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Abstract Accurate and reliable prediction of groundwater level is essential for water resource
development and management. This study was carried out to test the validity of three nonlinear
time-series intelligence models, artificial neural networks (ANN), support vector machines
(SVM) and adaptive neuro fuzzy inference system (ANFIS) in the prediction of the ground-
water level when taking the interaction between surface water and groundwater into consid-
eration. These three models were developed and applied for two wells near Lake Okeechobee
in Florida, United States. 10 years data-sets including hydrological parameters such as
precipitation (P), temperature (T), past groundwater level (G) and lake level (L) were used
as input data to forecast groundwater level. Five quantitative standard statistical performance
evaluation measures, correlation coefficient (R), normalized mean square error (NMSE), root
mean squared error (RMSE), Nash-Sutcliffe efficiency coefficient (NS) and Akaike informa-
tion criteria (AIC), were employed to evaluate the performances of these models. The
conclusions achieved from this research would be beneficial to the water resources manage-
ment, it proved the necessity and effect of considering the surface water-groundwater
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interaction in the prediction of groundwater level. These three models were proved applicable
to the prediction of groundwater level one, two and three months ahead for the area that is
close to the surface water, for example, the lake area. The models using P, T, G and L achieved
better prediction result than that using P, T and G only. At the same time, results from ANFIS
and SVM models were more accurate than that from ANN model.

Keywords Groundwater level . Artificial neural network . Support vector machine . Adaptive
neuro fuzzy inference system

1 Introduction

Groundwater is an important water resource for domestic, agricultural, and industrial activities
in many countries. More accurate prediction of groundwater level could help avoid
overexploiting groundwater and assist water resource management. However, the prediction
of groundwater is very complex and highly nonlinear in nature as it depends on many complex
factors such as precipitation, temperature, etc. Therefore, it is imperative to develop effective
models to precisely predict groundwater level (Verma and Singh 2013). Many different models
such as numerical groundwater models, nonlinear empirical models and data driven models
have been used to predict groundwater level (Emamgholizadeh et al. 2014; Sun and Xu, 2011;
Sun et al., 2006). Numerical groundwater models is required and important in establishing the
governing equation in the subsurface, assigning physical properties of the domain and model
parameters and calibrating the model simulation. It is difficult to analyze the geologic structure
and set the geological parameters. Also, it is hard to obtain sufficient data from long time series
for numerical model development (Yoon et al. 2011). Recently, new data driven models such
as artificial neural network (ANN), support vector machines (SVM) and adaptive neuro-fuzzy
inference system (ANFIS) have been proved efficient in predicting for complex hydrologic
system (Emamgholizadeh et al. 2014; Güldal and Tongal 2010; Sreekanth et al. 2010).

