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Abstract In a rapidly changing environment, a greater concern about the establishment and
improvement of drought indices is expected. The main goal of this study is to develop and apply a
time-dependent Standardized Precipitation Index (SPIt) that takes account of the possible non-
stationary behaviors in precipitation records. Summer precipitation observations (1959 ~ 2011)
from 21 raingauge stations in the Luanhe River basin are fitted with non-stationary Gamma
distributions respectively by means of the Generalized Additive Models in Location, Scale and
Shape (GAMLSS). The temporal variability of the distribution’s parameter (related to themean) is
flexibly described by an optimized polynomial function. Based on the non-stationary distribution,
the SPIt is calculated and then employed to assess the spatio-temporal characteristics of summer
drought in the basin. Results of the non-stationarymodeling indicate an overall decreasing trend in
the summer precipitation during 1959 ~ 2011, and especially a significant decrease in the period of
2000 to 2011. The SPIt is found to be more robust and reliable compared with the traditional
Standardized Precipitation Index (SPI). Moreover, remarkable difference is observed between the
historical drought assessments of SPIt and SPI in the Luanhe River basin, implying that the non-
stationarity of hydrological time series cannot be ignored in drought analyses and forecasts. The
proposed SPIt method can be a feasible alternative for drought monitoring under non-stationary
conditions, intended to provide a valuable reference for further studies.

Keywords Drought . Standardized precipitation index . Time-dependent standardized
precipitation index . Non-stationarity . GAMLSS

1 Introduction

Drought is recognized as one of the most complex natural phenomenon with different temporal
and spatial characteristics, affecting economy, society and environment significantly (Wilhite
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et al. 2007; Vicente-Serrano et al. 2012; Sol’áková et al. 2014). Due to the effects of climate
change and anthropogenic stress, drought disasters become more frequent and extensive in
recent decades and have caused huge economic damage and human suffering in many areas
across the world (Villarini et al. 2011; Wen et al. 2011; Yoo et al. 2012; Li et al. 2013; Wang
et al. 2015).

Up to now, the best and most widely used approach for characterizing droughts is to
establish an appropriate indicator, which has the ability to identify drought characteristics and
assess the effects of drought quantitatively (Mishra and Singh 2010; Li et al. 2013; Tabari et al.
2013; Duan andMei 2014). Depending on research objectives, a wide range of drought indices
have been developed in previous literatures, including the Palmer Drought Severity Index
(Palmer 1965), the Crop Moisture Index (Palmer 1968), the Surface Water Supply Index
(Shafer and Dezman 1982), the Standardized Precipitation Index (SPI) (McKee et al. 1993),
the Standardized Runoff Index (Shukla and Wood 2008), the Standardized Precipitation
Evapotranspiration Index (Vicente-Serrano et al. 2010) and the joint deficit index (Kao and
Govindaraju 2010).

With the advantages of computational simplicity, the SPI has become the most
accepted and robust index, arguably considered as an essential element for an efficient
drought monitoring system (Vicente-Serrano 2006; Hayes et al. 2011; Pasho et al. 2011;
Li et al. 2012). It not only can be calculated at various time scales, but also is capable of
statistically comparing drought severity both in time and space (Bonaccorso et al. 2003;
Vicente-Serrano 2006; Patel et al. 2007; Wen et al. 2011). Moreover, as a probability-
based index, the SPI are consequently sensitive to the factors and assumptions that
govern probabilistic hydrology (Hosking and Wallis 1997; Angelidis et al. 2012; Russo
et al. 2013).

One of the fundamental assumptions in statistical inferences for hydrological time series is
the assumption of stationarity (Salas 1993; Strupczewski et al. 2001). Stationary hydrological
series keep its distributional properties invariant with time, implying free of trends and abrupt
changes (Brillinger 2001; Serinaldi and Kilsby 2015). However, the stationary assumption has
been widely questioned in the context of global warming and intensive man-induced distur-
bances (e.g., Held and Soden 2006; Vicente-Serrano and López-Moreno 2008; Hejazi and
Markus 2009; Yang and Tian 2009; Wang et al. 2013; Chang et al. 2015; Zhang et al. 2012). In
addition, several recent studies conducted in various regions of the world reveal clear
violations of this assumption (e.g., Villarini et al. 2010; Wilson et al. 2010; Giraldo Osorio
and García Galiano 2012; Wagesho et al. 2012; Ishak et al. 2013).

