
A Comparative Assessment Between Three Machine
Learning Models and Their Performance Comparison
by Bivariate and Multivariate Statistical Methods
in Groundwater Potential Mapping

Seyed Amir Naghibi1 & Hamid Reza Pourghasemi2

Received: 31 October 2014 /Accepted: 4 August 2015 /
Published online: 16 August 2015
# Springer Science+Business Media Dordrecht 2015

Abstract As demand for fresh groundwater in the worldwide is increasing, delineation of
groundwater spring potential zones become an increasingly important tool for implementing a
successful groundwater determination, protection, and management programs. Therefore, the
objective of current study is to evaluate the capability of three machine learning models such
as boosted regression tree (BRT), classification and regression tree (CART), and random forest
(RF), and comparison of their performance by bivariate (evidential belief function (EBF)), and
multivariate (general linear model (GLM)) statistical methods in the groundwater potential
mapping. This study was carried out in the Beheshtabad Watershed, Chaharmahal-e-Bakhtiari
Province, Iran. In total, 1425 spring locations were detected in the study area. Seventy percent
of the spring locations were used for model training, and 30 % for validation purposes.
Fourteen conditioning-factors were considered in this investigation, including slope angle,
slope aspect, altitude, plan curvature, profile curvature, slope length (LS), stream power index
(SPI), topographic wetness index (TWI), distance from rivers, distance from faults, river
density, fault density, lithology, and land use. Using the above conditioning factors and
different algorithms, groundwater potential maps were generated, and the results were plotted
in ArcGIS 9.3. According to the results of success rate curves (SRC), values of area under the
curve (AUC) for the five models vary from 0.692 to 0.975. In contrast, the AUC for prediction
rate curves (PRC) ranges from 77.26 to 86.39 %. The CART, BRT, and RF machine learning
techniques showed very good performance in groundwater potential mapping with the AUC
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values of 86.39, 86.12, and 86.05 %, respectively. By the way, The GLM and EBF models in
comparison by machine learning models showed weaker performance in spring groundwater
potential mapping by the AUC values of 77.26, and 67.72 %, respectively. The proposed
methods provided rapid, accurate, and cost effective results. Furthermore, the analysis may be
transferable to other watersheds with similar topographic and hydro-geological characteristics.

Keywords Groundwater potential mapping . Boosted regression tree . Classification and
regression tree . Random forest . General linear model . Evidential belief function . GIS

1 Introduction

Groundwater is known as one of the most important natural resources in the worldwide, and is
major source in industries and agricultural purposes (Nampak et al. 2014). As demand for fresh
groundwater in the worldwide is increasing, delineation of groundwater spring potential zones
become an increasingly important tool for implementing a successful groundwater determina-
tion, protection, and management programs. In the last decade, some researchers have
employed several statistical models such as frequency ratio (Oh et al. 2011; Manap et al.
2012; Pourtaghi and Pourghasemi 2014; Davoodi Moghaddam et al. 2015; Naghibi et al.
2015), weights-of-evidence (Ozdemir 2011a; Pourtaghi and Pourghasemi 2014), logistic
regression (Ozdemir 2011a; Pourtaghi and Pourghasemi 2014), index of entropy (Naghibi
et al. 2015), artificial neural network (Lee et al. 2012), analytical hierarchy process (Rahmati
et al. 2014; Razandi et al. 2015) and evidential belief function (Pourghasemi and Beheshtirad
2014) models in the groundwater potential mapping.

Also, other researchers have used fuzzy clustering (Moradi Dashtpagerdi et al. 2013) for
flood spreading, spatial optimization techniques (Durga Rao 2014) for planning groundwater
supply scheme, distributed hydrogeological budget (Mazza et al. 2014) for evaluating the
available regional groundwater resources, multi-criteria analysis (Esquivel et al. 2015) for
groundwater level monitoring, an optimization-simulation approach (Zekri et al. 2015) for
groundwater abstraction under recharge uncertainty, and spatial multi-criteria evaluation
(Chezgi et al. 2015) for underground dam site selection.