In hydrologic research field, ANN model has been well developed and applied to predica-
tion of nonlinear problems such as precipitation (Nastos et al. 2014), sediment load (Afan et al.
2015), river flow (He et al. 2014), chlorophyll-a levels (Cho et al. 2014), regional index flood
(Latt et al. 2014), etc. Nastos et al. (2014) used ANN model to evaluate the potential of daily
extreme precipitation at Athens, Greece. The results of proved that the ANN model is
successful and feasible for the assessment of daily extreme precipitation. Afan et al. (2015)
used two different ANN algorithms, the feed forward neural network (FFNN) and radial basis
function (RBF) to estimate the daily sediment load from Rantau Panjang station on Johor
River. The results indicated that the FFNN model has superior performance than the RBF
model. He et al. (2014) developed ANN, ANFIS and SVM models for forecasting river flow
with complicated topography in the semiarid mountain regions. The results suggested that
three models can be successfully applied to estimate river flow with complicated topography
and SVMmodel performed better than ANN and ANFIS models. Cho et al. (2014) used ANN
model to predict chlorophyll-a levels in reservoir formed by damming a river. It was concluded
that ANN trained with the time series data can provide information regarding the principal
factors affecting algal bloom at Lake Juam and successfully predict the Chl-a concentration in
reservoir. Latt et al. (2014) developed ANN model to estimate regional index flood. The result
showed that ANN model can capture the nonlinear relationships between the index floods and
the catchment and is superior to the conventional regression method.
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SVM model is also as efficient as ANN in modeling nonlinear systems. SVM model has
been used by many researchers to solve hydrology, hydrogeology problems. For example,
Tabari et al. (2012) used SVM, ANFIS, regression and climate based models to estimate
reference evapotranspiration using limited climatic data in a semi-arid highland environment.
The results achieved with the SVM and ANFIS models for evapotranspiration estimation are
outperform than those obtained using the regression. Yoon et al. (2011) applied SVM and
ANN models to predict groundwater levels in a coastal aquifer. The result showed that
prediction ability of SVM model is similar to or even better than those of the ANN model
in prediction stage. Noori et al. (2011) used PCA, Gamma test, and forward selection
techniques to evaluate support vector machine performance for predicting monthly stream
flow. The result of PCA-SVM is superior to that of GT-SVM and PCA-ANN models for
forecasting monthly stream flow. Çimen and Kisi (2009) used ANN model and SVMmodel to
predict water level of Lake Van in Turkey and found that the SVM based model performs
better than the ANN. Ch et al. (2013) constructed SVMmodel with quantum behaved particles
warm optimization in predicting monthly stream flow and found that SVM-QPSO is far better
technique for forecasting monthly streamflow. Meanwhile, SVM model can provide a high
degree of accuracy and reliability. Wen et al. (2015) used SVM model to evaluate daily
reference evapotranspiration using limited climatic data. The results showed that the perfor-
mance of SVM method is the best among ANN and three empirical models including
Priestley-Taylor, Hargreaves, and Ritchie models.

ANFIS model with high abilities can be suitable for modeling non-linear dynamic hydrolog-
ical systems. ANFIS models have been developed and applied to predict diverse water resources
variables for an effective water management. Talebizadeh and Moridnejad (2011) compared
ANFIS model with ANNmodel in forecasting lake level fluctuations. ANFIS model was proved
superior to ANN model in terms of efficiency. Hipni et al. (2013) used ANN and ANFIS for
forecasting of daily dam water levels. Quantitative standard statistical performance values proved
that SVM is a superior model to ANFIS for predicting dam water levels. Awan and Bae (2014)
used ANFIS to predict long-term dam inflow and got the conclusion that the prediction for all
selected dams using the ANFIS model with categorical rainfall forecast was better than the
ANFIS model with only preceding month’s dam inflow and weather data. Goyal et al. (2014)
improved the accuracy of daily pan evaporation estimation in subtropical climates using machine
learning models including ANFIS, LS-SVR, Fuzzy Logic, and ANN. The results showed that
theses machine learning models outperform the traditional HGS and SS empirical methods.

ANN, SVM and ANFIS data driven models were applied in formal hydrology studies. The
interaction between groundwater and surface water is an important factor and would appar-
ently affect the groundwater level fluctuation in the research area that is close to surface water,
such as lake and river (Ala-aho et al. 2015; Martinez et al. 2015; O’Connor and Moffett 2015).
In this study, ANN, SVM and ANFIS nonlinear time-series intelligence models were devel-
oped and used to predict groundwater level fluctuations from research area near lake, which is
mainly aimed at proving the necessity and effect of considering groundwater and surface water
interaction in groundwater level prediction. At the same time, the validity of the three
developed models in these conditions were tested. The data used include monthly precipitation
(P), temperature (maximum, mean and minimum) (T), past groundwater level (G) as well as
lake level (L) data. Meanwhile, the result of groundwater level prediction taking lake level
fluctuation into account is compared with that not considering the fluctuation. The predictions
from ANN, SVM and ANFIS models are compared with the observed values and evaluated
based on quantitative standard statistical analysis.
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2 Methods

