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Abstract The Muskingum model is a popular method for flood routing in river engineering.
This model has several parameters, which should be estimated. Most of the techniques have
applied to estimate these parameters to reduce the distance between observed flow and
estimated flows. In this paper, for the first time, the parameters of a novel form of the nonlinear
Muskingum model are estimated by the Particle Swarm Optimization (PSO) algorithm. The
new Muskingum model, which have four parameters, is applied for three benchmark examples
and one real case in Iran. The sum of the squared (SSQ) or absolute (SAD) deviations between
the observed and estimated outflows was considered as objective functions. The results
showed that although the new Muskingum model became more complex but this model by
using PSO technique can improve the fit to observed flow especially in multiple-peak
hydrographs.

Keywords Four parametersMuskingummodel . Flood routing . Particle swarm optimization .

Hydrologic model

1 Introduction

Flood routing is one of the important topics to design water structures in water resources
engineering. There are two main approaches in flood routing: the hydrological and hydraulic
approaches. In the hydrological approaches, the flow rate calculated as a function of time.
These methods are based on storage-continuity equation in the specific location. In the
hydraulic approaches the flow rate determines as a function of both time and location. These
methods are based on the Saint-Venant equations. There are other approaches which need
more data and parameters for solving their models. One of the popular hydrological methods is
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Muskingum method, which frequently used in flood routing that first, the U.S. Army Corps of
Engineers developed this model.

The linear Muskingum model is based on two main equations: continuity equation and
storage equation (Gill 1978; Tung 1985; Yoon and Padmanabhan 1993; Mohan 1997; Kim
et al. 2001; Geem 2006; Al-Humoud and Esen 2006):

dst
dt

¼ I t−Ot ð1Þ

St ¼ K xI t þ 1−xð ÞOt½ � ð2Þ
Where, St, It and Ot are storage, inflow and outflow magnitude, respectively at time t. K is

storage-time constant that may be considered as an approximation of travel time through the
reach; x is a weighting factor which is usually between 0 and 0.5 for reservoirs storage and
between 0 and 0.3 for stream channel (Mays 2010). The dimensions of O and I are (L3T−1)
similar; x is dimensionless, S is L3 and K is T. In the linear Muskingum model, the parameters
K and x usually estimate graphically by a trial and error procedure. First x assumed and the
values of [xIt+ (1− x)Ot] compute by using observed data and plotted against St. If the value of
x can reduce width of the plotted loop then the value of x right selected. K is equal to the slope
of the straight fitted line through the loop (Barati 2011). K and x expect to capture the flood
propagating characteristics of the reach in its entirety, and no additional topography informa-
tion of the channel is required for flood routing (Yoon and Padmanabhan 1993). As said
before, the linear Muskingum is based on graphical methods, which can make errors in visual
judgments. Nevertheless, in some reaches of rivers the linear Muskingum routing is not
suitable. As a result, the performance of nonlinear of Muskingum model is more appropriate
(Mohan 1997). Two forms of nonlinear Muskingum models have been recommended
[Eqs. (3)-(5)] in the previous researches to improve the fitness of nonlinear relationships
(Gill 1978; Mohan 1997; Luo and Xie 2010).

St ¼ K xIt þ 1−xð ÞOt½ �m ð3Þ

St ¼ K xIt
m þ 1−xð ÞOt

m½ � ð4Þ
These models have an additional parameter (m), which used as power exponents to improve

the relation between accumulated storage and weighted flow. The linear model considers a
special case of nonlinear models when m is equal to one. Unlike the linear model, in the
nonlinear models K has the dimension of [L3(1-m) Tm] and does not describe the travel time of
flood wave. Also, x does not to be the same as in the linear model. A graphical method that is
used from historical inflow and outflow hydrographs is inappropriate for nonlinear Muskin-
gum models. Hence, the determination of correct values of K and x is difficult and needs
advanced methods (Gill 1978; Tung 1985; Yoon and Padmanabhan 1993; Mohan 1997; Kim
et al. 2001; Das 2004, 2007; Geem 2006; Chu 2009; Chu and Chang 2009; Luo and Xie 2010;
Barati 2011, 2013; Xu et al. 2011; Karahan et al. 2012).

