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Abstract Natural, as well as human-induced, landscape changes may have profound effects
on soil-loss rates in Mediterranean countries. Knowledge of the spatial and temporal distribu-
tion of the erosion processes from 1984 to 2013 across the fire-prone island of Thassos was
gained on the basis of a joint analysis of imagery received from three generations of Landsat
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Highlights
• This study presents spatial and temporal changes of soil loss in a Mediterranean fire prone landscape and its
linkages with wildfire impacts and human-induced disturbances.

• Due to their subtle differences, vegetation indices derived from different Landsat satellites were used
complementary for the temporal study of the phenomenon. following correction of atmospheric and cross-
sensor inconsistencies.

• The soil loss is more evident in south facing slopes and steep gradients similar to the findings of plot-scale
studies in Mediterranean areas.
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satellites. Soil loss was modeled using the revised universal soil loss equation. With the
exception of the crop management factor, which was estimated through the NDVI image
series, rainfall erosivity, soil erodibility, and topographic factor, were compiled within a GIS
environment and used for the production of the spatio-temporal erosion maps. We found some
constant patterns regarding the spatial distribution of soil susceptibility to erosion, similar to
the findings of plot scale studies in the Mediterranean, as well as major changes related to the
temporal intensity of the process. With regard to the aspect, we found that the most erosion-
prone areas diachronically were the south-facing slopes. The highest altitudinal zone was most
at soil-loss risk, but this elevation zone occupies the smallest spatial extent compared to the
others. We observed a major increase for all the elevation and aspect zones, as well for every
watershed of the island, during 1984–1991, when Thassos experienced some catastrophic
fires. Between 1984 and 2013, all but one the watersheds of the island experienced a severe
increase in soil erosion, suggesting the need for prevention measures and restoration plans that
specifically target the areas most vulnerable to degradation. Quantification of the soil loss over
large areas and large time extents, can contribute to an understanding of the process, highlight
drivers of change and assist in the implementation of erosion control measures and decision
making.
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1 Introduction

Although it is a natural process inherent in landscape evolution throughout history,
soil erosion is also a major worldwide environmental and agricultural problem that
has greatly intensified in recent years (Morgan 2005). In Mediterranean countries
particularly, soil erosion is a prominent cause of land degradation and desertification
(Cerdà et al. 2010), due to adverse climate, step terrain, natural disasters, and natural
and human landscape modifications (Mallinis et al. 2009). Especially, Land Use/land
Cover Changes (LUCC) due to wildfires can be perceived as the major, direct and
direct cause of change on hydrological and geomorphological processes, in fire-prone
Mediterranean landscapes (Shakesby and Doerr 2006).

Soil erosion and land degradation resulting from LUCC have attracted the attention of
numerous researchers (Bajocco et al. 2011; Siyuan et al. 2007; Zhao et al. 2012). Knowledge
of the spatial and temporal distribution of the erosion processes at different scales, is crucial for
sustainable resources management plans and spatial explicit conservation measures in order to
mitigate land degradation.

Diachronic continuous soil loss monitoring based on field measurements while the most
accurate approach for understanding soil loss and erosion dynamics over these dynamic
landscapes (Wittenberg and Inbar 2009), it is very expensive, and time consuming, and
spatially impractical over landscape scales (Liu et al. 2015). Therefore there is a relatively
poor understanding of the magnitude of change and drivers of soil loss at scales larger than
small plots since most erosion monitoring studies have been carried out at small spatial scales
(transects, small plots and, rarely, hillslope measurements) and short temporal scales with
relatively few studies carried out at larger scales (Shakesby and Doerr 2006). Multitemporal
mathematical modelling of soil loss at landscape scales, can be used in order to understand the
degradation processes and effects at both larger spatial and temporal scales.

