existence of outliers. The high values of SX indicate the complexity
of the sediment data, and this may have a negative effect on the estimation
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Fig. 3 Scatter plots of (a) upstream and (b) downstream data between sediment load and discharge

Table 1 Summary of statistical parameters for data at two stations

Station no. Data type Data period Xmean Xmedian SX Xmax Xmin

06088300 Qu (m
3/s) Training 2.97 1.53 3.53 38.79 0.62

Validation 3.57 1.81 3.57 31.15 0.71

Testing 2.65 1.84 2.32 22.94 0.42

SSLu (ton/day) Training 291.91 10.0 2450.3 47,600 2.30

Validation 175.84 13.0 666.67 9740 2.00

Testing 175.55 13.5 1589.9 26,100 1.40

06088500 Qd (m
3/s) Training 3.79 1.93 4.33 45.31 0.14

Validation 4.59 2.21 4.56 33.98 0.82

Testing 3.64 2.07 3.34 30.58 0.45

SSLd (ton/day) Training 610.28 25 3219.6 58,300 0.96

Validation 539.36 58 1413.7 17,500 2.80

Testing 384.04 30 2351.4 41,900 1.70
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performance. Besides, the Xmin value in the training set is higher than that in the
corresponding testing set, both for Qu and SSLu. This may cause extrapolation
difficulties in estimation of low sediment values. In short, the sediment data to be
estimated are irregular and ambiguous, and a model, which can fit the highly
nonlinear relationship between SSLd and the inputs, is in urgent need.

4 Results and Discussion

In order to undertake the comparison of performances by different inputs and models,
two evaluation criteria are employed in the present study, i.e. root mean square error
(RMSE) and Nash-Sutcliffe efficiency coefficient (NSEC). They are determined by the
following equations:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

Y i−Ŷ i

� �2
vuut ð12Þ

NSEC ¼ 1−
XN

i¼1

Y i−Ŷ i

� �2
=
XN

i¼1

Y i−Y
� �2

ð13Þ

where Yi and Ŷi are respectively observed and computed values (i= 1,2,…, N), Y is the
averaged observed data, and N is the number of observations. The RMSE represents
the sample standard deviation of the differences between computed and observed
values. The NSEC exhibits the relative magnitude of the residual variance compared
to the observed data variance. Both of them are used to assess the predictive power of
hydrological models. The RMSE could also be employed as the error function in the
calibration period, while NSEC is not capable due to its sensitiveness to extreme
values with large outliers. However, the NSEC statistics is effective when evaluating
the performances of models with different sets of data since it is a relative criterion.
As can be seen from the above two equations, lower value of RMSE and higher value
of NSEC indicate a better performance of estimation model.

4.1 Selection of Input Vectors

Six input combinations are evaluated to estimate current downstream sediment load
value SSLd(t). In all cases, SSLu(t-1) indicating a one-step ahead is adopted as the only
sediment input. Since the travel time of flow from upstream to downstream river
section is within 1 day, Qu(t) and Qd(t) for the current day as well as Qu(t-1) and Qd(t-1)

for the previous one day are chosen to constitute the inputs. Table 2 provides the
estimation performances of DPFNN and HDFNN models by six input combinations in
the testing period. It is noted that the DPFNN model is relatively insensitive to inputs
since the RMSE and NSEC values by different input combinations are comparable.
The configuration of [Qu(t), Qd(t), Qd(t-1), SSLu(t-1)] is the most valid input for DPFNN
model, yielding the smallest RMSE and highest NSEC values. HDFNN model has the
best accuracy with input [Qu(t-1), Qu(t), Qd(t), Qd(t-1), SSLu(t-1)], where there is a
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35.67 % reduction in RMSE and 3.58 % improvement in NSEC when compared with
the case of input [Qu(t-1), Qd(t), SSLu(t-1)]. In general, the estimation models would
attain better performance when more effective information is provided by the inputs.
This explains the worse accuracy with input [Qu(t-1), Qd(t), SSLu(t-1)] for both DPFNN
and HDFNN models. In addition, Qu(t-1) is a valid input variable in the HDFNN
model since the potential discharge inputs are more likely to perform their efficiency
when considered alone by combining fuzzy pattern-recognition. The above results also
verify the importance of the upstream sediment and discharges to the downstream
sediment in this particular study site.

4.2 Model Performances

To draw an effective comparison between four estimation models, performances in the training
and testing periods with two input combinations [Qu(t-1), Qd(t), SSLu(t-1)] and [Qu(t-1), Qu(t),
Qd(t), Qd(t-1), SSLu(t-1)] are presented in Table 3. The configurations of neural network for each
model are provided as well. Take the cases for [Qu(t-1), Qd(t), SSLu(t-1)] as an example, (3,6,1)
for MFNN model implies that there are 3 nodes in the input layer, 6 nodes in the hidden layer
and 1 node in the output layer. For the DPFNN model, the structures for multi-layer and two-
layer are respectively (3,5,1) and (3,1). HFNN model only considers the discharge inputs, thus
input nodes areQu(t-1) andQd(t). The inputs in HDFNNmodel for multi-layer and two-layer are
different: one contains discharge data (Qu(t-1) and Qd(t)) and the other one contains sediment
data SSLu(t-1).