Several previous researches on parameter estimation of the Muskingum method have been
applied to finding the values of the parameters in the nonlinear Muskingum model. The
mathematical techniques include segmented least squares method (S-LSM) (Gill 1978),
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nonlinear least squares (NONLR) (Yoon and Padmanabhan 1993), Lagrange multiplier
(LMM) (Das 2004), the Broyden-Fletcher-Goldfarb-Shanno method (BFGS) (Geem 2006),
Nelder-Mead simplex (NMS) method (Barati 2011), and the generalized reduced gradient
(GRG) (Barati 2011) were used to solve the nonlinear forms of the Muskingum models.

In addition, various heuristic algorithms such as genetic algorithm (GA) (Mohan 1997),
harmony search (HS) (Kim et al. 2001), immune clonal selection algorithm (ICSA) (Luo
and Xie 2010), differential evolution (DE) (Xu et al. 2011), parameter setting free harmony
search (PSF-HS) algorithm (Geem 2010), particle swarm optimization (PSO) (Chu and
Chang 2009), simulated annealing (SA) algorithm, and shuffled frog leaping algorithm
(SFLA) (Orouji et al. 2013) have been developed in order to search optimum parameters in
nonlinear models.

Das (2007) suggested a chance-constrained optimization-based model for estimating
the Muskingum model parameters. This model determined the parameters of the Muskin-
gum model using minimizing the SSQ of difference between the observed and estimated
outflows. Also, the new model is very complex and requires massive computation to
estimate parameters of the Muskingum model (Luo and Xie 2010). Chu (2009) determined
the parameters of the Muskingum model by a Neuro-Fuzzy approach, which has no
physical basis. The mentioned method can be an alternative in the application of the
Muskingum model (Barati 2013). Niazkar and Afzali (2014) applied the modified honey
bee mating optimization (MHBMO) algorithm along the modified routing procedure to
estimate the Muskingum parameters using two different objective functions. The results
demonstrated that the MHBMO algorithm not only converged faster, but it also captured
the best optimal parameters values. Latt (2015) examined the application of artificial
neural network (ANN) approach based on the Muskingum equation, and compared the
feedforward multilayer perceptron (FMLP) models to other reported methods. The FMLP
model showed a clear-cut superiority over other methods in flood routing of well-known
benchmark data.

The previous studies showed that the particle swarm optimization (PSO) was used to
determine the three parameters in nonlinear Muskingum models, but in this paper the PSO
algorithm is applied to estimate the parameters of a new nonlinear Muskingum model which
consist of four parameters and was developed by Easa (2011). The PSO algorithm is a
population-base evolutionary algorithm and already applied in Civil Engineering and Water
Resources Engineering optimization problems such as reservoir operation (Nagesh Kumar and
Janga Reddy 2007), water quality management (Afshar et al. 2011; Lu et al. 2002; Chau
2005), Basin wide water resources management (Shourian et al. 2008), flood control manage-
ment (Meraji 2004). To check the performance of the new method, four real examples have
assessed. The results showed the PSO is a simple and clear algorithm for understanding. Also,
it does not need an initial guess for its correspondent parameters unlike other previous
methods. Although the new four-parameter nonlinear Muskingum model is more complicated,
but it can improve the routed flow better than the three-parameter nonlinear Muskingum,
particularly in the multiple-peak hydrograph.