Meanwhile, according to the literature, the BRT, CART, and RF models haven’t been used
in the groundwater potential mapping, but several studies have been applied to assess accuracy
of the mentioned machine learning models in different cases such as landslide susceptibility
and hazard mapping (Stumpf and Kernel 2011; Vorpahl et al. 2012; Lee et al. 2013; Trigila
et al. 2013), ground subsidence hazard mapping (Oh and Lee 2010), wildfire (Oliveira et al.
2012; Leuenberger et al. 2013), gully susceptibility mapping (Gutiérrez et al. 2009a, 2009b),
ecology (Elith et al. 2008; Aertsen et al. 2010, 2011), environmental modeling (Bachmair and
Weiler 2012; Catani et al. 2013). According to the aforementioned literature, machine learning
models had better performance than bivariate and multivariate models in different studies.
Thus, the aim of current study is to evaluate the capability of BRT, CART, RF, EBF, and
GLM models in the groundwater potential mapping and comparison of their perfor-
mance. The main difference between this research and the approaches described in the
aforementioned publications is that three machine learning models were applied, and
the result is compared with bivariate and multivariate models in the study area. So,
application of the BRT, CART, and RF models in groundwater potential mapping
belongs originally to the current study.
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2 The Study Area

The Beheshtabad Watershed is located in the Chaharmahal-e-Bakhtiari Province, Iran,
between 31° 50′ 36″N and 32° 34′ 16″ N latitude and 51°26′ 57″ E and 59° 21′ 51″
E longitude (Fig. 1). It covers an area of approximately 2321 km2. The topographical
elevation of the study area varies between 1660 m and 3560 m above sea level
(a.s.l.). The mean annual point precipitation is recorded as 618.8 mm in the weather
station (Mojiri and Zarei 2006). Based on the geological survey of Iran (GSI 1997),
49 % of the lithology covering the study area falls within the units described as A
including low level pediment fan and valley terraces deposit. Most of the area
(66.26 %) is covered by rangeland/pasture land use types. Exploitation of groundwater
resources in this area includes use of qanats, springs, and deep and semi-deep wells.
The average spring discharge is approximately 4 gal per second in the study area. The
general trend of groundwater flow is from the north of the basin to the south of the
plain, and the general topographic gradient of the plain is north to south.

3 Methods

3.1 Spring Characteristics

In total, 1425 springs were detected in Beheshtabad Watershed and was mapped at 1:50,000-
scale (Fig. 1). By randomly partition (Oh et al. 2011; Ozdemir 2011a), 998 (70 %) of the spring
locations were used for groundwater potential mapping and 427 (30 %) cases were used for
validation aims.

3.2 Groundwater Conditioning Factors

Various thematic data layers such as slope angle, slope aspect, altitude, plan curvature,
profile curvature, LS, SPI, TWI, distance from rivers, distance from faults, river
density, fault density, lithology, and land use were prepared in GIS environment and
applied for this study.

The digital elevation model (DEM) was created from the 1:50,000-scale topograph-
ic maps in 20 m resolution. Groundwater conditioning-factors such as slope angle,
slope aspect, and altitude were prepared using DEM in ArcGIS 9.3 and represented in
Fig. 2a–c.

Plan curvature can be used to describe the divergence and convergence of flow and to be
discriminate between watersheds, and hollows channelized by a 0th order hydraulic network
(Fig. 2d). Profile curvature represents the rate at which the slope gradient changes in the
direction of maximum slope (Catani et al. 2013) (Fig. 2e).

Slope-length (Eq. 1) is the combination of the slope steepness (S) and slope length (L)
which is calculated by Moore and Burch (1986) (Fig. 2f).

LS ¼ Bs

22:13

� �0:6 sin α
0:0896

� �1:3

ð1Þ

where,α is the local slope gradient measured in degree and Bs is the specific catchment area (m2).
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Fig. 1 Location of the study area in the Charmahal-e-Bakhtiari Province and spring locations with digital
elevation model (DEM) map of the study area
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The SPI (Fig. 2g) is defined by Moore et al. (1991) as:

SPI ¼ Bs*tanα ð2Þ
The TWI (Fig. 2h) is defined as ln (A/tanβ), where A is upslope contributing area (or flow

accumulation) and β is the slope angle (Beven and Kirkby 1979).