2.1 Artificial Neural Network

Artificial neural network (ANN) is a simplified model of biological neuron system consisting
of a massive parallel distributed information processing system that has certain performance
characteristics resembling biological neural networks of the human brain (Haykin 1999;
Samarasinghe 2006). The architecture of ANN neural network, which is also called a
multilayer perceptron network (MLPN), consists of an input layer, one or more hidden layer,
an output layer and a layer comprising one or more artificial neurons. Feed-forward
back propagation neural networks (FFNN) is one of the simplest artificial neural
networks and has been successfully used for modeling and predicting in the earth
sciences (ASCE 2000a, b). The mathematical expression of the MLPN feed-forward
process is described as follows:

y j ¼ f
XN
i¼1

wjixi þ bj

 !
ð1Þ

where xi is the ith nodal value in the previous layer, yj is the jth nodal value in the present
layer, bi is the bias of the jth node in the present layer, wji is a weight connecting xi and yj, Nis
the number of nodes in the previous layer, and f is the activation function in the present layer.

Since a neural network problem is solved according to the selected training algorithm,
algorithm that provides the best fit to the data is required in prediction. Different training
algorithms involved in this study were Levenberg-Marquardt (LM), Bayesian regularization
(BR), Scaled conjugate gradient (SCG), Gradient descent with momentum and adaptive
learning rate (GDX), etc. (ASCE 2000a, b).

2.2 Support Vector Machine

Support vector machine (SVM) is a relatively new machine-learning approach in data-driven
research fields based on statistical learning theory (Vapnik 1995; Vapnik 1998). The process of
an SVM estimator (f) in regression can be expressed as follows:

f xð Þ ¼ w⋅ϕ xð Þ þ b ð2Þ
wherewi is a weight vector, and b is a bias. ϕ denotes a nonlinear transfer function that maps

the input vectors into a high-dimensional feature space in which theoretically a simple linear
regression can cope with the complex nonlinear regression of the input space. Vapnik (1995)
introduced the convex dual optimization problem with an ε-insensitivity loss function to obtain
the solution. Many algorithms have been suggested for solving the dual optimization problem
of the SVM. An overview of these algorithms is found in (Shevade et al. 2000; Scholkopf and
Smola 2002). In the present research, the sequential minimal optimization (SMO) algorithm,
introduced by (Platt 1999; Scholkopf and Smola 2002), has been employed to solve this dual
optimization problem. The main advantage of the SMO is that an analytical solution of a
subset can be obtained directly without invoking a quadratic optimizer. The model parameters
of the SVM are trained by SMO. The calibration and prediction were performed using the
programming codes of the Library for Support Vector Machines (LIBSVM) (Chang and Lin
2011). Figure 1 shows the SVM models schematic representation.
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2.3 Adaptive Neuro Fuzzy Inference System

Adaptive neuro fuzzy inference system (ANFIS), first introduced by (Jang 1993; Jang et al. 1997), is
a combination of an adaptive neural network and a fuzzy inference system. ANFIS is a universal
approximation methodology and is capable of approximating any real continuous function on a
compact set to any degree of accuracy. ANFIS used in this study is the first-order Sugeno fuzzy
model (Jang 1993). The Sugeno’s fuzzy structure of ANFIS model is consist of five layers and is
given in Fig. 2. Themore comprehensive presentation ofANFIS formodeling nonlinear phenomena
can be found in the literature (e.g., evaporationmodeling, (Moghaddamnia et al. 2009); groundwater
level prediction, (Shiri and Kişi 2011); rainfall-runoff modeling, (Vernieuwe et al. 2005)).

3 Study Area and Available Data

3.1 Study Site and Data Preprocessing

The study site is located on the northeast shore of Lake Okeechobee, Florida, United States.
The local average annual temperature and precipitation in the study area are 23.3 °C and
828.3 mm over past 10 years, respectively.