2 Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) is a meta-heuristic optimization technique, which first
introduced by Eberhart and Kennedy (1995). This algorithm is a member of the category of
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swarm intelligence that inspired from the flocking and schooling of birds and fishes. All
possible solutions for a problem in PSO are in a search framework that called solution space.
Each individual in this swarm is called a particle. Each particle represents a solution for the
problem in optimization in each iteration, which flies in the location space. In each iteration,
the result of three vectors defines moving each particle. One of them is velocity vector that is a
randomly vector and other vectors are produced based on the best position of particles are
found to now (Kuo et al. 2010). Each particle keeps track of its position vector, pbest,which
has obtained best fitness function, so far. The position vector, gbest,which is the best value of
fitness function achieved so far considering all the particles is also memorized. The position
vectors of the particles update from velocity vector. These updated positions in PSO algorithm
evaluate with an objective or fitness function in the each iteration and pbest and gbest are
updated. The particle velocities Vij

t and position Xij
t calculate in the iteration number t using

following equations (De Moura Meneses et al. 2009),

V
tþ1

i j ¼ WtV i j
t þ c1r

t
1 pbest i; jð Þ−X i j

t
� �þ c2r

t
2 gbest jð Þ−X i j

t
� � ð5Þ

X tþ1
i j ¼ X i j

t þ V i j
t ð6Þ

Where, i= [1, 2,…,P] and J= [1, 2,…,n]. The c1 and c2 are acceleration constant that
change between [2, 4]. The r1, r2 are random numbers between [0,1]. The gbest and pbest call
global and particle best position, respectively. The W is an initial weight which represent the
exploration and exploitation properties of algorithm and changes between [0.4–0.9]. The
characteristics of exploration algorithm will increase if W closes to 0.9, otherwise, its exploi-
tation properties increases. In this stage, a new modified factor which is called Wdamp used in
the each iteration based on Eq. (7) to increase exploration characteristics in the final steps.
(Hossein Zaji and Bonakdari 2014). The value of Wdamp factor used in this paper was 0.998,
which reduces the W and particle movement in the each iteration.

W ¼ W �Wdamp ð7Þ

3 New Non-Linear Muskingum Model

In this paper, the new non-linear Muskingum model has been used, which introduced first by
Easa (2013). The new method considers the four parameters to determine. The new four-
parameter non-linear Muskingum model is given by the following equation:

St ¼ K xIat þ 1−xð ÞOt
a

� �m ð8Þ
In fact, the new model is similar to the Eq. (3). However, in the proposed model m

corresponds to the non-linear form of the storage equation, while in the Eq.(3) m is related
to the assumed linear form of it (Easa 2013).

The Eq. (8) is a general model, which can cover all of previous developed models
e.g. (Eqs. 2–4) by considering a =m= 1 in linear model (Eq. 2) and a= 1 or m =1 in
non-linear models (Eqs. 3–4). The dimension of K in the proposed model is not the
same as the linear model. Although, the new proposed model is more complex than
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previous model, but the optimization models such as PSO can compute the best
values for its parameters at less time. The extra parameter in new model causes to
improve fitting between routed and observed outflow especially in multi-peak
hydrograph examples. The proof and details of the derivation of Eq. (8) presented
by Easa (2013).

3.1 Routing Procedure of the Nonlinear Muskingum Model

By rearranging Eq. (8), the routed outflow can be expressed as,

Ot ¼ 1

1−x

� �
St
K

� �1

.
m

−
x

1−x

� 	
Iat

2
64

3
75
1

.
a

ð9Þ

The first term in bracket of Eq. (9) should be greater than the second term so that the routed
outflow not be negative value. By considering mentioned condition, the relation between the
four parameters can be expressed as,

1

m
>

ln xIað Þ
ln St

.
K

� 	 ð10Þ

By substituting Eq. (9) in Eq. (1), the time rate of changes volume the storage can be
obtained as,

ΔSt
Δt

¼ I t−
1

1−x

� �
St
K

� �1

.
m

−
x

1−x

� 	
Iat

2
64

3
75
1

.
a

ð11Þ

As well, the next accumulated storage can be rewritten as,

Stþ1 ¼ St þΔSt ð12Þ
The routing procedure for the nonlinear model includes the following steps (Tung

1985; Kim et al. 2001; Geem 2006, 2010; Chu and Chang 2009; Karahan et al. 2012;
Barati 2013):

1. Determination the hydrologic parameters (K, x, a, m) using the PSO algorithm. PSO select
randomly the initial values of parameters based on the specified bounds.