1256 G. Mallinis et al.



With regard to spatial explicit soil erosion and sediment yield prediction at
landscape scales, different models and relationships have been proposed, with many
of these having a high data demand, thus limiting their applicability in data-rich
environments, or after extensive collection of field data on model parameters
(Merritt et al. 2003). The Universal Soil Loss Equation (USLE) model (Wischmeier
and Smith 1978), and its improved version (Revised USLE or RUSLE) (Renard et al.
1997) are among the models most commonly used to predict the mass of eroded soil
in various domains such as post-fire effects mitigation (Miller et al. 2003), manage-
ment of sediment deposits on roadways (Morschel et al. 2004), watershed prioritiza-
tion (Jaiswal et al. 2015), sedimentation in water reservoirs (Butt et al. 2010), land
management decision-making (Tamene et al. 2014) and country-level soil loss
assesments (Chou 2010).

The framework for efficiently implementing such models that allows accurate and robust
modelling and analysis of soil erosion and land degradation (Vrieling 2006) is provided within
Geographic Information Systems (GIS) environment along with satellite remote sensing and
spatially explicit ancillary data. To this end, Landsat imagery, providing the longest continuous
space-based record of Earth’s land in existence, with its unique combination of spatial,
spectral, and temporal resolution and extent, has been the primary source of medium spatial
resolution earth observations that have be used for quantifying the effect of landscape
composition and LUCC in the soil loss and land degradation process in Mediterranean areas
and elsewhere (Kumar and Mishra 2015; Lu et al. 2007; Mallinis et al. 2009; Wang et al.
2013).

The main goal of our study is to monitor and assess soil loss and its spatiotemporal changes
in the fire prone Mediterranean island of Thassos during the 1984–2013 period using imagery
coming from Landsat TM, ETM+ and OLI sensors.

The specific objectives of this study included (1) generation of NDVI images that are used
to infer the spatial distribution of vegetation cover, while considering the impact of cross-
sensor inconsistencies (2) quantification of soil loss and land degradation over Thassos over 5
different time points between 1984 and 2013 (3) assess the differences in soil loss process
observed in the context of historical wildfire regime and other human induced changes
occurring in the island during the last 3 decades.

2 Study Area

Thassos is the most northerly island in the Aegean Sea, prefecture of Kavala, extending
from 24°30′ to 24°48′ East, and 40°33′ to 40°49′ North (Fig. 1). Its surface area is 380
sq.km. The island is mountainous with intense relief. Elevation ranges from sea level to
1203 m and the terrain slopes range from 0° to 76°. The climate of Thassos is cool and
humid Mediterranean, with mean annual precipitation and temperature being 691 mm
and 15.9 °C, respectively (Kaltsas et al. 2007). The island belongs to the Mediterranean
vegetation eco‐zone characterized by thermophile broad‐leaved evergreen shrubs, and
pure stand forests of Pinus brutia and Pinus nigra (Gitas and Devereux 2006). In
addition to forested vegetation, other types of schlerophylous Mediterranean vegetation
are also found, such as maquis and garrigue (Mouflis et al. 2008). The rural sector is
traditionally devoted to the cultivation of olive trees, and olive groves dominate many
landscapes of the island.
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3 Materials and Methods

3.1 Satellite Data and Pre-processing

With regard to remote sensing data, satellite images (path/row 183/032 and 182/032) received
from Landsat-4 and Landsat-5 Thematic Mapper (TM), Landsat-7 Enhanced Thematic
Mapper (ETM+) and Landsat-8 Operational Land Imager (OLI) sensors were used to monitor
the vegetative cover of Thassos in 1984, 1991, 2000, 2007, and 2013. Compared to its
predecessors, the Landsat-8 OLI sensor has a greater number of bands and narrower spectral
ranges; however, it maintains 30 m spatial resolution, as well as 16-day temporal resolution
and scene size (170 km×183 km) with push-broom design.

Image acquisition days were selected during the July-September period, in order to capture
similar phenological states of the vegetation. For each of the 1984 and 1991 time points, one
additional image was used in order to compensate for information gaps due to cloud cover.

Images employed in the analysis are processed to Standard Terrain Correction (Level 1 T),
which provides systematic radiometric and geometric accuracy by incorporating ground
control points while employing a DEM for topographic accuracy. Visual assessment indicated
the lack of any mis-registration errors; therefore, all images were re-projected to the Hellenic
Geodetic Reference System 1987.