The precipitation, temperature and lake level are considered as exogenous factors
affecting the groundwater level in this area. Monthly precipitation and temperature
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data were obtained from National Oceanic and Atmospheric Administration (NOAA).
Monthly lake level data of Lake Okeechobee was collected from South Florida Water
Management District. Monthly groundwater data was obtained from United States
Geological Survey (USGS). In this study, monthly time-series data of the precipita-
tion, temperature (maximum, mean and minimum), lake level and groundwater level
are used to forecast future groundwater fluctuations on well M1048 and STL313. The
locations of the observed wells in the study are shown in Fig. 3. From the observed
data during 12 years (from 1998 to 2009), the first 10 years data are used for training
and the second 2 years data are used for validation. Figure 4a-d illustrates the
monthly time-series data of precipitation, mean temperature, lake level and ground-
water level at well M1048.

Time-series data is supposed to be normalized by Eq. (3), so the variables in the training
data are scaled to a limit between 0 and 1.

Y ¼ X−Xmin

Xmax−Xmin
ð3Þ

whereY is the normalized data, Xis the time-series data, Xmin is the minimum value of the
time-series data and Xmax is maximum values of time-series data.

Precipitation (P), temperature (T) (maximum, mean and minimum), lake level (L) and
groundwater level (G) are considered as input variables of ANN, SVM and ANFIS models.
Statistical methods such as the autocorrelation function (ACF) and the partial autocorrelation
function (PACF) are generally employed for selecting appropriate data-driven models (Lin
et al. 2006). The ACF and PACF of well number M1048 from lag-0 to lag-13 are presented in
Fig. 5. Figure 5 suggests a significant correlation up to lag-2 month for this time series at
95 % confidence level interval. The partial autocorrelation coefficients indicate incorpo-
rating monthly groundwater level data up to 2 month lag in input vector to ANN, SVM
and ANFIS models.

3.2 Performance Criteria

Five statistical parameters are used to evaluate the effectiveness of the ANN, SVM and ANFIS
models in this study. Correlation coefficient (R) is defined as the degree of correlation between

Fig. 3 Location map of United States and observation wells
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the predicted and observed values:

R ¼
X N

i¼1
Oi−
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Normalized Mean Square Error (NMSE) can be calculated as follows:

NMSE ¼ n−1
n

X N

i¼1
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Root Mean Squared Error (RMSE) can be calculated as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX N

i¼1
Oi−Pið Þ

N

vuut ð6Þ

Nash-Sutcliffe efficiency coefficient (NS) can be calculated as follows:

NS ¼ 1−

X N

i¼1
Oi−Pið Þ

2

X N

i¼1
Oi−O
� �2 ð7Þ

The Akaike Information Criteria (AIC) can be calculated as follows:

AIC kð Þ ¼ N ⋅In
1

N

X N

i¼1
Oi−Pið Þ

2� �
þ 2k ð8Þ

where Oi is observed value, Pi is predicted value,Ois the average of the observed value,Pis
the average of the predicted value, N is the total number of values, and k is the number of free
parameters used in models. The Akaike Information Criteria (AIC) were used for selecting the
best time series mode (Akaike 1974). The best fit between predicted value and observed value
would have R = 1, NMSE = 0, RMSE = 0, NS = 1, AIC = 0, respectively.

4 Results and Discussion

4.1 ANN Model

Selecting of training algorithm and the number of hidden nodes which affect the performance
of ANN model are important. Levenberg-Marquardt (LM), Bayesian regularization (BR),
Scaled conjugate gradient (SCG), Gradient descent with momentum and adaptive learning
rate (GDX) are used to train the time-series data and the best algorithm can be selected
according to the R and RMSE. The results presented in Table 1 show that BR is better than
other algorithms, which is used in this study for groundwater level forecasting. The optimal

Table 1 R and RMSE of different training algorithms of 10 neurons at site M1048 for lag time 1

Training Algorithm Training Validation

R RMSE R RMSE

P + T + G + L BR 0.949 0.575 0.918 1.163

GDX 0.926 0.687 0.895 1.132

LM 0.926 0.688 0.894 1.316

SCG 0.950 0.574 0.880 1.415

P + T + G BR 0.949 0.570 0.867 1.296

GDX 0.938 0.634 0.855 1.318

LM 0.963 0.495 0.741 1.950

SCG 0.954 0.550 0.791 1.789
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number of neurons in the hidden layer is identified using the trial and error procedure by
varying the number of hidden neurons from 5 to 50. The one with minimum RMSE is selected
as the optimal network. The effect of changing the number of hidden neurons on the RMSE of
the time series data is shown in Fig. 6.