2. Calculation the time rate of change of the storage volume by using Eq. (11). Here in the
first time step initial outflow is the same as the initial inflow

3. Estimation the next accumulated storage using Eq. (12)
4. Calculation the outflow in the next time using Eq. (9)
5. Repetition steps 2–4 for all time steps

This procedure should be repeated with different parameters values several times so that the
best fit between routed and observed outflow achieve.
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4 The Objective Functions

The objective function of the optimization model minimizes the sum of the squared deviations
between the observed and estimated outflows,

Minimize SSQ ¼
Xn

t¼1

Ot−Ot

� 	2

ð13Þ

Where, SSQ is the sum of the squared deviations between the observed and estimated outflows;
Ot is the observed outflow at time t; t is the estimated outflow at time t that calculated by Eq. (9) and
n is the number of time steps in flood routing. Also, the other objective function can be introduced to
minimize the sum of absolute deviation between the observed and estimated outflows,

Minimize SAD ¼
Xn

t¼1

Ot−Ot




 


 ð14Þ

Where, SAD is the sum of absolute deviation between the observed and estimated outflows
and |.| denotes = absolute value.

4.1 Error of Peak Discharge

The error of peak discharge (EQp) provides a deviation of peak of observed and routed
outflows (Latt 2015). EQp is given as,

EQp ¼
Opeak

observed−O
peak
routed




 



Opeak

observed

ð15Þ

Where, Oobserved
peak is the peak of observed outflow and Orouted

peak is the peak of routed outflow.
A lower absolute value of EQp implies a more accurate model.

4.2 Error of Time to Peak

The error of time to peak (ETp) provides a deviations of peak time of observed and routed
outflows (Latt 2015). ETp is given as,

ETp ¼ Tpeak
observed−T

peak
routed




 


 ð16Þ

Where, Tobserved
peak is the time of peak of observed outflow and Trouted

peak is the time of peak of routed
outflow. A smaller value of ETp implies a more accurate prediction of occurrence of peak outflow.

4.3 Mean Absolute Relative Error Consideration

The mean absolute relative error (MARE) between the observed and routed outflows is
considered as the error mode (Toprak 2009). MARE is given as,

MARE ¼ 1

N

XN
i¼1

Ot
observed−O

t
routed



 


Ot

observed

ð17Þ
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4.4 Variance Explained

The closeness of shape and size of the hydrograph can be measured using the criterion of
variance explained as advocated by Je and Sutcliffe (1970) and recommended by the ASCE
Task Committee on Difinition of Criteria for Evaluation of Watershed Models of the Water-
shed Management Committee, Irigation and Drainage Division (1993) (McCuen et al. 2006;
Perumal and Sahoo 2007; Barati 2013, Niazkar and Afzali, 2014). The variance explained in
percentage (VarexQ) is given as

VarexQ ¼ 1−

XN
i¼1

Ot
observed−O

t
routed

� �2

XN
i¼1

Ot
observed−O

mean
observed

� �2

2
666664

3
777775
� 100 ð18Þ

Where, Oobserved
mean = mean of observed outflows.

5 Application of the Routing Techniques

5.1 Numerical Experiment 1

In this example, the inflow–outflow hydrograph data of Wilson (1974) have been employed.
The previous researches have applied the various optimization methods to estimate the
Muskingum parameters by using these data. Table 1 shows the inflow and routed outflow of
Wilson (1974), which calculated by new four-parameter Muskingum model and other
methods.

In this paper, the objective functions SSQ and SAD have utilized to estimate the param-
eters. According to Table 2, the PSO method calculated the SSQ and SAD values 8.82 and
9.77, respectively, which were much smaller than another model. As well, SSQ and SAD
values that presented by Easa were 7.67 and 10.31, respectively which used the generalized
reduced gradient method with Solver associated in Excel.