Computation of the traditional SPI involves fitting a stationary gamma distribution to given
precipitation records, which has relied heavily on the assumption of stationarity. Hence, under
a changing environment, non-stationary behaviors exhibited in precipitation observations
would make the availability and validity of traditional SPI most likely diminished, and
accordingly calls for alternative indicators that can furnish opportunities to directly identify
droughts under non-stationary conditions. Finding out such an appropriate non-stationary
drought index is of particular importance for implementing adequate adaptation and mitigation
strategies. With this point of view, some researchers have attempted to establish new drought
indicators which can account for the non-stationarity. For example, Türkeş and Tatl (2009)
proposed a modified SPI which considers the local-time means of the precipitation series, and
suggested that the modified SPI methodology could be successfully applied in the regions
where the precipitation series with high variability. Russo et al. (2013) developed the
Standardized Nonstationary Precipitation Index (SnsPI) using a non-stationary Gamma
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distribution with a linearly time varying mean, finding that the SnsPI is more robust than the
common SPI for the projections of dryness and wetness under climate changes.

In order to model non-stationary time series, different techniques have been introduced in
previous literatures (Coles 2001; Khaliq et al. 2006; El Adlouni et al. 2007; Strupczewski et al.
2009; Gilleland et al. 2013; Vasiliades et al. 2015; Xiong et al. 2015). The Generalized Additive
Model in Location, Scale and Shape (GAMLSS) proposed by Rigby and Stasinopoulos (2005)
has received significant attention. This model provides a high degree of flexibility to address
non-stationary probabilistic modeling, and thus has been successfully applied for a variety of
non-stationary analyses in hydrology (e.g., Villarini et al. 2009a; Giraldo Osorio and García
Galiano 2012; López and Franćes 2013). Recently, several researchers used GAMLSS for non-
stationary modeling of long-term hydrologic records (such as rainfall and temperature), and
found linear or nonlinear changes over time in the hydrometeorological variables (e.g., Villarini
et al. 2009b; Villarini et al. 2010; Jiang and Xiong 2012). The Mann-Kendall trend test (Mann
1945; Kendall 1975), regarded as the most widely used method for trend detection in hydrol-
ogy, could effectively verify the trend behaviors modeled byGAMLSSmodel. As to improving
the existing drought indices, the GAMLSS is apparently expected to be an effective tool to
account for the non-stationarity, although little attention has been paid to this aspect so far.

The Luanhe River basin located in North China serves as the principal water supply for the
Tianjin city. In this basin, the summer precipitation (from June to August) that accounts for
about 70 % of the annual precipitation plays a key role in the water budgets of the hydrological
cycle. Combined with concentrated agricultural activities, summer is the most sensitive season
for triggering drought episodes. Therefore, proper understanding and monitoring the evolution
of summer drought has great significance to regional agricultural production and socioeco-
nomic development.

In this study, we proposed and applied a time-dependent Standardized Precipitation Index
(SPIt) that is sufficiently robust to monitor droughts under non-stationary conditions, expecting
to provide a new perspective to establish more appropriate drought indices. Focusing on
summer droughts in the Luanhe River basin, the GAMLSS was used to model summer
precipitation records over the period of 1959 ~ 2011 with non-stationary Gamma distributions.
Then the SPIt was developed based on the non-stationary model so as to incorporate the
possible non-stationarity of observed precipitation. The performances of the SPIt and traditional
SPI were compared in order to further test the robustness and reliability of SPIt.

2 Study Area and Data

The study area, Luanhe River basin, is located in the north of the Haihe River basin, China,
between 115°30′~119°15′E longitude and 39°10′~42°30′N latitude (Fig. 1). It covers a
drainage area of 33,700 km2, of which mountainous area accounts for nearly 98 % while plain
area accounts for nearly 2 %. The elevation within the basin varies from more than 2200 m in
the northwest, to less than 2 m in the southeast. This area belongs to the temperate continental
monsoon climate, and receives mean annual precipitation of 400~700mmwith highly seasonal
and interannual variability. About 70~80 % of annual precipitation is concentrated in the rainy
months (June to September), especially in July and August. Its mean annual temperature and
potential evapotranspiration are −0.3~11 °C and 950~1150 mm respectively.