For investigation of the effects of input structure and input data on the performance of FFNN
model, two input structures and three lag times are considered, as is shown in Table 2 and Table 3.
The results show that the 1 lead time of four input variables has the minimum RMSE and AIC
values in the validation. The minimum RMSE and AIC at site M1048 are 1.163 and 7.246,
respectively. The minimum RMSE and AIC at site STL313 are 0.761 and −13.091, respectively.

4.2 SVM Model

The same input structures and lag times are introduced to SVMmodel, the results are shown in
Table 4 and Table 5. The results show that the 1 lead time of four input variables at site M1048
and 3 lead time of four input variables at site STL313 have the minimumRMSE andAIC values
in the validation. At site M1048, the minimum RMSE and AIC are 1.087 and 4.019, respec-
tively; at site STL313, the minimum RMSE and AIC are 0.641 and −21.330, respectively.

4.3 ANFIS Model

In the ANFIS model, fuzzy inference system (FIS) structure is generated from training data using
very popular grid partition algorithm (Matlab 2013). The same input structures and lag times
introduced to ANFIS model, as is shown in Table 6 and Table 7. Table 6 and Table 7 suggest that
1 lead time of four input variables at two sites has the minimum RMSE and AIC values in the
validation. The minimum RMSE and AIC of site M1048 are 1.112 and 5.081, respectively. The
minimum RMSE and AIC of site STL313 are 0.590 and −25.286, respectively.

4.4 Comparison ANN, SVM and ANFIS

As can be seen from Table 1 to Table 7, statistical parameter values of training and validation
are better when the lake level is considered as input variable. Moreover, the groundwater level
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fluctuations in these sites are affected by groundwater-lake interaction because of these sites
are close to the lake. These results indicate that the influence of fluctuating lake level should be
considered for groundwater level predication for the sites that are close to the lake. In other
words, interaction of groundwater and surface water (lake, reservoir, river, etc.) should not be
ignored for predicting groundwater level.

The analysis about the model calibration and validation for two sites is listed in Table 2 to
Table 7. At the training stage, the mean RMSE value in ANN, SVM and ANFIS models for
well M1048 are 0.804, 0.873 and 0.411 respectively; the mean of RMSE in these models for
well STL313 are 0.558, 0.509 and 0.239 respectively. The mean RMSE values of the ANFIS
model are smaller than those of other models in the training stage, which implies that the
calibration capability of the ANFIS model is better than that of other models for the given data.
In validation stage, the mean RMSE value in ANN, SVM and ANFIS models for well M1048
are 1.229, 1.102 and 1.166 respectively; the mean of RMSE in these models for well STL313
are 0.779, 0.710 and 0.618 respectively. The prediction results of ANFIS was close to that of
SVM model for well M1048; the prediction results of ANFIS was more accurate than that of
SVM model for well STL313.

If the NS criterion in a model is equal to 1, then this model can be claimed to produce a
perfect estimation. Normally, a model can be considered as accurate if the NS criterion is
greater than 0.8 (Shu and Ouarda 2008). Most of the NS values for the ANN, ANFIS and
SVM models in training stage are over 0.8, which indicates that all these models achieved
acceptable results. The NS values for the ANFIS model predicting of the groundwater value
are higher than those for the SVM and ANN models, which also indicates that the overall