Additionally, at the Table 2 the parameters EQp, ETp, MARE and VarexQ compared
between the previous methods and the presented method. Since the occurrence of the predicted
peak outflow happen at the same time with that of the observed maximum outflow, ETp values
are zero for all methods exept the NONLR method. The EQp obtained 0.0001, which was less
than all of applied methods except LMM (Das 2004) . Although, Easa used the four-parameter
non-linear model, but the EQp value achieved 0.0037 and as a result the proposed method can
make 96.7 % improvement in this term. Also the PSO algorithm can produce as well results as
the most accurate procedures in terms of both MARE and VarexQ.

Figure 1 shows the observed and estimated outflow of the best five methods presented in
the Table 2 respect to the proposed method. Moreover, Fig. 2 illustrates a comparison between
the observed and the routed outflows.

The optimal parameters of the proposed model are K = 0.1659, x =0.2981,m =3.6830 and a
= 0.4689. The optimization processes performed in 200 iteration that after several times of trial
and error the best value of the PSO algorithm parameters was selected so that initial
population=100, c1 = c2 =2.05, W =0.4 and Wdamp =0.998.
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Table 2 Comparison of the routing results of the different methods

Method K x m a SSQ SAD EQp ETp MARE VarexQ

S-LSM 0.0100 0.2500 2.3470 ----- 143.600 46.40 0.0216 0 0.056 98.83

HJ +CG 0.0669 0.2685 1.9291 ----- 49.640 25.20 0.0059 0 0.030 99.59

HJ +DFP 0.0764 0.2677 1.8978 ----- 45.540 24.80 0.0035 0 0.030 99.63

NONLR 0.0600 0.2700 2.3600 ----- 41.280 25.20 0.0083 1 0.033 99.66

GA 0.1033 0.2873 1.8282 ----- 38.230 23.00 0.0082 0 0.025 99.70

HS 0.0883 0.2873 1.8630 ----- 36.780 23.40 0.0107 0 0.031 99.63

LMM 0.0753 0.2769 2.2932 ----- 130.487 43.20 0.0000 0 0.055 98.94

BFGS 0.0863 0.2869 1.8679 ----- 36.768 23.46 0.0106 0 0.026 99.69

ICSA 0.0884 0.2862 1.8624 ----- 36.801 23.40 0.0105 0 0.025 99.69

NMS 0.0862 0.2869 1.8681 ----- 36.765 23.46 0.0105 0 0.025 99.70

PSF-HS 0.0864 0.2869 1.8677 ----- 36.768 23.70 0.0105 0 0.026 99.69

DE 0.5175 0.2869 1.8680 ----- 36.770 23.46 0.0105 0 0.026 99.69

HS-BFGS 0.0862 0.2869 1.8681 ----- 36.768 23.40 0.0105 0 0.025 99.70

MHBMO 0.6304 0.3386 1.8533 ----- 37.451 21.22 0.0090 0 0.026 99.69

GRG
(4 Parameters

Muskingum)

0.8340 0.2690 4.0790 0.4330 7.670 10.31 0.0037 0 0.015 99.94

PSO (4 Parameters
Muskingum)

0.1659 0.2981 3.6830 0.4689 8.820 9.77 0.0001 0 0.015 99.93

Fig. 1 Inflow, observed and computed outflows hydrographs with different methods by using the Wilson data
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5.2 Numerical Experiment 2

The data of this example firstly have recorded by Karahan et al. (2012) from the 1960 flood of
the River Wye in the United Kingdom. The 69–75 km stretch of the River Wye from
Everwood to Belmont has no tributaries and very small lateral flow (NERC 1975). It is, thus,
an excellent example to demonstrate the use of flood-routing techniques (Bajracharya and
Barry 1997). The inflow data, estimated outflow by O’Donnell (O’DONNELL 1985), HS-
BFGS (Karahan et al. 2012), GRG (Easa 2013) and proposed method presented in the Table 3.