The Luanhe River basin acts as the main source of water for economic, social and
environmental activities in the Tianjin city, the largest opening coastal city of North China.
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However, in recent decades, the amount of water supplied to the city continuously reduced,
mainly due to the consecutive droughts and soil and water conservations in the basin (Li and
Feng 2007). Indeed, the Luanhe River basin has experienced much more frequent and extreme
drought since the late 1990s (Wang et al. 2015). Several severe droughts for 1961, 1963, 1968,
1972, 2007 and 2009, and multi-year droughts for 1980 ~ 1984 and 1997 ~ 2005 have been
reported for this region (Ma et al. 2013; Yang et al. 2013).

Historical precipitation records were obtained from 21 raingauge stations which measure
precipitation only. The locations of the selected stations are presented in Fig. 1. The monthly
precipitation data from all of these stations are available during the entire period 1959 ~ 2011. The
data were originally provided byHydrology andWater Resource SurveyBureau of Hebei Province.

3 Method

3.1 Generalized Additive Models in Location, Scale and Shape (GAMLSS)

Generalized Additive Models for Location, Scale and Shape (GAMLSS) introduced by Rigby
and Stasinopoulos (2005) has been proved to be a valuable and flexible modeling framework
for analyzing the time series with non-stationary behaviors (Villarini et al. 2009b; Villarini

Fig. 1 Location of the Luanhe River basin and the 21 raingauge stations
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et al. 2010). GAMLSS are (semi) parametric regression type models, in which a parametric
distribution assumption is required for the response variable, and the selected distribution’s
parameters can vary as a linear and/or nonlinear function of explanatory variables and/or
random effects.

A brief introduction to the theory behind GAMLSS is provided here. For a more
comprehensive discussion, refer to Rigby and Stasinopoulos (2005) and Stasinopoulos
and Rigby (2007). In a GAMLSS model, observations yt for t=1,2,…,n are assumed to be
independent and fitted to a distribution function f(yt|θ

t), conditional on θt =(θt1,θt2,…,θtp,)
representing a vector of p distribution parameters at time t. A general distribution family,
including highly skew and/or kurtotic continuous and discrete distributions, is supported
by GAMLSS. The distribution parameters θ characterized as location, scale, and shape
parameters are related to explanatory variables by monotonic link functions gk(·), k=
1,2,…,p, given by:

gk θkð Þ ¼ ηk ¼ Xkβk þ
X
j¼1

Jk

Z jkγ jk ð1Þ

where θk and ηk are vectors of length n, θk=(θ1k, θ2k,…, θnk)
T, βk=(β1k, β2k,…, βJkk)

T is a
parameter vector of length Jk, Xk is a fixed known design matrix of order n×Jk, Zjkis a
fixed known n×qjk design matrix, and γjk is a qjk dimensional random variable. In Eq. (1),
the ηk, for k=1,…, p, are comprised of a parametric component Xkβk (functions of
explanatory variables) and additive components Zjkγjk (random effects). If Jk=0, the
model is reduced to a fully parametric GAMLSS model.

In this study, GAMLSS were applied to non-stationary modeling of summer precipitation
for the Luanhe River basin. Within the GAMLSS framework, the precipitation time series
were assumed to be distributed by 2-parameter Gamma distribution with its location parameter
μ (related to mean) linked to time. Since the observations might show non-linear behaviors
over time, the temporal variability of the location parameter was described by an optimized
polynomial function (Eq. (2)), instead of assuming that the parameter is a linear function of
time.

g1 μtð Þ ¼ g1 μ tð Þ½ � ¼ a0 þ a1t þ…þ aqt
q ð2Þ

where ai is the polynomial coefficient, i=0,1,…,q, and q is the degree of polynomial.
The dependence of the parameter on time can be linear or smooth through the defined

polynomial function. For modeling with a balance between accuracy and complexity, the
degree of polynomial was optimized using the Akaike Information Criterion (AIC) (Akaike
1974) and the Schwarz Bayesian Criterion (SBC) (Schwarz 1978). The RS algorithm was used
for parameters estimation in the GAMLSS framework, with the objective of maximizing the
penalized likelihood function (Rigby and Stasinopoulos 1996a, b). To test the adequacy of fit,
the residuals of each model were checked by analyzing the first four moments of their
distribution (Dunn and Smyth 1996) and Filliben correlation (Filliben 1975), together with
visual inspection of diagnostic plots of the residuals, such as residuals vs. response, Q-Q plots
or worm plots (Stasinopoulos and Rigby 2007). The independence and normality of the
residuals ensure that the residual information can be explained as random signal, indicating
an adequate description of the systematic information provided by the model. The calculations
related to GAMLSS modeling in this study were performed in R using the available gamlss
package (Stasinopoulos and Rigby 2007).
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3.2 Traditional Standardized Precipitation Index (SPI)