Fig. 2 Groundwater effective factors maps of the study area; a slope degree, b slope aspect, c altitude, d plan
curvature, e profile curvature, f slope length, g stream power index, h topographic wetness index, i distance from
rivers, j distance from faults, k drainage density, l fault density, m landuse, n lithology
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Distance from rivers and drainage density maps were created using topographic maps,
whereas, distance from faults and fault density maps were calculated using a geological map.
Distance from rivers and faults layers were classified into five classes with 100 and 250 m
intervals, respectively (Fig. 2i–j). But drainage density and fault density maps (Fig. 2k–l) were
classified using the natural break method into four classes.

The landuse map was prepared using Landsat 7/ETM+ images for 2010 based on the
supervised classification method and maximum likelihood algorithm. These landuse types are
agriculture, residential area, orchard, and rangeland types (Fig. 2m).

Fig. 2 (continued)
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The lithology map was digitized using a 1:100,000-scale geological map in the ArcGIS 9.3.
The study area is covered by various types of lithological formations and was classified into
thirteen classes such as: A to M, respectively. The low-level piedmont fan and valley terraces
deposit (A) covers about 45.83 % of the study area. The general geological setting of the area
is shown in Fig. 2n. Class B represents Low weathering grey marls alternating with bands of
more resistant shelly limestone. Class C refers to Pale-red, polygenic conglomerate, and
sandstone. Class D is undifferentiated metamorphic rocks, including phillite, meta-volcanics,

Fig. 2 (continued)
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calcschist and crystalized limestone. Class E represents cream to brown-weathering, feature-
forming, well- jointed limestone with intercalations of shale. Class F is grey, thick-bedded,
o’olitic, fetid limestone. Class G represents grey, thick-bedded to massive orbitolina limestone.
Class H is high level piedmont fan and valley terraces deposits and class I is marl and
calcareous shale with intercalations of limestone. Class J refers to polymictic conglomerate
and sandstone. Class K is undivided Bangestan Group, mainly limestone and shale, Albian to
Companian. Class L represents undivided Eocene rock and class M is unconsolidated wind-
blown sand deposits and back shore sand dunes.

3.3 Application of Models

3.3.1 Boosted Regression Tree (BRT)

BRT, also called stochastic gradient boosting (Elith et al. 2006), combines classification and
regression trees with the gradient boosting algorithm (Friedman 2001). Boosting is a machine
learning technique similar to model averaging, where the results of several competing models
are combined. Unlike model averaging, boosting uses a forward, stage-wise procedure, where
tree models are fitted interactively to a subset of the training data. Subsets of the training data
were implemented at each iteration of the model fitting are randomly selected without
replacement, where the proportion of the training data used is determined by the modeler,
the “bag fraction” parameter. This procedure introduces an element of stochastic that improves
model accuracy and reduces over fitting (Elith et al. 2008).

3.3.2 Classification and Regression Tree (CART)

CART is a popular machine learning and non-parametric regression technique (Breiman et al.
1984). The CART grows a decision tree based on a binary partitioning algorithm, that

Fig. 2 (continued)
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recursively splits the data until groups is either homogeneous or contained fewer observations
than a user-defined threshold (Aertsen et al. 2010). Regression trees are insensitive to outliers,
and can accommodate missing data in predictor factors using surrogates (Breiman et al. 1984).

3.3.3 Random Forest (RF)

RFs are very powerful and flexible ensemble classifiers based upon decision trees, the first
developed by Breiman (2001) (Catani et al. 2013; Micheletti et al. 2014). RF consists of a
combination of many trees, where each tree is generated by boot-strap samples, leaving about a
third of the overall sample for validation (the out-of-bag predictions- OOB) (Oliveira et al.
2012). The algorithm estimates the importance of a variable by looking at how much the
prediction error goes up when OOB data for that variable is permuted while all others are left
unchanged (Liaw and Wiener 2002; Catani et al. 2013).

RFs need two parameters to be tuned by the user: (1) the number of trees T, (2) the number
of variables m, to be stochastically chosen from the available set of features. Also, two types of
error were calculated: mean decrease in accuracy and mean decrease in node impurity (mean
decrease Gini). These different importance measures can be used for ranking variables and
variable selection (Calle and Urrea 2010).