As shown in Table 3, by PSO algorithm the value of SSQ and SAD computed 31,099.52,
695.77, respectively which is better than all of methods. Also the PSO can obtained the less
value than O’Donnell and HS-BFGS method in term of EQp. Moreover, the PSO can
determinated 0.09 and 98.12 % for MARE and VarexQ, respectively, which are in acceptable
range rather to other methods in the Table 3. The Fig. 3 described comparison between the
observed and computed hydrographs by applying methods. In addition, Fig. 4 shows a
comparison of the difference between the observed and the estimated outflows by applied
methods. It can be understand from Fig. 4 the low swing in the PSO model chart.

The estimated Muskingum parameters by proposed model are K =0.612, x =0.401, a
=1.133 and m =1.363. These values achieved by PSO optimization processes after only 30
iterations. The initial population,W,Wdamp were selected 200, 0.5, 0.998 respectively and c1 =
c2 =2.05.

5.3 Numerical Experiment 3

In this example, the Viessman and Lewis (2003) data have been applied to estimate the new
Muskingum parameters. This example is one of multi-peak hydrographs, which inflow and
observed outflow data shown in the Table 4. The PSO algorithm computed the SSQ
=74,812.30 that indicate about 2 % reduction in comparison with the Easa method

Fig. 2 Comparison the difference between the routed and observed outflows with various methods by using the
Wilson data
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Table 3 Comparison of the observed and best-routed outflows by using the River Wye data

Time
(h)

Inflow
(cms)

Observed
outflow
(cms)

HS-
BFGS

O’Donnell
method

GRG (4
Parameters
Muskingum)

PSO (4
Parameters
Muskingum)

0 154 102 154 102 154 102.0

6 150 140 154 116 154 154.0

12 219 169 152 120 152 152.1

18 182 190 181 147 184 179.4

24 182 209 191 158 192 190.9

30 192 218 185 165 186 185.4

36 165 210 187 176 187 186.9

42 150 194 179 178 179 180.2

48 128 172 162 176 162 164.1

54 168 149 141 164 141 143.7

60 260 136 154 160 155 152.8

66 471 228 198 167 203 196.3

72 717 303 264 218 281 267.3

78 1092 366 344 303 363 351.4

84 1145 456 416 484 443 431.8

90 600 615 599 690 624 617.4

96 365 830 871 700 893 881.5

102 277 969 834 642 849 836.7

108 227 665 689 572 709 696.2

114 187 519 535 505 560 549.1

120 161 444 397 442 424 416.8

126 143 321 283 386 307 305.0

132 126 208 202 338 219 221.4

138 115 176 152 296 160 164.9

144 102 148 124 260 127 131.2

150 93 125 106 228 107 110.0

156 88 114 94 201 94 96.4

162 82 106 88 179 88 89.2

168 76 97 82 160 82 82.7

174 73 89 75 144 75 76.3

180 70 81 73 130 73 73.0

186 67 76 69 118 69 69.8

192 63 71 66 109 66 66.7

198 59 66 62 100 62 62.4

SSQ 37,944.14 251,802 32,299.2 31,099.52

SAD 829 2162 743.32 695.77

EQp 0.101 0.278 0.078 0.090

ETp 6 6 6 6

MARE 0.11 0.33 0.10 0.09

VarexQ 97.71 84.78 98.05 98.12
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(SSQ= 76,785). In addition, in this example, the EQp, ETp, MARE and VarexQ was
determinated 0.0358, zero, 0.067 and 98.27 %, respectively by PSO method. In this example
there are not the more datails of routed flow by Easa method to compare the results in terms of
EQp, ETp, MARE and VarexQ. The inflow, observed and estimated hydrograph by the PSO

Fig. 3 Inflow, observed and computed outflows hydrographs with different methods by using the River Wye
data

Fig. 4 Comparison the difference between the routed and observed outflows with various methods by using the
River Wye data
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algorithm shown in Fig. 5. It is obvious that the new applied method yields a considerable
improvement in fitting multi-peak hydrographs. The optimal values of K, x, a and m are equal
to 0.0605, 0.1310, 0.3213 and 4.574 respectively, which obtained after 500 iterations. The
PSO parameters were obtained similar to Example 2.