The Standardized Precipitation Index (SPI) originally proposed byMcKee et al. (1993) is one of the
most useful indices for monitoring and assessing drought conditions. The procedure of traditional
SPI calculation involves fitting a 2-parameter Gamma distribution to a given time series of
precipitation. The Gamma distribution has a probability density function (PDF) defined as follows:

f X xk jμ;σð Þ ¼ 1

σ2μð Þ1=σ2
xk

1
σ2
−1exp −xk= σ2μð Þ½ �
Γ 1=σ2ð Þ ; xk > 0;μ > 0;σ > 0 ð3Þ

where μ and σ are usually characterized as location and scale parameters, xk is the amount of
precipitation over k consecutive months, and Γ(·) is the mathematical Gamma function.

The 2-parameter Gamma distribution is denoted as Gamma (μ, σ). The expectation and
variance of the variable X ~ Gamma (μ, σ) are

E Xð Þ ¼ μ ; Var Xð Þ ¼ σ2μ2 ð4Þ
According to the approximate conversion provided by Abramowitz and Stegun (1965), the

cumulative probability of xk is then transformed to a standard normal deviation with a zero mean
and unit variance, which is the value of SPI. The values of SPI are climatologically consistent for
any location because of the standardization relative to a specific period (Russo et al. 2013).
Table 1 shows the range of SPI values along with their classifications (McKee et al. 1995).

3.3 Time-dependent Standardized Precipitation Index (SPIt)

The time-dependent Standardized Precipitation Index (SPIt) is defined analogously to SPI but
based on a non-stationary Gamma distribution with its location parameter changing over time.
This non-stationary distribution is developed by using GAMLSS as described in Section 3.1.

The SPIt is calculated in the following sequence. (1) The time scale of kmonths is specified
depending on desired application, and the time series of k-month consecutive precipitation xk
are prepared. (2) Within the GAMLSS framework, a non-stationary model is developed by
fitting the precipitation data xk to a non-stationary Gamma distribution. The location parameter
of this distribution is described as an optimized polynomial function of time (i.e., g1[μ(t)]=a0+
a1t+…+aqt

q) which is selected by minimizing AIC and SBC. Thus the precipitation amount xk
at time t (represented as xkt) is modeled as xkt ~ Gamma (μt, σ). (3) The cumulative probability
of xk formed from the non-stationary Gamma distribution is converted to a standard normal
deviate (with zero mean and unit variance), which is calculated using the approximate
conversion provided by Abramowitz and Stegun (1965). This standard normal value is the

Table 1 Drought classification of SPI and SPIt

Drought condition Index value Drought category

Normal Great than 0 D0

Near normal −1.0~0 D1

Moderate drought −1.5~−1.0 D2

Severe drought −2.0~−1.5 D3

Extreme drought Less than −2.0 D4
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SPIt for the particular precipitation at time t. A schematic of the procedure for calculating the
SPIt is presented in Fig. 2.

A Positive SPIt implies a wet condition, while negative values of SPIt indicate dry
conditions. Since the SPIt is normalized (same as SPI), the classifications listed in Table 1
can be adopted for the SPIt as well. As compared with the traditional SPI, the SPIt has the
ability to capture and model non-stationary in longer records, and therefore it is expected to be
more reasonable and satisfactory for drought analyses.

3.4 Mann-Kendall Test

The nonparametric Mann-Kendall trend test was derived by Mann (1945) and Kendall (1975),
and has been widely used to test trend in hydrology. According to this test, the null hypothesis
H0 states that the data (x1,…, xn) is a sample of n independent and identically distributed
random variables. The test statistic Z is calculated by the following formula.

Z ¼
S−1ð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Sð Þ

p
if S > 0

0 if S ¼ 0
S þ 1ð Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Sð Þ

p
if S < 0

8<
: ð5Þ

S ¼
Xn−1

k−1

Xn

j¼kþ1

sgn x j−xk
� �

; sgn x j−xk
� � ¼

þ1 if x j−xk
� �

> 0
0 if x j−xk

� � ¼ 0
−1 if x j−xk

� �
< 0

8<
: ð6Þ

where x is the variable; n is the sample size; the statistical S is approximately distributed
normally when n≥10, with its variance Var(S) = [n(n-1)(2n+5)]/18.