3.3.4 Generalized Linear Model (GLM)

Regression approaches comprising of linear regression, log-linear regression, and logistic
regression (LR) have been used commonly. The primary goal of the LR is to find the best
model to represent the relationship between a dependent variable and multiple independent
variables (Ozdemir and Altural 2013). The logistic regression model can be expressed in its
simplest form as:

P ¼ 1=1þ e2 ð4Þ
where, P is the estimated probability of an event occurring. Because Z can vary from -∞ to+∞,
the probability varies from 0 to 1 as an S-shaped curve. Parameter Z is defined as:

Z ¼ B0 þ B1X 1 þ B2X 2 þ…þ BnX n ð5Þ

where, B0 is the intercept and n is the number of independent variables. Values of Bi (i=0, 1, 2,
…, n) are the slope coefficients, and Xi (i=0, 1, 2, …, n) are the independent variables. Based
on Eqs. 4 and 5, the logistic regression can be written in the following extended form:

Logit Pð Þ ¼ 1=1þ e−B0þB1X 1þB2X 2þ…þBnX n ð6Þ

3.3.5 Evidential Belief Function (EBF)

The Dempster–Shafer theory of evidence belief (Dempster 1968; Shafer 1976), is a
mathematical-based model with a bivariate statistically methodology, used to find the spatial
integration based on the rule of combination. The main advantage of the EBF is that it has a
relative flexibility to accept uncertainty and the ability to combine beliefs from multiple
sources of evidence (Thiam 2005). The EBFs are Bel (degree of belief), Dis (degree of
disbelief), Unc (degree of uncertainty) and Pls (degree of plausibility). The Bel and Pls be,
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respectively, lower and upper degrees of belief that the proposition is true based on given
evidence. The difference between Pls and Bel is uncertainty (Unc), which represents ignorance
that the evidence supports a proposition. Disbelief (Dis) is the belief of the false proposition
based on given evidential data; it is equal to 1−Pls (or 1−Unc−Bel). Therefore, the sum of
Bel, Unc, and Dis is always 1.

The details of the mentioned algorithm (EBF) can be found in Carranza et al. (2008), and
Nampak et al. (2014).

3.3.6 Validation and Comparison of the GPMs

Validation of predictive groundwater potential maps (GPMs) is an essential component in
modeling process. Using the success-rate and prediction -rate curves, the five GPMs were
validated with known spring locations.

The success-rate results were obtained based on training dataset (998 spring grid cells) for
each of the five GPMs, separately.

Since the success-rate measures the goodness of fit for the five models to the training
dataset, it isn’t a suitable method for measuring the prediction capability of the spring models
(Tien Bui et al. 2012). The prediction-rate curve can provide the validation and explains
how well the model and groundwater conditioning factors predict the existing springs
(Lee 2007).

4 Results

4.1 BRT Model

Main effects for the BRT model, where learning rate=0.005, tree complexity=5 and bag
fraction=0.005, the optimal number of trees was reached at trees=900. The BRT final model
included 71.93 % of the mean total deviance (1-mean residual deviance / mean total devi-
ance=1 - (0.49/1.38)=0.64) (Abeare 2009). An index of relative influence calculated in
summing the contribution of each variable, which is equivalent to summing the branch length
for each variable in the regression tree (Abeare 2009). The measures are based on the number
of times a variable is selected for splitting, weighted by the squared improvement to the model
as a result of each split, and averaged over all trees (Friedman and Meulman 2003). For the
main effects BRT model fitted here, the five most influential variables were altitude (20.24 %),
distance from faults (19.56 %), SPI (12.98 %), distance from rivers (10.67 %) and fault density
(10.33 %), respectively (Table 1). Furthermore, it was seen that six factors, including profile
curvature, plan curvature, river density, landuse, slope aspect, and lithology were removed in
the final analysis.

4.2 CART Model

The results of variables importance in CART model are represented in Table 1. According to
the results, from the 14 independent factors, CART used only six factors to generate the
optimal model, including distance from faults, fault density, altitude, SPI, TWI, and distance
from rivers, which had high variable importance values of 25, 18, 16, 8, 7, and 7 %,
respectively. Also it can be concluded from the results that landuse, profile curvature, slope
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aspect, and lithology had the lowest values of variable importance. The result of CART was a
tree with 10 non-terminal nodes and 10 terminal nodes (Fig. 3).