5.4 Numerical Experiment 4

This example is about the Karoon River in Iran, which firstly have been gathered by Orouji et al.
(2013). Karoon River is one of the great rivers in the southwest of Iran that supply urban,
agricultural and industrial demand in the area. The applied data recorded by two hydrometric
stations, Godar and Gotvand (Orouji et al. 2013). They applied SFLA and SA optimization
techniques based on non-linear Muskingum (3 parameters) and reported the best values of SSQ
and SAD 130,928.6 and 1835.6, respectively. The proposed method computed these parameters
68,790.84 and 1067.102, respectively, which indicate 47 % and 42 % improvement, respectively.

Table 5 and Fig. 6 present the results of estimated outflow respect to inflow and observed
outflow by using proposed method and previous methods. Also, the PSO can calculated the
EQp,MARE and VarexQ equal to 0.0132, 0.03 and 98.05 %, respectively, which have the more
improvement than SA and SFLA methods.

Table 4 Comparison of the observed and best-routed outflows for Viessman and Lewis

Time (h) Inflow (cms) Observed outflow (cms) PSO (4 Parameters Muskingum)

0 166.2 118.4 118.4

1 263.6 197.4 166.2

2 365.3 214.1 265.3161

3 580.5 402.1 349.5366

4 594.7 518.2 509.3545

5 662.6 523.9 565.471

6 920.3 603.1 623.6715

7 1568.80 829.7 780.4317

8 1775.50 1124.20 1124.2

9 1489.50 1379.00 1390.918

10 1223.30 1509.30 1455.157

11 713.6 1379.00 1378.246

12 645.6 1050.60 1107.706

13 1166.70 1013.70 865.7737

14 1427.20 1013.70 982.9366

15 1282.80 1013.70 1173.765

16 1098.70 1209.10 1234.349

17 764.6 1248.80 1186.476

18 458.7 1002.40 1003.865

19 351.1 713.6 713.4868

20 288.8 464.4 470.8424

21 228.8 325.6 325.6

22 170.2 265.6 235.3666

23 143 222.6 163.1713
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The optimal values of K, x, a and m computed 7740.68, −0.0527, 0.1786 and 0.9911,
respectively. In addition, the maximum number of iterations was 300. In this study, only the
initial population set to 500 and other parameters did not change.

6 Conclusions

Most of the researcher in the past only focused on robust optimization algorithms to improve
the fitting performance of the nonlinear Muskingum model, which considered as an exponent
parameter of the weighted storage. However, the resulted achievements in this field were not
very considerable. In this paper, the four new non-linear Muskingum model that has intro-
duced firstly by Easa (2013) to compute the routed outflow at a reach of river has used. The
new Muskingum model which was based on power function of weighted storage was more
suitable than linear function. The new Muskingum model considers more complex than
previous models. But, it is not a non solver problem with recent advances in modern
optimization algorithms which can find the optimal parameters for all of highly non-linear
and non-convex problems.

In this research, the PSO algorithm has employed to estimate the parameters in the new
non-linear Muskingum model. The performance of these algorithms compared with other
techniques in literature based on minimizing the two objective functions, SSQ and SAD. In
this regards, three benchmark examples and one real case in Iran were investigated. The results
showed the PSO algorithm which uses the four-parameter in the Muskingum model, can
compute the best values of SAD factor rather than all used other techniques in the examples.
The SSQ factor improved in all studied cases except the Wilson example. On the other hand,
the SAD, EQp, ETp, MARE and VarexQ were acceptable in Wilson example.