Table 2 Result of modeling from ANN model with different lag time at site M1048

Lead
Time

Training Validation

R NMSE RMSE NS AIC R NMSE RMSE NS AIC

P + T + G + L LT1 0.949 0.099 0.576 0.900 −132.587 0.918 0.479 1.163 0.500 7.246

LT2 0.911 0.171 0.755 0.828 −67.495 0.899 0.636 1.340 0.336 14.065

LT3 0.914 0.166 0.745 0.832 −70.618 0.768 0.679 1.385 0.291 15.646

P + T + G LT1 0.950 0.097 0.570 0.902 −134.794 0.867 0.595 1.296 0.379 12.458

LT2 0.862 0.260 0.932 0.737 −16.886 0.896 0.594 1.295 0.380 12.416

LT3 0.727 0.469 1.250 0.527 53.621 0.772 0.658 1.363 0.314 14.867

Table 3 Result of modeling from ANN model with different lag time at site STL313

Lead
Time

Training Validation

R NMSE RMSE NS AIC R NMSE RMSE NS AIC

P + T + G + L LT1 0.940 0.118 0.376 0.881 −234.827 0.789 0.495 0.761 0.483 −13.091
LT2 0.889 0.209 0.500 0.789 −166.518 0.756 0.723 0.919 0.246 −4.035
LT3 0.800 0.368 0.664 0.629 −98.416 0.801 0.707 0.910 0.262 −4.549

P + T + G LT1 0.894 0.210 0.501 0.788 −165.812 0.777 0.544 0.798 0.433 −10.859
LT2 0.811 0.350 0.647 0.647 −104.668 0.788 0.516 0.777 0.462 −12.118
LT3 0.798 0.364 0.659 0.633 −99.979 0.758 0.521 0.781 0.456 −11.877
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quality of estimation of the ANFIS model is better than the SVM and ANN models. (See
Table2 to Table 7).

Compared with the ANN, ANFIS and SVM models perform from the RMSE and R values
in the validation stage, RMSE of the SVM model is a bit better than both the ANN and the
ANFIS model, and R values of the ANFIS is a bit higher than other models. Obviously, RMSE
value of ANFIS model is a bit higher than that of SVM model, the NS value and R values of
SVM model in validation stage perform a bit less than that of ANFIS model. Therefore, SVM
model is also a good data-driven model in validation stage. (See Table 2 to Table 7).

Figures 7 and 8 displays the comparison between the observed and predicted groundwater
level at M1048 and STL313 observation wells using the best ANN, SVM and ANFIS models
for 1-month-ahead forecast. The correlation coefficient (R2) values for validation period for all
the models are also shown in scatter plots for two wells in Figs. 7 and 8 corresponding to each
model predicted values. From the scatter plots drawn between observed and predicted
groundwater levels for two observation wells, it can be seen that ANFIS model predicts the
groundwater levels with less scatter and all points are close to the straight line when compared
to ANN and SVM models. Figure 9a-b shows the observed groundwater levels versus
predicted groundwater levels using three models in training stage and validation stage.

Figure 7 shows that R2 of ANFIS performs a bit higher than that of SVM model, while the
error of the local point for SVM performs a bit less than that for ANFIS. Thus, both ANFIS
and SVM models can be considered as good data-driven models at site M1048. Figure 8
shows that R2 and the error of the local point of ANFIS perform higher than that of SVM and
ANN models. The plots can also indicate that predictions of the groundwater levels in SVM