In the next step, radiometric corrections were applied to the Landsat image sequence, in
order to minimize errors and noise related to changes in illumination, atmospheric conditions
and viewing geometry. To ensure consistency in the multi-temporal assessment and

Fig. 1 Study area
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comparison of land degradation due to soil loss, digital number (DN) values were transformed
to surface reflectance and the dark object subtraction approach was applied to correct the
effects caused by the solar zenith angle, solar radiance, and atmospheric scattering. One
advantage of this image-based approach is that it is relatively simple to apply and does not
require any in situ measurements and atmospheric parameters (Chavez 1996).

3.2 Ancillary Data

High resolution digital elevation model (DEM) data are required for the computation
of topographic factor, as is general in spatially distributed hydrologic modeling over
complex terrain (Miller et al. 2003). Therefore a 10-m DEM of Thassos was created
through digitization of 4 m contour lines from 1:5000 topographic maps in order to
generate the topographic (LS) factor. All subsequent modeling was performed at 10 m
resolution. An analog soil sheet map using a 1:50000 scale was digitized in order to
include relevant information on the analysis process (Nakos 1979). The vector out-
lines of Thassos watersheds were obtained from the Greek Ministry of Environment,
Energy & Climate Change. Finally, the geo-database of recent fire history of the
island was compiled based on fire scars extracted on an annual basis from available
Landsat imagery acquired in late autumn, designating the end of the fire season.

3.3 Soil Loss Modeling

The USLE is one of the most widely used erosion prediction models (Wischmeier and Smith
1978) as is the updated version, the RUSLE (Renard et al. 1997). The RUSLE computes
erosion as a linear combination of factors:

A ¼ RxK xLS xC xP ð1Þ
where A is the computed spatial and temporal average soil loss per unit area, expressed in the
units selected for K and for the period selected for R; R is the rainfall/runoff erosivity factor; K
is the soil erodibility factor; LS or ‘topographic factor’ is the combined effect of slope length
(L) and slope steepness factor (S); C is the cover-management factor; and P is the support
practice factor.

3.3.1 Land Cover Management (C) Factor

A common method used for spatial explicit representation of C factor is the assign-
ment of values to various LULC classes by means of a lookup-table, using existing
thematic maps or classified remotely sensed images of study areas (Kumar et al.
2014). However, this approach contains some inherent limitations related to either the
difficulty in identifying reliable training samples, in the case of supervised ap-
proaches, or in specifying the appropriate number of clusters or groups when follow-
ing unsupervised procedures, as well as limitations related to the uncertainty of the
error magnitude present in historical images classification, due to the lack of valida-
tion datasets.

An alternative approach for estimating the spatial distribution of the C-factor is the use of
satellite-based vegetation indices, which are quantitative measures related to vegetation spec-
tral properties and express biomass or vegetative vigor. The most widely used remote-sensing
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derived indicator of vegetation growth is the NDVI (Tucker 1979), which is estimated by the
following computing formula:

NDVI ¼ NIR−Red
NIRþ Red

ð2Þ

where NIR and Red is the reflectance recorded in near-infrared and red spectrum, respectively.
On the basis of the NDVI image, the following equation, which gives better results than

assuming a linear relationship, is used to generate a C- factor surface from NDVI values (Van
der Knijff et al. 1999):

C ¼ exp −a
NDVI

b−NDVI

� �� �
ð3Þ

where α equals 2 and β equals 1, which are unit less parameters that determine the shape of the
curve relating to NDVI and the C-factor.

While NDVI, as well as other broadband vegetation indices, exhibits low sensitivity to the
uncertainties in atmospheric conditions and the variation in the satellite viewing angle, when
indices from different monitoring systems are combined, or used jointly in a long time series,
inconsistencies in the data may be found, due to cross-sensor radiometry, (e.g., bandwidth and
spectral band pass filter responses, seasonal temperature-related phenology) (Simms and Ward
2013; Steven et al. 2003). Therefore, a relative calibration procedure normalization, which
involves image bands radiometric matching in a time-series to an atmospherically corrected
reference image using pseudo-invariant features (PIFs) was adopted for the red and near-
infrared bands of the images (Schroeder et al. 2006). This procedure assumes that the pixels
sampled at the image to be adjusted are linearly related to the pixels, of the same locations,
sampled at the reference image, and that the spectral reflectance properties of the sampled
pixels are consistent during the time interval (Paolini et al. 2006).