It can be found in Table 3 for the case of [Qu(t-1), Qd(t), SSLu(t-1)] that DPFNN model
demonstrates better generalization capability and estimation ability than MFNN model, as
indicated by RMSE and NSEC values in both training and testing periods. This may attribute
to its capacity of mapping both nonlinear and linear relationship with the double parallel
networks. HFNN model is found to be superior to MFNN model as well, because it is capable
of providing information about different patterns. However, the influence of upstream sedi-
ment loads is not included, which results in deficient estimation. HDFNN model draws the
advantages of both DPFNN and HFNN models, hence, gives the best performances amongst
the four models. When compared with MFNN model, there is a 49.47 % and 42.58 %
reduction in RMSE value for the training and testing stages, respectively. The superiority of
HDFNN over DPFNN and HFNN models is apparent, particularly for the NSEC values in the
testing period.

Table 2 Performances by various input combinations for DPFNN and HDFNN models

Input vector DPFNN HDFNN

RMSE (ton/day) NSEC RMSE (ton/day) NSEC

[Qu(t-1), Qd(t), SSLu(t-1)] 840.1555 0.8723 564.0116 0.9425

[Qu(t), Qd(t), SSLu(t-1)] 835.7967 0.8737 481.9468 0.9580

[Qu(t-1), Qu(t), Qd(t), SSLu(t-1)] 837.7312 0.8731 385.2324 0.9732

[Qu(t-1), Qd(t), Qd(t-1), SSLu(t-1)] 817.2461 0.8792 485.8397 0.9573

[Qu(t), Qd(t), Qd(t-1), SSLu(t-1)] 813.1171 0.8804 394.6522 0.9718

[Qu(t-1), Qu(t), Qd(t), Qd(t-1), SSLu(t-1)] 814.1384 0.8801 362.8466 0.9762
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The above conclusions can be strengthened by results in Table 3 and Fig. 4 with
input combination [Qu(t-1), Qu(t), Qd(t), Qd(t-1), SSLu(t-1)]. MFNN model has a fairly
high RMSE value (815.4227 ton/day), and shows inferior results due to its total
Bblack-box^ operation. The RMSE value of HDFNN model is respectively 55.50,
55.43 and 48.24 % lower than that of MFNN, DPFNN and HFNN model in the
testing period. Meanwhile, the NSEC value attained by HDFNN model is 0.9762,
which is superbly high to reveal the ability of HDFNN model for sediment estimation.
It can also be observed that the improvement of DPFNN over MFNN model is not
significant with input [Qu(t-1), Qu(t), Qd(t), Qd(t-1), SSLu(t-1)]. A possible explanation
may be that the two-layer neural network in DPFNN is redundant and invalid when
more input variables are included. The two-layer neural network in HDFNN model is
not a Bparallel^ one as the DPFNN model, since its input is different from the multi-
layer neural network. Therefore, the HDFNN model is still able to yield accurate
results and capture the effective inputs in this study case.

The time series of observed and computed SSL as well as the scatter plots by various
models are demonstrated in the left and right hand side of Fig. 4, respectively. It is observed
that the high values estimated by the HDFNN model are closer to the observed values than the
three benchmarking models. In particular, it perfectly fits the peak sediment load as exhibited
in Fig. 4d, while the other three models underestimate the peak value. The data applied to
scatter plots are below 500 ton/day, which take up around 83 % of all data and are used to
present the performances of relatively medium and low values. As seen from the figures,
HDFNN model estimates are less scattered in relation to the other three models. MFNN and
HFNN over-estimate most of the values, whilst DPFNN could not model the observations
lower than 50 ton/day. It can be concluded that the HDFNN model is more adequate than the
others for SSL estimation since it can simulate the sediments characterized by fuzziness,
nonlinearity and time variety.

Table 3 Performances by various models with input [Qu(t-1), Qd(t), SSLu(t-1)] and [Qu(t-1), Qu(t), Qd(t), Qd(t-1),
SSLu(t-1)]

Input Model Configuration Training Testing

RMSE (ton/
day)

NSEC RMSE (ton/
day)

NSEC

[Qu(t-1), Qd(t), SSLu(t-1)] MFNN (3,6,1) 773.6575 0.9480 982.1818 0.8255

DPFNN (3,5,1) and
(3,1)

681.4953 0.9551 840.1555 0.8723

HFNN (2,5,1) 547.4661 0.9710 813.0243 0.8804

HDFNN (2,7,1) and
(1,1)

390.9476 0.9852 564.0116 0.9425

[Qu(t-1), Qu(t), Qd(t), Qd(t-1),
SSLu(t-1)]

MFNN (5,4,1) 665.8922 0.9572 815.4227 0.8797

DPFNN (5,5,1) and
(5,1)

692.0350 0.9537 814.1384 0.8801

HFNN (4,5,1) 402.7692 0.9843 697.1047 0.9121

HDFNN (4,7,1) and
(1,1)

284.9112 0.9922 362.8466 0.9762
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4.3 Partitioning Analysis for Low, Medium and High Loads