In a two-sided test for trend, H0 should be accepted if |Z|≤Z1-α/2 at the level of α
significance. Alternatively, the presence of a trend is accepted if Z<−Z1-α/2 or Z>Z1-α/2,
designating a decreasing trend or an increasing trend respectively.

4 Results

4.1 Modeling with GAMLSS

The non-stationary probabilistic models of summer precipitation for the 21 stations were built
using 2-parameter Gamma distribution in the GAMLSS framework, with the distribution’s

Values of SPIt 

Using the approximate conversion to 

transform the cumulative probability 

of xk to a standard normal deviation 

Time series of k-month 

cumulative precipitation xk
Fit a non-stationary Gamma distribution to xk

xkt ~ Gamma (µt, σ) with an optimized polynomial g1(µt)=

g1[µ(t)]=a0+a1t+…+aqt
q selected by minimizing AIC and SBC 

Calculate the cumulative probabilities of xk

Within the GAMLSS framework

Fig. 2 Procedure for the calculation of the SPIt
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location parameter varying as a polynomial function of time. The degree of the polynomial (q)
considered in this study was less than or equal to 3, so as to avoid an over-complicated
function and provide enough flexibility to describe the variation. For q=0, the model simpli-
fied to a stationary model with constant parameters. The optimized time-varying model for
each station was selected by minimizing AIC and SBC. Table 2 provides the parameter
estimates of the selected models.

It can be seen in the Table 2 that in most sites (about 86 %) the non-stationary models offer
the best overall results for fitting the summer precipitation in the Luanhe River basin. Among
the 21 selected models, only 3 models are found to be stationary with time independent
parameters, while 7 models characterize their location parameters as linear functions of time.
Moreover, the parameter μ includes time dependence via a quadratic polynomial in 7 cases, as
well as a cubic polynomial in 4 cases. These results imply that a polynomial function is
effective and flexible enough to highlight linear or non-linear dependencies in precipitation
properties over time.

In order to evaluate the quality of fit, the mean, variance, skewness, kurtosis, and Filliben
correlation coefficient of the residuals for each selected model were computed and summarized
in Table 2. Visual inspections of worm plot were also performed to check the residuals
normality. Take Pingquan and Zhangsanying stations as examples (Fig. 3a and b). Similar
results were found for the other stations.

For Pingquan station, the residuals have a mean of 0.00, a variance of 1.02, a coefficient of
skewness of −0.01, and a coefficient of kurtosis of 2.83, implying that the residuals are
approximately normally distributed. The independence of the residuals is verified with a fairly
acceptable Filliben correlation coefficient of 0.995 (for a sample size of 53, the critical value of
the Filliben’s coefficient is 0.978). The visual inspection of worm plot (Fig. 3a) also supports
the inference that the model fit the data adequately. As to Zhangsanying station, the residuals
with a mean of 0.00, a variance of 1.02, a coefficient of skewness of −0.05, a coefficient of
kurtosis of 2.59, and a Filliben correlation coefficient of 0.986, indicate that they are likely to
be independently and identically distributed random noise. Furthermore, the residual plots
shown in Fig. 3b do not highlight any significant departure from normality. Accordingly, these
results demonstrate that the selected model tends to describe the variability exhibited by the
data reasonably well.

4.2 Trend Analyses of Summer Precipitation

The statistic Z values of Mann-Kendall (MK) test focusing on the 53-year summer
precipitation records of the 21 stations are summarized in Table 2. At a significance
level of 0.05 (α=0.05), a Z value of more than 1.64 indicates a significant upward
trend, while a value of less than −1.64 indicates a significant downward trend. A value
of |Z|>1.28 shows a significant upward/downward trend at a significance level of 0.1
(α=0.1). According to the results of MK tests, 67 % and 33 % of the stations are
identified with a significant decreasing trend of summer precipitation at α=0.1 and α=
0.05 respectively.

The selected model with a time-varying μt was also used to detect time trends in
the summer precipitation for each station. The estimated distributions as represented
by five different percentiles (5th, 25th, 50th, 75th and 95th) and observed values for
Qijia, Kuancheng, Pingquan and Zhangsanying stations, are illustrated in Fig. 4 as
examples.
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Based on a stationary model, no significant temporal trend is observed in the summer
precipitation of Qijia station (Fig. 4a), which is in agreement of the result of MK test. Similar
behavior is found in Xiaoxishan and Baihugou stations. As to the stations with non-stationary
models, the summer precipitation tends to decrease with time overall, while the detailed
changing patterns are different from each other. For instance, a linear decreasing trend was
found in Kuancheng station as shown in Fig. 4b. Whereas, in the case of Pingquan and
Zhangsanying stations, the fitted models capture non-linear behaviors associated with the data,
reflected in the patterns of quadratic and cubic polynomial curves respectively (Fig. 4c and d).
It is demonstrated that the selected models are able to capture the large scatter and the temporal
variability of summer precipitation.