Fig. 5 Inflow, observed and computed outflows hydrographs for Viessman and Lewis
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Table 5 Comparison of the observed and best-routed outflows for Karoon River

Time (h) Inflow (cms) Observed
outflow (cms)

SA SFLA PSO (4 Parameters
Muskingum)

0 380 380.00 380.00 380.00 380.00

2 430 383.50 380.00 380.00 383.50

4 445 387.00 387.29 386.51 383.50

6 460 393.00 402.58 401.33 389.86

8 475 399.00 417.41 415.88 397.11

10 490 408.50 431.93 430.24 405.20

12 505 418.00 446.27 444.49 414.10

14 520 436.50 460.48 458.66 423.75

16 540 455.00 474.62 472.79 434.12

18 560 470.00 489.18 487.32 445.88

20 595 485.00 504.89 503.00 458.77

22 630 496.00 522.60 520.58 474.93

24 770 507.00 544.22 542.07 493.64

26 910 523.50 574.93 572.13 530.96

28 995 540.00 628.20 624.92 583.12

30 1080 558.00 694.42 691.19 641.80

32 1095 576.00 760.32 757.47 709.07

34 1110 702.50 826.08 823.81 770.97

36 1125 829.00 879.56 877.90 829.00

38 1140 938.50 924.16 923.04 882.62

40 1170 1048.00 962.14 961.50 931.59

42 1200 1061.50 994.84 994.62 979.48

44 1250 1075.00 1026.37 1026.55 1025.61

46 1300 1082.00 1056.48 1057.07 1075.02

48 1255 1089.00 1089.37 1090.39 1126.43

50 1210 1103.00 1127.60 1128.80 1154.07

52 1180 1117.00 1151.20 1152.35 1165.31

54 1150 1149.50 1162.38 1163.39 1167.58

56 1125 1182.00 1166.44 1167.22 1162.35

58 1100 1153.00 1164.43 1164.95 1152.78

60 1070 1124.00 1158.38 1158.64 1139.74

62 1040 1099.50 1149.10 1149.09 1122.79

64 995 1075.00 1136.05 1135.78 1103.12

66 950 1061.50 1120.20 1119.65 1077.57

68 885 1048.00 1098.77 1097.97 1048.30

70 820 1011.00 1072.96 1071.89 1011.34

72 800 974.00 1039.00 1037.73 969.68

74 780 935.50 997.51 996.20 935.50

76 760 897.00 959.23 957.99 904.95

78 740 872.50 923.71 922.61 877.14

80 730 848.00 890.53 889.63 851.40

82 720 829.50 859.43 858.76 829.47

84 720 811.00 832.20 831.75 810.05
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The results confirmed that the PSO algorithm estimated the four parameters in the new
Muskingum model with high accuracy along with a fast rate of convergence. In addition, the
PSO method does not necessary assumption of initial values of the model parameters and no
derivative. PSO can be achieved the nearly global optimum solution in lowest iterations by setting
right the its parameters. The other experiences of PSO applications have shown that the main and
sensitive parameters in this algorithm are c1 and c2 which can set c1 = c2 =2.05 presented the best
answer (Carvalho and Ludermir 2006; Prakash and Sydulu 2007; Li et al. 2010). These values are
similar to the results of the present research. Consequently, by using the PSO with new four-
parameters Muskingum models improved the outflow forecasting, significantly.

Table 5 (continued)

Time (h) Inflow (cms) Observed
outflow (cms)

SA SFLA PSO (4 Parameters
Muskingum)

86 720 797.00 808.34 808.09 794.72

88 730 783.00 789.34 789.24 782.18

90 740 774.50 774.50 774.50 773.96

92 750 766.00 765.02 765.06 768.80

SSQ 135,809.42 130,928.65 68,790.84

SAD 1873.71 1835.63 1067.10

EQp 0.0132 0.0125 0.0122

ETp 0 0 2

MARE 0.06 0.05 0.03

VarexQ 96.06 96.20 98.05

Fig. 6 Inflow, observed and computed outflows hydrographs for Karoon river
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