The statistics RMSE and NSEC scale the mean squared error of estimation models, therefore
particularly reflect the performance on high values. Thus the above discussions on evaluation
criteria and plots of estimated data could not provide explicit performances on different
intervals of values. To address this problem, partitioning analysis is undertaken with regard

0 100 200 300 400

0

1

2

3

4

5
x 10

4

Time (01/01/1980-31/12/1980)

S
ed

im
en

t 
(t

o
n

/d
ay

)

(a)

0 100 200 300 400 500
0

100

200

300

400

500

Observed (ton/day)

M
F

N
N

 (
to

n
/d

ay
)

Observed

MFNN

0 100 200 300 400

0

1

2

3

4

5
x 10

4

Time (01/01/1980-31/12/1980)

S
ed

im
en

t 
(t

o
n

/d
ay

)

(b)

0 100 200 300 400 500
0

100

200

300

400

500

Observed (ton/day)

D
P

F
N

N
 (

to
n

/d
ay

)

Observed

DPFNN

0 100 200 300 400

0

1

2

3

4

5
x 10

4

Time (01/01/1980-31/12/1980)

S
ed

im
en

t 
(t

o
n

/d
ay

)

(c)

0 100 200 300 400 500
0

100

200

300

400

500

Observed (ton/day)

H
F

N
N

 (
to

n
/d

ay
)

Observed

HFNN

0 100 200 300 400

0

1

2

3

4

5
x 10

4

Time (01/01/1980-31/12/1980)

S
ed

im
en

t 
(t

o
n

/d
ay

)

(d)

0 100 200 300 400 500
0

100

200

300

400

500

Observed (ton/day)

H
D

F
N

N
 (

to
n

/d
ay

)

Observed

HDFNN

Fig. 4 The observed and estimated suspended sediments by (a) MFNN (b) DPFNN (c) HFNN (d) HDFNN
models in the testing period with input [Qu(t-1), Qu(t), Qd(t), Qd(t-1), SSLu(t-1)]
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to the performances of four models in this study. It is performed by finding threshold values of
dataset and partitioning the data into several intervals (Goyal 2014). Threshold values are
determined based on the observed SSL data in the testing period. Median and mean of the
dataset are considered as two threshold values. Values lower than median (30 ton/day) are
regarded as a Blow load^; values higher than mean (384.04 ton/day) as a Bhigh load^; values
higher than median and lower than mean as a Bmedium load^.

The RMSE statistics of four models with respect to low, medium and high loads are
illustrated in Fig. 5. For the ‘low load’, HFNN model performs worse than its counterparts
with a largest RMSE value due to the irrespective of upstream sediment data. HDFNN model
is completely adequate in estimating low SSL values. Four models are able to mimic the
‘medium load’ with comparable performances, in which HDFNN model achieves the best
result. The RMSE obtained by HDFNN model is much smaller than the other three for the
‘high load’. In overall, the performances of HDFNNmodel on low, medium and high loads are
consistently excellent, which corroborates the use of this approach in SSL estimation. This can
mainly be attributed to the introduction of continuity equation which reveals the time-varying
characteristic of sediment loads.

5 Conclusions

This study is concerned with the application of HDFNN model for suspended sediment load
estimation. The fuzzy and time-varying characteristics of the sediment data are considered in
HDFNN model, while a structure of double neural networks is employed with respect to river
discharge and sediment inputs. The estimates based on HDFNN models are compared with
three models (i.e. MFNN, DPFNN and HFNN) with dataset from two stations on the Muddy
Creek in Montana, USA. Results confirm the generalization and estimation ability of HDFNN
model with the lowest RMSE and highest NSEC values. The high and peak observed values
are estimated successfully by HDFNN model as well since it could address the highly
nonlinear and fuzzy sediment data. Furthermore, it can perfectly fit the low and medium

0

500

1000

1500

2000

R
M

S
E

 (
to

n
/d

ay
)

MF    DPF    HF    HDF   MF     DPF   HF     HDF   MF     DPF   HF    HDF

            Low load                      Medium load                         High load

Fig. 5 RMSE statistics of MFNN, DPFNN, HFNN and HDFNN models of low, medium and high values with
input [Qu(t-1), Qu(t), Qd(t), Qd(t-1), SSLu(t-1)]
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values, as indicated by partitioning analysis. Conclusions can be drawn that the HDFNN
model provides a superior alternative for SSL estimation. It overcomes the drawback of
physically meaningless representation of MFNN model, enjoys the advantages of DPFNN
and HFNN models by double neural networks and fuzzization process, and includes the
influence of upstream sediment loads. The present work is the first application of considering
the physics embedded with the structure of double neural networks, for modeling suspended
sediment series in the downstream river section. This idea for modeling SSL can be referred
and extended for other hydrological models. Nevertheless, the stability of the proposed
HDFNN model has not been verified by uncertainty analysis, which should be performed as
a future work. Besides, the HDFNN model only considers the inputs of upstream discharges
and sediment, and their corresponding physical mechanism. The influences of other inputs and
hydrological process regarding the SSL can be explored additionally to improve the estimation
model.
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