In general, the non-stationary models reveal a pattern of decreasing trend in summer
precipitation over the basin during 1959 ~ 2011, and especially a significant decrease in
2000 ~ 2011, which is in agreement with previous studies (Wei and Feng 2011; Zhang et al.
2011; Wang et al. 2013). It is indicated that the GAMLSS model could better describe the
observed behavior over time, shown to be a useful complement to other statistical methods
(such as MK trend test) for identifying non-stationarity in hydrological time series. In addition,
these results also reinforce the questioning of the stationary assumption in the study area, as

Table 2 Summary of parameter estimates and residual statistics for the optimized models, and the statistic Z
values of Mann-Kendall tests

Stations μ σ Residual Z

a0 a1 a2 a3 M V S K F

Xiaoxishan 347.000 \ \ \ 0.308 0.00 1.02 0.25 2.56 0.992 −0.73
Qijia 364.700 \ \ \ 0.280 0.00 1.02 −0.03 2.52 0.987 −0.68
Baihugou 326.919 \ \ \ 0.279 0.00 1.02 −0.15 2.63 0.994 −0.94
Sandaohezi 390.240 −1.528 \ \ 0.281 0.00 1.02 0.13 3.15 0.985 −1.96**

Xiabancheng 444.394 −2.437 \ \ 0.296 0.00 1.02 −0.04 2.75 0.996 −2.09**

Xuanjiangyingzi 409.796 −2.093 \ \ 0.268 0.00 1.02 −0.22 2.77 0.988 −2.12**

Sangou 389.329 −1.517 \ \ 0.290 0.00 1.02 −0.21 2.73 0.991 −1.33*

Kuancheng 525.112 −2.557 \ \ 0.312 0.00 1.02 0.10 2.53 0.991 −1.30*

Goutaizi 366.137 −1.675 \ \ 0.273 0.00 1.02 −0.02 2.53 0.990 −1.96**

Banjieta 337.624 −1.353 \ \ 0.276 0.00 1.02 0.17 2.61 0.987 −1.53*

Jiutun 357.680 1.431 −0.052 \ 0.264 0.00 1.02 −0.15 2.58 0.993 −1.19
Xinglong 363.370 2.241 −0.070 \ 0.220 0.00 1.02 0.08 2.42 0.989 −1.47*

Pingquan 330.940 4.992 −0.115 \ 0.292 0.00 1.02 −0.01 2.83 0.995 −1.10
Liying 453.960 3.155 −0.091 \ 0.263 0.00 1.02 −0.22 2.74 0.991 −1.31*

Chengde 389.360 −0.935 −0.017 \ 0.281 0.00 1.02 −0.23 2.62 0.976 −1.91**

Boluonuo 363.940 0.765 −0.043 \ 0.256 0.00 1.02 0.03 2.67 0.992 −1.79**

Miaogongshuiku 328.790 2.651 −0.064 \ 0.240 0.00 1.02 0.02 2.56 0.987 −0.81
Zhangsanying 340.350 −4.474 0.329 −0.005 0.268 0.00 1.02 −0.05 2.59 0.986 −0.77
Xiahenan 404.480 −9.139 0.422 −0.006 0.275 0.00 1.02 −0.28 2.79 0.988 −1.51*

Hanjiaying 369.140 0.786 −0.124 0.002 0.248 0.00 1.02 −0.09 2.66 0.987 −2.19**

Yudaokou 309.820 −6.241 0.284 −0.004 0.235 0.00 1.02 −0.12 2.72 0.986 −1.37*

M, V, S, K and F in the table represent the mean, variance, skewness, kurtosis, and Filliben correlation coefficient
of the residuals respectively. The symbol ‘*’ means α=0.1, while ‘**’ means α=0.05
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well as the urgent need for new drought indices that can take into account the nonstationarity
of hydrologic records.