4.3 RF Model

Results from variable selection in RF are represented in Table 1. This represents the 14
variable ordered by two specific importance measures (mean decrease accuracy and mean
decrease Gini). Based on Table 1, the higher values indicate that the variable is relatively more
importance (Williams 2011). The accuracy measure (mean decrease) lists altitude, distance
from faults, distance from rivers, SPI, fault density, and next most important factors. On the
other hand, according to the mean decrease Gini, it is seen that distance from faults is the most
important factor.

4.4 GLM Model

According to the results, the conditioning factors such as slope aspect, profile curvature, slope
length, SPI, TWI, fault density, and lithology affect the logistic regression (LR) function,
positively (Table 2). Also, it can be seen that the highest positive β coefficient is allocated to
profile curvature and TWI, which were 7.991 and 0.07672, respectively. On the other hand,
slope angle, altitude, plan curvature, distance from rivers, distance from faults, river density,
and landuse have negative effect in spring occurrence as they all have negative β coefficients
(Table 2). In the case of negative β coefficients, plan curvature, and river density had the
highest negative values (−9.515, and −1.043, respectively). The estimates for a regression
model can’t be uniquely computed when a perfect linear relationship exists between the
predictors. Tolerance and the variance inflation factor are two important indices for multi-
collinearity diagnosis (O’Brien 2007). The tolerance and variance inflation factors were

Table 1 Summary of the relative contributions of predictor variables for BRT, CART, and RF models

Predictor BRT CART RF

Mean Decrease
Accuracy

Mean Decrease
Gini

Altitude 20.24 16 52.64 53.74

Distance to faults 19.56 25 41.80 59.67

Stream power index 12.98 8 30.00 46.23

Distance to rivers 10.67 7 25.7 32.45

Fault density 10.33 18 31.55 42.29

Topographic wetness index 6.68 7 34.07 41.31

Slope length 6.45 6 29.96 35.75

Slope angle 5.01 4 26.1 27.73

Lithology 3.98 1 20.87 13.38

Slope aspect 2.16 1 16.37 14.14

Landuse 1.53 1 14.15 7.20

River density 0.34 3 29.24 29.69

Plan curvature 0.00 2 12.21 19.07

Profile curvature 0.00 1 7.50 18.05
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calculated for this study, and variables with VIF>5 and TOL<0.1 should be excluded from the
LR analysis, but there was not any multi-collinearity problem in used factors in this study.

4.5 EBF Model

The spatial factor datasets were evaluated using EBFs to reveal the correlation between the
existing springs and the individual spatial factors in the study area. Table 2 shows the estimated
EBFs (belief, disbelief, uncertainty, Plausibility). According to Table 2, each class of the
effective factors has a belief value which a higher belief value shows that the class has higher
effect on the groundwater potential. For example, in the case of slope angle, 5–15° and 15–30°
classes had the highest belief values (0.45, and 0.27).

4.6 Groundwater Potential Mapping (GPM)

The obtained cell values were then classified based on the natural break classification scheme
(Pourghasemi and Beheshtirad 2014; Naghibi et al. 2015) into low, moderate, high, and very
high potential groups (Fig. 4a–e) and Table 3).

Fig. 3 Optimal tree obtained by CARTwith terminal nodes resulting in spring (highlighted) and non-spring (grey)
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Table 2 Spatial relationship between effective factors and springs using EBF and GLM models

Factor Class No. of pixels
in domain

No. of
Springs

Bel Dis Unc Pls Coefficients
of GLM

Slope Angle
(Degree)

0–5 2,298,984 245 0.165 0.310 0.526 0.690 −0.02394
5–15 1,462,498 428 0.452 0.189 0.358 0.811