The calibration was based on regression equations obtained from 67 points, each chosen to
represent PIFs throughout the island. The bright (quarries), medium (sparsely vegetated areas),
and dark (dense forests) features were selected to encompass the full range of spectral
brightness found across the island.

3.3.2 Rainfall Erosivity (R)

The R factor for any given period is obtained as the average annual sum of the kinetic energy
products of each storm with, maximum, 30-min rainfall intensity (Renard et al. 1997). Since
pluviograph and detailed rainstorm data are rarely available at standard meteorological
stations, mean annual and monthly rainfall amounts have often been used to estimate the R
factor for the RUSLE (Kouli et al. 2009). To calculate the R-factor, Eq. (2), was used because
the R-factor equation of Renard et al. (1997) requires rainfall intensity data, which were not
available inside the study area.

According to this equation, the R factor is estimated using the mean annual rainfall (P),
according to the formula recommended for Thassos by Flabouris (2008):

R ¼ Pxa ð4Þ
where a is equal to 0.7 for the study area.

For each site, a constant rainfall erosivity factor (R) and the input data layers for mean
monthly rainfall were created using a preprocessing step that projected gridded data for mean
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monthly precipitation from the WorldClim project (Hijmans et al. 2005). The spatial distribu-
tion map of the R factor was produced by applying Eq. (8) to the mean annual rainfall data.

3.3.3 Soil Erodibility (K) Factor

The soil erodibility factor (K) reflects the characteristics of the soil and represents its inherent
susceptibility to detachment and transport by rainfall and runoff (Kumar et al. 2014). The K
factor is rated on a scale from 0 to 1, with 0 indicating soils with the least susceptibility to
erosion, and 1 indicating soils that are highly susceptible to soil erosion.

The K factor values assigned to the geological formations are presented in Table 1, and
were based on inference with expertise (Karydas et al. 2013). The corresponding map was
generated by reclassifying the soil map.

3.3.4 Topographic LS Factor

The combined topographic (LS) factor is a function of both slope steepness factor (S) and
slope length factor (L) and is considered to be a crucial factor in the quantification of erosion
due to surface run-off (Renard et al. 1997). The slope length (L) is defined as the distance from
the origin of overland flow to the point where deposition begins to occur (Renard et al. 1997)
while slope steepness (S) refers to the effect of the slope gradient on erosion in comparison to
the standard plot steepness of 9 %.

Slope has a major effect on the rates of soil erosion, since, with increasing slope length and
slope steepness, greater overland flow velocities occur and, therefore, more soil may be
detached and transported (Alexakis et al. 2013). We calculated the combined LS factor by
applying the following equation (Wischmeier and Smith 1978):

LS ¼ l

72:6

� �m

65:41sin2θþ 4:56 sin θþ 0:065
� � ð5Þ

where l is the cumulative slope length in meters, θ is the downhill slope angle in % and
m = slope contingent variable set to 0.5 if the slope angle is greater than 2.86°, 0.4 on slopes of
1.72° to 2.86°, 0.3 on slopes of 0.57° to 1.72°, and 0.2 on slopes less than 0.57° (Kumar et al.
2014).

3.3.5 Conservation Practice (P) Factor

The conservation practice, P, factor reflects the effects of practices, such as construction of
terraces or contour strips, on the reduction of soil erosion. Practices of this kind can be found to
a small extent across the island. However, historical information regarding its extent and

Table 1 Soil parent material and
estimated soil erodibility (K) factor
for Thasos

Parent material K factor

Alluvial deposits 0.15

Limestone 0.4

Schists 0.7

Tertiary deposits 0.15

Gneiss 0.3
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intensity is not readily available and cannot be derived from medium-high satellite imagery.
Therefore, in the present study, a P value equal to 1.0 was assigned throughout the entire study
area.