Fig. 3 Worm plots from the selected model for summer precipitation in Pingquan and Zhangsanying station. For
a satisfactory fit, the data points should be within the two blank dotted lines (95 % confidence interval)

Fig. 4 GAMLSS modeling of the summer precipitation for Qijian, Kuancheng, Pingquan and Zhangsanying
satations. The light grey region represents the area between the 0.05 and 0.95 quantiles; the dark grey region the
area between the 0.25 and 0.75 quantiles, while the blank line the median (0.5 quantile). The red dots represent
the observed values
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4.3 SPIt and SPI

Both the proposed SPIt and the traditional SPI were applied to characterize the summer
drought condition in the Luanhe River basin.

Figure 5, for example, presents the classifications of historical summer droughts using
traditional SPI and SPIt methods at Xiahenan station during the period 1959 to 2011. These
two methods provide similar drought classifications in most cases, meanwhile defining several
differences. The summer with cumulative precipitation of 178.1 mm in 1981 is the lowest one
in the record, which is classified in D3 class by traditional SPI, while in D4 class by SPIt. In
1972, the summer precipitation of 247.8 mm belongs to D1 class as categorized by traditional
SPI, but it is identified as a more severe category (D2) when using SPIt. Based on the
traditional SPI classification, the precipitation of 230 mm in summer represents moderate
drought state. Nevertheless, corresponding to this precipitation amount, the drought state
defined by SPIt changes from year to year, owing to the non-stationary nature of historical
precipitation series. For instance, according to SPIt, the summer precipitation of 233.7 mm in
1984 is assigned to D2 class, whereas the precipitation with a similar amount (230.7 mm) in
2006 is assigned to D1 class. In addition, the cumulative precipitation in the summer of 1999
and 2009 are 194.1 and 191.2 mm respectively. Due to the slight difference in the amount of
precipitation (2.9 mm), both of these summers are classified in D3 class by traditional SPI.
However, SPIt considering the time dependence of precipitation records, classifies 1999 in D3
class but 2009 in D2 class. These results support the inference that the SPIt, which is capable
of modeling the non-stationary time series, seems to be a more appropriate method to assess
droughts under a changing condition as compared with the traditional SPI.
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Fig. 5 Classifications of historical summer droughts at Xiahenan station during the period 1959–2011 using
traditional SPI and SPIt methods
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The spatial distribution of SPI and SPIt for two dry summers in 1963 and 2009 are
illustrated in Fig. 6. As a whole, SPIt indicates a more dry summer than SPI does in the case
of 1963 (Fig. 6a). Although SPI and SPIt classes are same for about 76 % of the study stations
in 1963, some significant differences are found between the droughts identified by the two
indices. As can be seen in Fig. 6b, the SPI and SPIt show different drought classes in
considerable parts of the study area for the summer in 2009. Compared with the traditional
SPI, the SPIt defined lower (i.e., more wet) drought classes for about 50 % of the stations. In
2009, the overall summer drought state evaluated by the SPIt is less severe than that evaluated
by the SPI, which is in contrast to the pattern in 1963.

The ratio between the number of drought occurrences in each drought class and the length
of the period considered was represented as the frequency of drought in this study. The
frequency of summer drought was calculated using SPI and SPIt for each station in the study
area, considering the periods of 1959 ~ 1969, 1970 ~ 1979, 1980 ~ 1989, 1990 ~ 1999, 2000 ~
2011 and 1959 ~ 2011. As an average of the 21 stations, the frequencies related to the near
normal, moderate, severe and extreme drought expressed in percent are given in Fig. 7. For the
drought category of near normal (Fig. 7a), the average frequencies obtained from the tradi-
tional SPI and SPIt are similar for all the periods considered, and reach a minimum value of
about 17 % during 1990 ~ 1999. When the frequencies for moderate drought are compared

Fig. 6 Region illustration of drought condition based on SPI and SPIt for the summers in 1963 and 2009

5642 Y. Wang et al.



(Fig. 7b), it is found that the drought frequencies based on SPI are greater than that of SPIt for
the periods before 2000, while the opposite is the case for the period 2000 ~ 2011. Associated
with severe drought class (Fig. 7c), the frequencies obtained by both SPI and SPIt methods
tend to increase generally over time, especially for the period 2000 ~ 2011 with the highest
frequencies of 11.9 and 9.5 % respectively, whereas the magnitude of change in the frequency
of SPI is apparently greater than that of SPIt. Similar results are observed for the frequency of
being extreme drought (Fig. 7d), in which both SPI and SPIt detect the maximum rates during
2000 ~ 2011 (6.0 and 3.6 % respectively), revealing a deterioration of drought conditions in
recent decade. With respect to the entire study period (1958 ~ 2011), the SPI and SPIt methods
show almost similar responses to the frequency of drought in various classes.