15–30 1,679,643 300 0.276 0.244 0.480 0.756

>30 361,705 25 0.107 0.258 0.636 0.742

Slope Aspect Flat 735,195 102 0.108 0.203 0.689 0.797 0.02475

North 557,953 89 0.124 0.199 0.677 0.801

Northeast 855,674 139 0.126 0.200 0.674 0.800

East 632,044 89 0.110 0.202 0.688 0.798

Southeast 593,011 85 0.000 0.000 1.000 1

South 679,745 126 0.144 0.196 0.660 0.804

Southwest 774,993 192 0.000 0.000 1.000 1

West 545,134 113 0.161 0.000 0.839 1

Northwest 429,081 63 0.114 0.000 0.886 1

Altitude (m) <2000 138,471 28 0.350 0.202 0.448 0.798 −0.00189
2000–2400 3,982,550 714 0.310 0.184 0.506 0.816

2400–2800 1,338,961 254 0.329 0.196 0.475 0.804

2800–3200 321,421 2 0.011 0.214 0.775 0.786

>3200 21,427 0 0.000 0.204 0.796 0.796

Plan Curvature
(100/m)

Concave 1,305,957 380 0.511 0.258 0.231 0.742 −9.51500
Flat 3,077,923 414 0.236 0.402 0.362 0.598

Convex 1,418,950 204 0.253 0.340 0.408 0.660

Profile curvature
(100\m)

< (−0.001) 1,423,662 350 0.435 0.277 0.289 0.723 7.99100

(−0.001)–(−0.001) 3,197,653 429 0.237 0.408 0.354 0.592

> (0.001) 1,181,515 219 0.328 0.315 0.357 0.685

Slope Length (m) <20 2,552,771 258 0.139 0.325 0.536 0.675 0.00837

20–40 994,761 92 0.127 0.269 0.604 0.731

40–60 726,026 155 0.293 0.237 0.470 0.763

>60 1,529,272 493 0.442 0.169 0.389 0.831

Stream Power Index <200 1,159,782 127 0.237 0.292 0.471 0.708 0.000000005

200–400 730,882 38 0.113 0.295 0.592 0.705

400–600 536,393 34 0.137 0.285 0.578 0.715

>600 3,375,773 799 0.513 0.128 0.359 0.872

Topographic
Wetness Index

<8 407,887 17 0.101 0.353 0.546 0.647 0.07672

8–12 3,059,222 471 0.372 0.373 0.255 0.627

>12 2,335,721 510 0.527 0.273 0.199 0.727

Distance from
Rivers (m)

<100 330,835 71 0.248 0.247 0.506 0.753 −0.00010
100–200 290,402 55 0.219 0.249 0.532 0.751

200–300 285,638 42 0.170 0.252 0.578 0.748

300–400 278,972 40 0.166 0.252 0.582 0.748

>400 4,616,983 790 0.000 0.000 1.000 1

Distance from
Faults (m)

<250 386,142 158 0.255 0.245 0.501 0.755 −0.00017
250–500 377,923 149 0.245 0.247 0.508 0.753

500–750 353,617 135 0.238 0.250 0.512 0.750
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Based on the GSPMs of BRT, CART, RF, GLM, and EBF, low class of GPMs covered 48,
12, 40, 30, and 20 % of the study area, respectively, while the sum of high and very high
classes for BRT, CART, RF, GLM, and EBF are 28, 52, 32, 40, and 51 %, respectively. So, it
can be concluded that BRT represented the lowest value of area for high and very high, while
CART and EBF had high values for these two classes.

4.7 Validation of Groundwater Potential Maps (VGPM)

Table 3 represents the success-rate of five GPMs. The results show that values of area under
the curve (AUC) for the five models vary from 0.692 to 0.975, indicating that all the models
have a reasonable good prediction capability. The BRT model has the highest prediction

Table 2 (continued)

Factor Class No. of pixels
in domain

No. of
Springs

Bel Dis Unc Pls Coefficients
of GLM

75–1000 320,728 102 0.198 0.258 0.544 0.742

>1000 4,364,420 454 0.000 0.000 1.000 1

River Density
(Km/Km2)

<0.31 2,203,090 479 0.398 0.213 0.389 0.787 −1.04300
0.31–0.78 2,246,028 422 0.344 0.239 0.417 0.761

0.78–1.27 998,728 73 0.134 0.284 0.582 0.716

1.27–2.51 354,984 24 0.124 0.264 0.612 0.736

Fault Density
(Km/Km2)