4 Results and Discussion

The low differences among NDVI synthetic bands derived from TM, ETM+ and OLI sensors
and their high linear correlation coefficients (Table 2), demonstrated that NDVI time series
from these instruments can be used as complementary data for multi-temporal soil loss
modelling. Following the absolute radiometric calibration based on the coefficients estimated
upon PIFs (Table 2), using the Landsat-8 OLI image as a reference, the NDVI images were
calculated. For the 1984 and 1991 image sets, a maximum NDVI composite generation
procedure was followed in order to eliminate cloud- and shadow-covered areas.
Alexandridis et al. (2013) demonstrated that there is a significant difference in the estimation
of soil loss by erosion when variable time points are used for the C-factor estimation, due to the
fact that vegetation conditions change rapidly during the year. However, seasonal crops are
very limited in the specific area assessed in the present study. Since most of the LULC classes
are permanent (e.g., pine trees, shrublands, olive trees etc.) and therefore the characteristics of
their canopy does not change through the year, a single image acquisition within the same
season for estimation of the NDVI is representative of the area’s vegetation, as also noted by
Alexakis et al. (2013).

The spatial extent of changes in soil erosion risk exhibited strong variations through the
years of the analysis (1984–2013), as shown in Fig. 2. As expected, the lowest mean values of
soil erosion were observed diachronically in the lowland areas (0–200 m elevation) along the
coastline, while the highest erosion values were observed for the year 2000 in almost every
elevation zone, ranging from 4.86 to 15.59 ton ha−1year−1(Table 3).

Table 2 Multi-temporal regression slope (a) and Y-intercept (b), coefficient of determination (R2), and standard
error (SE) of estimate values for the red and near-infrared (NIR) spectral band calibration of the 1984-TM5,
1991-TM4, 2000-ETM+ and 2007-TM5 to the 2013-OLI image

Sensor Date Band Slope (a) Y-intercept (b) Coefficient of determination (R2) Standard error (SE)

TM5 14/09/1984 Red 1.49 −0.025 0.93 0.03

NIR 1.28 0.014 0.82 0.05

30/09/1984 Red 1.44 −0.017 0.93 0.03

NIR 1.16 0.047 0.79 0.05

TM4 08/07/1991 Red 1.13 −0.018 0.84 0.05

NIR 1.06 0.029 0.83 0.04

24/07/1991 Red 1.37 −0.026 0.87 0.04

NIR 1.13 0.038 0.84 0.04

ETM+ 24/08/2000 Red 1.36 −0.028 0.92 0.03

NIR 1.34 −0.011 0.90 0.03

TM5 28/07/2007 Red 1.05 −0.046 0.93 0.03

NIR 1.08 −0.022 0.85 0.03
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Fig. 2 Multi-temporal assessment of soil loss
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We observed a distinct pattern of erosion process for 1991, with higher values attained
between 400 and 800 m of elevation, in contrast with the other years in the series, during
which the most erosion-prone areas were located in the highest elevation zones (800–1200 m).

Assessment of the soil loss across different aspect classes indicated that the lowest values
were attained in flat, mild areas of topography, as expected, while relatively low values were
also attained in the northern slopes. The maximum values of soil loss occurred in south-facing
slopes, ranging from 7.38 in 1984 to 16.96 ton ha−1year−1 in 1991.

The soil erosion risk changes were the greatest (83.33 %) at elevation ranges between 400
and 800 m on Thassos, with high topographic potential for soil erosion. In lowlands along the
coastline, there was only a subtle impact on soil, erosion, presumably resulting from the
absence of any LUCC through time.

North-facing slopes exhibited the highest increase of soil loss through the 30-year period
(108.42 %), and this was significantly higher than that observed for the east (52.23 %) and
west slopes (72.96 %). However, the south-facing slopes remained the most vulnerable to
degradation at all-time points.