Table 4 Result of modeling from SVM model with different lag time at site M1048

Lead
Time

Training Validation

R NMSE RMSE NS AIC R NMSE RMSE NS AIC

P + T + G + L LT1 0.926 0.146 0.698 0.853 −86.147 0.921 0.418 1.087 0.563 4.019

LT2 0.865 0.258 0.928 0.740 −18.031 0.880 0.532 1.227 0.444 9.802

LT3 0.857 0.264 0.938 0.734 −15.243 0.811 0.610 1.312 0.364 13.045

P + T + G LT1 0.911 0.173 0.759 0.826 −66.143 0.929 0.442 1.117 0.539 5.314

LT2 0.867 0.246 0.906 0.752 −23.674 0.831 0.898 1.593 0.063 22.345

LT3 0.832 0.306 1.010 0.692 2.386 0.746 0.840 1.541 0.123 20.748

Table 5 Result of modeling from SVM model with different lag time at site STL313

Lead
Time

Training Validation

R NMSE RMSE NS AIC R NMSE RMSE NS AIC

P + T + G + L LT1 0.905 0.182 0.466 0.816 −183.024 0.797 0.420 0.701 0.562 −17.048
LT2 0.925 0.145 0.416 0.854 −210.491 0.831 0.606 0.842 0.368 −8.265
LT3 0.937 0.129 0.392 0.870 −224.736 0.804 0.351 0.641 0.633 −21.330

P + T + G LT1 0.885 0.217 0.510 0.781 −161.802 0.805 0.443 0.720 0.537 −15.755
LT2 0.826 0.318 0.616 0.679 −116.117 0.771 0.464 0.737 0.515 −14.639
LT3 0.800 0.360 0.656 0.637 −101.277 0.746 0.493 0.760 0.485 −13.198
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model are superior to that of ANN model. So, ANFIS model can be considered as the best
estimation models at site STL313.

Box plot is used to check whether the models are able to predict these variations and
corresponding prediction errors. Figure 10 shows that most of prediction errors are
concentrated around zero, which supports the efficiency of the optimum architecture
obtained. Figure 10 also displays a comparison of errors between the results obtained
by the ANN, SVM and ANFIS models in the training period and validation period.
The results indicate that out of all the models employed in current study, ANFIS is
the most accurate model in training stage. In validation stage, the prediction on groundwater
level for well M1048 showed there is slight difference between the result acquired from ANFIS
and SVM; while in the prediction for well STL313, ANFIS performed more accurate than
SVM. These results are consistent with that acquired by (He et al. 2014; Shirmohammadi et al.
2013) results.

Overall, the results of the ANFIS and SVMmodels are superior to the ANN in the near-lake
groundwater level prediction. Comparing the results of ANFIS and SVM models, SVM and
ANFIS models have their own advantages and disadvantages. Concretely, RMSE value of
ANFIS model was higher that of SVM model, the NS and R values of SVM model in
validation stage was a little lower that of ANFIS model. The selection of the best applicable
model should balance the benefits of the statistical parameters according to the performance
criteria in both training stage and validation stage. The prediction results of ANFIS are close to
that of SVM model for well M1048; the prediction results of ANFIS are more accurate than
that of SVM model for well STL313.

Table 6 Result of modeling from ANFIS model with different lag time at site M1048

Lead
Time

Training Validation

R NMSE RMSE NS AIC R NMSE RMSE NS AIC

P + T + G + L LT1 0.996 0.007 0.156 0.993 −445.760 0.931 0.437 1.112 0.544 5.081

LT2 0.991 0.018 0.243 0.982 −339.304 0.851 0.763 1.468 0.204 18.443

LT3 0.990 0.020 0.260 0.980 −323.147 0.731 0.855 1.555 0.107 21.179

P + T + G LT1 0.972 0.055 0.427 0.945 −204.235 0.867 0.527 1.220 0.450 9.555

LT2 0.936 0.124 0.642 0.875 −106.250 0.865 0.843 1.543 0.120 20.830

LT3 0.915 0.163 0.737 0.836 −73.172 0.773 0.813 1.516 0.151 19.965

Table 7 Result of modeling from ANFIS model with different lag time at site STL313

Lead
Time

Training Validation

R NMSE RMSE NS AIC R NMSE RMSE NS AIC

P + T + G + L LT1 0.996 0.007 0.093 0.993 −570.162 0.868 0.298 0.590 0.689 −25.286
LT2 0.990 0.020 0.156 0.979 −445.677 0.788 0.552 0.803 0.424 −10.505
LT3 0.996 0.008 0.100 0.992 −552.532 0.831 0.509 0.772 0.469 −12.436