<2.72 3,757,240 318 0.068 0.423 0.509 0.577 0.05117

2.72–8.37 901,771 181 0.162 0.212 0.626 0.788

8.37–15.70 676,037 176 0.211 0.204 0.585 0.796

15.70–26.80 467,782 323 0.559 0.161 0.280 0.839

Landuse Agriculture 1,731,384 327 0.249 0.235 0.516 0.765 −0.19430
Orchard 79,370 26 0.431 0.244 0.325 0.756

Rangeland 3,844,777 623 0.213 0.270 0.516 30

Residential 147,299 12 0.107 0.250 0.642 0.750

Lithology Group 1 2,659,654 297 0.041 0.085 0.874 0.915 0.07653

Group 2 234,579 88 0.137 0.062 0.801 0.938

Group 3 31,616 9 0.104 0.065 0.831 0.935

Group 4 5095 0 0.000 0.065 0.935 0.935

Group 5 94,800 44 0.000 0.000 1.000 1

Group 6 757,669 94 0.045 0.068 0.887 0.932

Group 7 1,005,012 255 0.000 0.000 1.000 1

Group 8 102,749 1 0.004 0.000 0.996 1

Group 9 305,502 21 0.025 0.000 0.975 1

Group 10 151,436 80 0.193 0.065 0.741 0.935

Group 11 104,632 21 0.073 0.131 0.796 0.869

Group 12 346,945 87 0.092 0.196 0.712 0.804

Group 13 3141 1 0.116 0.262 0.622 0.738

Bel Belief, Dis Disbelief, Unc Uncertainty, Pls Plausibility

Total Pixels=5,802,830; Total Training Springs=998
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(a) (b)

(c) (d)

(e)

Fig. 4 Groundwater potential maps produced by BRT (a), CART (b), RF (c), GLM (d), and EBF (e) models
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capability (97.50 %), while the EBF model has lowest prediction capability (69.20 %). The
other models with almost equal prediction capabilities are intermediate between the BRT and
EBF models.

Table 3 The distribution of the spring potential values and areas with respect to the groundwater occurrence
potential zones, success-rate and prediction-rate curves for GPMs

Spring potential zoning BRT Model

Range Area (%)

Low < (0.160) 48

Moderate (0.160)–(0.389) 24

High (0.389)–(0.653) 16

Very High (0.653)–(0.994) 12

Success rate AUC (%) 97.5

Prediction rate AUC (%) 86.12

Spring potential zoning CART Model

Range Area (%)

Low <(0.111) 12

Moderate (0.111)–(0.354) 36

High (0.354)–(0.712) 31

Very High (0.712)–(0.824) 21

Success rate AUC (%) 82.3

Prediction rate AUC (%) 86.39

Spring potential zoning RF Model

Range Area (%)

Low < (0.167) 40

Moderate (0.167)–(0.375) 28

High (0.375)–0.617) 20

Very High (0.617)–(1) 12

Success rate AUC (%) 90.1

Prediction rate AUC (%) 86.05

Spring potential zoning GLM (LR) Model

Range Area (%)

Low < (0.218) 30

Moderate (0.218)–(0.410) 30

High (0.410–0.625) 24

Very High (0.625)–(1) 16

Success rate AUC (%) 79.9

Prediction rate AUC (%) 77.26

Spring potential zoning EBF Model

Range Area (%)

Low < (10.644) 20

Moderate (10.644)–(10.917) 29

High (10.917)–(11.182) 32

Very High (11.182)–(11.880) 19

Success rate AUC (%) 69.2

Prediction rate AUC (%) 67.72
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Table 3 depicts the results of prediction-rate for the implemented methods in groundwater
potential mapping. According to the results, the AUC for prediction-rate ranges from 77.26 to
86.39 %. The CART, BRT, and RF techniques showed very good performance in groundwater
potential mapping with the values of 86.39, 86.12, and 86.05 %, respectively, which shows
close performance of these models. In contrast, The EBF and GLM models showed weak
performance by the AUC values of 67.72, and 77.26 %, respectively.

5 Discussion

In this section, the results are discussed by two parts: (1) the performance of models and their
characteristics, (2) the importance of variables in groundwater potential mapping and their
relationship in each used model in the current study.