The 10 watersheds of the island also exhibited strong variations in terms of soil loss through
time. In nine of these, soil loss increased sharply during 1984–1991, while only one watershed
presented a less sharp of approximately 38 % (Table 4). During the second period (1991–
2000), soil loss decreased in two watersheds located in the east-northeast of Thassos (i.e.,
Panagia, Koinyron). In the subsequent time periods (2000–2007 and 2007–2013) mean soil
loss decreased in all but the Kalliraxi watersheds of the island. Overall, during 1984–2013, soil
loss was increased in all but Alykhs watershed, which showed a 38.41 % decrease.

Fire history reconstruction over Thassos, quantifies the linkages between soil-erosion rates
in mountainous and sub-mountainous regions of Mediterranean areas to fire-induced distur-
bances and the successional dynamics following regeneration of natural vegetation if left
undisturbed. During the 1984–2013 period, fire activity as recorded in 10 different fire
seasons, affected 20495 ha in total. The most devastating fires were detected in 1985, 1989
and 1984. The majority of the island (approx. 51 %) experienced fire spread and damage on at
least one occasion, and up to 3 % of Thassos experienced a recurring fire during this period

Table 3 Estimated mean soil erosion loss for the watersheds of Thasos island

Zone Area (ha) Estimated mean soil erosion loss (ton/ha/year) Change (%) 1984–2013

1984 1991 2000 2007 2013

Aspect

Flat 2429.36 0.00 0.01 0.01 0.00 0.00 39.05

North 8642.54 1.07 8.36 4.83 3.45 3.63 239.74

East 7489.58 4.80 12.70 10.34 7.76 7.31 52.23

South 10114.48 7.38 16.96 14.71 11.19 10.19 37.98

West 9265.19 3.37 11.06 8.30 6.29 5.81 72.76

Elevation

0–200 m 14479.35 2.81 6.15 4.86 3.80 3.69 31.28

200–400 m 11859.83 4.06 13.59 10.02 7.45 6.81 67.90

400–800 m 9807.00 4.88 16.79 13.06 9.61 8.94 83.33

800–1203 m 1794.97 8.27 15.27 15.59 12.48 12.10 46.33
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(Fig. 3). In respect to individual watersheds, 16 % of the area of the of Marion watershed was
burned twice throughout the 30 years studied, exhibiting the highest increase in soil erosion
through time (Table 4).

The finding that soil loss remains increased in almost all the watersheds of the island
despite the time elapsed from the devastating 1989 fire, confirms that wildfire can cause raised

Table 4 Soil loss values for aspect and elevation ranges over Thasos

Watershed name Area (ha) Estimated mean soil erosion loss (ton/ha/year) Change (%) 1984–2013

1984 1991 2000 2007 2013

Kalliraxi 2815 1.81 9.32 5.48 4.34 5.30 193.18

Prinou 3261 1.17 12.89 7.49 4.84 4.10 249.46

Raxoniou 2646 0.71 8.84 3.87 2.62 2.42 242.28

Thasou 2770 0.35 1.65 2.18 1.68 1.41 299.09

Marion 5083 2.32 14.90 9.85 8.16 9.82 323.93

Limenarion 5801 7.62 17.50 14.71 11.34 9.88 29.68

Theologou 6558 7.73 17.67 15.68 11.47 9.82 27.05

Panagias 3238 1.34 2.16 3.26 2.71 2.65 98.72

Koinyron 1832 0.98 4.29 5.25 3.32 2.80 186.11

Alykhs 2990 7.75 9.56 7.79 5.77 4.77 −38.41

Fig. 3 Fire frequency during the 30 years of the analysis and watersheds of Thassos
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sediment yields at the catchment scale for some considerable time after fire (Shakesby and
Doerr 2006). While vegetation recovers relatively quickly in Mediterranean regions, leading to
decline of soil erosion towards prefire conditions rates 3–4 years after burning, it is possible
that changes in vegetation community structure may take place following repeated fires.
Therefore, this alternation in vegetation structure and community, in the long run, may impact
the erosional processes and the recovery of the entire system (Wittenberg and Inbar 2009).
Small scale studies and plot measurements in Mt. Carmel, Israel (Wittenberg et al. 2014) and
South-eastern Spain (del Pino JS and Ruiz-Gallardo 2014) also confirms the finding that soil
loss amounts are commonly significantly higher on the south slope, steep gradients with north-
facing slopes shown to be less prone to soil erosion than the rest.