P + T + G LT1 0.973 0.052 0.249 0.948 −333.367 0.864 0.358 0.647 0.627 −20.903
LT2 0.925 0.143 0.414 0.855 −211.583 0.809 0.578 0.822 0.397 −9.396
LT3 0.923 0.148 0.421 0.850 −207.593 0.794 0.456 0.731 0.524 −15.057
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5 Conclusions

The accurate and reliable estimation of groundwater level is one of the most important issues
in the management of water resources. In this study, monthly groundwater levels data at the
M1048 and STL313 observation wells are used to investigate the prediction capability of
ANN, SVM and ANFIS models. Multivariate time series analysis is performed when various
hydrological variables are included, such as P, T (Max, Mean andMin), G and L. Five standard
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Fig. 7 Comparison of observed and predicted groundwater level at M1048 observation well using a best ANN
model, b best SVM model, c best ANFIS model for 1-month-ahead forecast
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statistical parameters, R, NMSE, RMSE, NS and AIC, are used for evaluating the performance
of the three models above. The result achieved from the model using P, T, G and L were
compared with that from the model using P, T and G to test the effect of considering the
interaction between groundwater and surface water.

Standard statistical parameters showed that the models using P, T, G and L achieved better
prediction result than that using P, T and G only: the average R value is bigger and the average
RMSE is smaller in the models which involve P, T, G and L. The groundwater prediction result

18

20

22

24

26

28

30

32

34

Time (Months)

G
r
o
u
n
d
w

a
te

r
 L

e
v
e
l 
(
ft
)

 Observed

 ANN forecasted

18

20

22

24

26

28

30

32

34

Time (Months)

G
r
o
u
n
d
w

a
te

r
 L

e
v
e
l 
(
ft
)

 Observed

 SVM forecasted

18

20

22

24

26

28

30

32

34

Time (Months)

G
r
o
u
n
d
w

a
te

r
 L

e
v
e
l 
(
ft
)

 Observed

 ANFIS forecasted

23

24

25

26

27

28

y=0.7472x+6.9467

      R
2

=0.6225

A
N

N
 f
o
r
e
c
a
s
te

d
 (

ft
)

Observed (ft)

23

24

25

26

27

28
y=0.5506x+11.9843

      R
2

=0.6352
S

V
M

 f
o
r
e
c
a
s
te

d
 (

ft
)

Observed (ft)

4 6 8 10 12 14 16 18 20 22 24

4 6 8 10 12 14 16 18 20 22 24

0 2

0 2

0 2 4 6 8 10 12 14 16 18 20 22 24

23 24 25 26 27 28

23 24 25 26 27 28

23 24 25 26 27 28

23

24

25

26

27

28

y=0.7635x+6.4363

      R
2

=0.7534

A
N

F
IS

 f
o
r
e
c
a
s
te

d
 (

ft
)

Observed (ft)

(a)

(b)

(c)

Fig. 8 Comparison of observed and predicted groundwater level at STL313 observation well using a best ANN
model, b best SVM model, c best ANFIS model for 1-month-ahead forecast
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when considering lake level fluctuation is superior to the result that is not considering the lake
level fluctuation. Therefore, the result of groundwater level prediction demonstrates that lake
level variations as the main driving force of groundwater discharge or recharge considering the
groundwater-lake interaction should not be ignored. Also, the result shows that the three
models could properly predict groundwater level one, two or three months ahead. Near-lake
groundwater level predictions from ANFIS and SVMmodels are more accurate than that from
ANN model. This study proves the validity and applicability of the ANN, SVM and ANFIS
models in the prediction of groundwater level when considering the lake level fluctuation. The
result achieved from this study could work as useful guidelines for selecting appropriate
modeling techniques when the data sets for groundwater level prediction is collected from
near lake area. The necessity and effect of considering the interaction between groundwater
and surface water in groundwater level prediction has been proved in this study, which could
be beneficial to water resource management that it could help to achieve more valid and
accurate prediction results.
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