5.1 The Performance of Models and Their Comparison

BRT models are able to select relevant variables, fit accurate functions and automatically
identify and model interactions, giving sometimes substantial predictive advantage over
methods such as GLM and GAM (Generalized Additive Models). A growing body of
literature quantifies this difference in performance (Elith et al. 2006; Leathwick et al. 2006;
Moisen et al. 2006; Vorpahl et al. 2012). Efficient variable selection means that large suites of
candidate variables will be handled well than in GLM or GAM developed with stepwise
selection.

According to the results, RF method had better performance than a GLM which is common
with some researches in other fields, including wildfire, landslide susceptibility mapping, and
ecology studies (Peters et al. 2007; Oliveira et al. 2012; Vorpahl et al. 2013). According to
Ozdemir (2011b), GLM or LR showed poor estimator for groundwater potential mapping.
Also, the results of Nampak et al. (2014) showed that EBF model had better results than GLM
but both, they had prediction rates of less than 78 %.

In their final form, BRT model included a smaller number of variables selected from the
original dataset of 14 (eight variables), while CART, EBF, GLM, and RF included all 14
variables. Other authors also stated that a parsimonious model would be more stable and easier
to generalize (Catry et al. 2009; Vilar et al. 2010), particularly at a broad spatial scale.

5.2 The Importance of Variables in GPMs and Their Relationship

According to the results of three machine learning methods, altitude, distance from faults, SPI,
and fault density had the highest importance in groundwater potential mapping. However, the
results of Pourtaghi and Pourghasemi (2014) showed that the conditioning factors such as
slope aspect, altitude, plan curvature, and lithology affect the LR function positively. So, the
importance of variables in groundwater potential mapping is considerably affected by the
method used in a research and properties of study area. In other words, different geological,
topographical, and climatic conditions of an area change the priority of the effective factors in
groundwater potential mapping. For example, in a semi-flat watershed, altitude may not be as
important as in a mountainous watershed. Also, precision of the models and their accuracy
affect the importance of effective factors in groundwater potential mapping which is seen
according to the current studies’ results.
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According to the results, there was direct relationship between LS, TWI, and fault density and
degree of belief that means groundwater potential increase when the value of these factors
increased. On the other hand, results showed inverse relationship between altitude, distance from
rivers, distance from faults, and river density and degree of belief. A growing body of literature
determines the relationship between groundwater conditioning factors and potential (Oh et al.
2011; Naghibi et al. 2015). The result of Ozdemir (2011b) showed that the elevation and slope-
related factors had a negative correlation with groundwater potential, whereas other factors (TWI,
river density, and lineament-related factors) show a positive correlation. The results of Naghibi
et al. (2015) showed that TWI had direct relationship, while altitude, slope angle, distance to
faults, and profile curvature had inverse relationship with groundwater potential.

6 Conclusions

This study presented an application of three different machine learning models, bivariate, and
multivariate models in groundwater potential mapping in BeheshtabadWatershed, Chaharmahal-
e-Bakhtiari Province, Iran. According to results, three machine learning techniques used in the
current study had very good results in groundwater potential mapping. The AUC of prediction-
rates for machine learning techniques were approximately 86 %. But, bivariate and multivariate
models used in this study had weaker performance in groundwater potential mapping with AUC
values of 67, and 77 %, respectively. The GPMs produced from this study could therefore assist
planners and engineers during development and water resource planning. The results of such
studies determine areas with high groundwater potential which can be used for exploitation. On
the other hand, susceptible areas with low groundwater potential are determined. Planners can
apply conservation plans such as flood spreading in these areas. In the final form of models, BRT
included a smaller number of variables selected from the original set of 14 (8 variables), while
CART, EBF, GLM, and RF included all 14 variables and can be generalized easier. Also, it was
concluded from the results that altitude, distance from faults, SPI, and fault density had the highest
importance in groundwater potential mapping.

The result obtained in this study may provide technical support to government agencies, as
well as private sectors for groundwater exploration and assessment in Iran. The proposed
methods provided rapid, accurate, and cost effective results. Furthermore, the analysis may be
transferable to other watersheds with similar topographic and hydro-geological characteristics.
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