While the fire-related abrupt LULCC represents the most dangerous changes, as the
significant decrease of the protective function of forested areas may initiate strong erosion
processes, other factors may have also influenced the soil loss and land degradation process in
Thassos. Anthropogenic activities, such as mining and agricultural activities, may well have
influenced the process and the pattern of erosion activity. Mouflis et al. (2008) monitored
quarrying activity in Thassos between 1984 and 2000, and identified an almost 5-fold increase
in the area used by quarries, which grew from 0.08 % of the landscape in 1984 to 180 ha, or
0.47 % of the island, in 2000, due to enlargement of existing quarries and the creation of new
ones.

Another human activity shaping the landscape and increasing the risk of accelerated erosion
is expected from ground-disturbing activities during fuels reduction treatments, such as
construction of roads and firebreaks or salvage logging or thinning (Wondzell 2001). While
it was not feasible to find historical records and maps documenting this hypothesis, visual
interpretation of the multi-temporal satellite imagery used in the present study reveals that,
between 1984 and 1991, where the large fires occurred, fire break and road density in the
northern, intact forest part of the island considerably increased as a means of fire protection.
We also visually interpreted the continuation of this trend in subsequent years.

On the basis of the multi-temporal assessment of soil loss process, land managers and risk
planners can create spatially explicit erosion estimates to plan for watershed recovery treat-
ments and erosion mitigation efforts. Despite the fact that the large area spatial assessment of
soil loss from empirical models, is open to discussion due to the lack of measurement and
validation data (Đukić and Radić 2014), the obtained relative assessment of soil loss condi-
tions through time, between and within the catchments is deemed useful.

5 Conclusions

The scope of this study was the multi-temporal assessment of the soil loss process across
Thassos, a fire-prone island in the eastern Mediterranean. Literature findings concerning
measured rates of soil loss usually relate to small spatial and short temporal scales.
Multitemporal landscape modelling can be used in order to understand the degradation
processes and effects at larger scales.

We used imagery received from the TM, ETM+ and OLI instruments on board Landsat 4
and 5, Landsat 7 and Landsat-8 respectively. While previous studies addressing temporal and
spatial explicit assessment of soil loss have relied on individual image classification, the results
of the present study are based on the analysis of a multi-sensor NDVI image series that had
been recorded using different spectral resolutions, and under variable atmospheric conditions
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as a proxy for estimating the vegetation and biomass cover. Cross-calibration analysis of the
NDVI images generated from the above sensors verified that they can be used as complemen-
tary data for soil-loss modeling.

Spatial temporal assessment of soil loss indicated significant differences along the
four time intervals. With regard to the aspect, the most erosion-prone areas diachron-
ically were the south-facing slopes. The highest altitudinal zone was most at soil-loss
risk, but this elevation zone also has the smallest spatial extent compared to the
others. A major increase for all the elevation and aspect zones, as well as for every
watershed of the island, was observed during 1984–1991, when the island experienced
some catastrophic fires. During 1984–2013, all but one of the watersheds of the island
experienced a severe increase in soil erosion. The sharpest increase was recorded for a
watershed burned during the last year of the analysis period. As the magnitude and
effects of soil erosion processes are modified by a biophysical environment compris-
ing soil, climate, terrain, and LULC, the fire regime of Thassos is a major driver of
the change. Human activities, such as mining, and other ground disturbances, such as
firebreaks and roads, also influence the distribution of the soil loss process.

The synergistic use of different generations of Landsat satellites facilitate the monitoring of
the spatio-temporal change, pattern, and process of the earth’s ecosystem. Knowledge of the
spatial and temporal distribution of the erosion processes using landscape modeling, and its
association with local environmental conditions, land utilization, and human activities, is
crucial for effective land management decisions and mitigation of land degradation processes.
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