5 Discussion

An appropriate drought index usually serves as an important base in regional drought
monitoring. The traditional SPI is defined based on a stationary Gamma distribution, in which
the precipitation data used should be treated as stationary time series. However, due to the
significant influences of climate changes and human activities, the stationary assumption for
longer precipitation records can no longer be taken for granted (Villarini et al. 2010; Russo
et al. 2013), consequently diminishing the validity and accuracy of the traditional SPI method.
Hence it is necessary to update the existing definition of the probability-based SPI to adapt to
the uncertainties in a changing environment.

In this study, benefiting from the non-stationary models developed using GAMLSS,
significant non-stationarities are identified in the summer precipitation of the Luanhe River
basin. Under non-stationary conditions, the PDF of hydrological time series would cease to be
invariant to temporal translation (Gunderlik and Burn 2003; Wagesho et al. 2012), with time
varying statistical properties. Therefore, the proposed SPIt that can respond to the evolution of
the PDF over time is shown to be more robust and suitable than the traditional SPI for drought
assessments under a changing environmental condition.
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Fig. 7 Frequency related to different drought classes for different periods. a, b, c, d, e, and f represents the
periods of 1959 ~ 1969, 1970 ~ 1979, 1980 ~ 1989, 1990 ~ 1999, 2000 ~ 2011 and 1959 ~ 2011 respectively
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However, the non-stationary model developed in this study, which only considers the time
variation in the distribution’s location parameter, could not concretely explain the non-
stationary behaviors in precipitation. Due to the combined effect of multiple non-stationary
factors (such as climate fluctuations and anthropogenic interventions), increasing uncertainties
are expected in the continued progress of the non-stationarity. Accordingly, the time-dependent
SPIt might be constrained in the projection of droughts in the future. Future studies should
establish new drought indices using the non-stationary model which incorporates climate
indices and/or anthropogenic indices as covariates. Moreover, the evaluation of the robustness
of the non-stationary index is further in focus.

As a standardized and multi-scale index, the traditional SPI allows objectively evaluating
different kinds of drought. SPI with a shorter time scale (2–3 months) could be adequate for
depicting agricultural droughts, while hydrological and water resources droughts can be
replicated well by SPI on longer time scales (e.g., 12 months) (Szalai et al. 2000; Paulo and
Pereira 2006; Mishra and Singh 2010). Based on the same concept of the SPI, the
precipitation-based SPIt can be calculated for a variety of time scales as well, and correspond-
ingly monitor both short- and long-term drought. Hence, it is reasonable to assume that the
correlations of SPIt with different types of drought would be similar to those of SPI. In this
study, the SPIt calculated using summer precipitation is characterized by 3-month time scale.
Since soil moisture conditions respond to precipitation anomalies on a relatively short scale,
the 3-month SPIt seems to be more appropriate for measuring drought severity affecting
agricultural practices. Nevertheless, the performance of drought indices is region specific.
The connection of SPIt with different types of drought in the Luanhe River basin should be
examined quantitatively in further studies.

6 Conclusions

In this study, summer precipitation records in the Luanhe River basin were modeled with a
non-stationary Gamma distribution using GAMLSS. Based on the non-stationary distribution,
the time-dependent Standardized Precipitation Index (SPIt) was developed and then employed
to characterize the spatio-temporal variations of summer drought in the basin. The main
conclusions are summarized as follows.

(1) The good fits of the non-stationary distributions imply that the GAMLSS is a flexible and
appropriate tool to model the non-stationarities in hydrological time series. The
GAMLSS models well reproduce the time dependence of the summer precipitation
records in the Luanhe River basin, highlighting an overall decreasing trend in summer
precipitation during 1958 ~ 2011, especially a significant decrease in the period of 2000
to 2011.

(2) Based on the non-stationary Gamma distribution, the proposed SPIt is capable of taking
the non-stationarity of precipitation records into account, and thus it is to some extent
found to be more robust and reliable than the traditional SPI. Differences between the
historical drought assessments of SPI and SPIt indicate that the presence of non-
stationarity cannot be ignored in regional drought monitoring. The SPIt method is proven
to be a feasible alternative under non-stationary conditions, contributing to provide a new
perspective for constructing appropriate drought indices in the future. It is of great
importance for the development of mitigation and adaptation strategies.
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