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Abstract With much more higher requirement for the precision of flood forecasting and length of
forecast period in the hydrological operational predication, three coupling forecast methods which
include real-time correction—combination forecast (RC-CF) method, combination forecast—real-
time correction (CF-RC) method, and Integral Parameters Optimization (IPO) method are proposed
in this paper for the purpose of improving the precision of flood forecasting. These coupling forecast
methods are based on the real-time correction and combination forecast methods. Thereafter, two
methods (method A & method B) are proposed for the purpose of prolonging the forecast period.
Furthermore, indices of accuracy assessment which consist of mean absolute error, mean relative
error, certainty coefficient and root-mean-square error are utilized to evaluate the forecast results of
coupling forecast methods. Moreover, with a case study of Xiangjiaba station in the Jinsha River,
advantages and disadvantages of these coupling forecast methods are obtained through the com-
parison of forecast results calculated by these methods, and they provide the basis for selection of
coupling forecast methods. The result shows that the IPO method performs better than other two
methods which behave undifferentiated. It is found that the IPO method combined with method B
can be a viable alternative for flood forecasting of multiple hydrological models.
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1 Introduction

Error appears each time when hydrological models are utilized to forecast rainfall, runoff or any
other hydrological features, and it occurs for many reasons which includes error of model
structures, error of observations of data, error of selection of parameters and error of initial states
of systems (Elliott and Timmermann 2004; Hyndman andKoehler 2006), etc. In reaction to this
phenomenon, real-time correction methods have been widely employed (Bauwens and
Vandewiele 1989; Krstanovic and Singh 1993; Seo and Breidenbach 2002; Hsu et al. 2003).
Applications of real-time correction methods make a great contribution to enhance forecast
accuracy of hydrological models. Up to now, real-time correction methods that are commonly
researched on can be summarized as follows: autoregressive error correction method, recursive
least-squares method and Kalman filtering method. Autoregressive error correction method
establishes a model to realize the function of correcting error series on its own correlation, and
obtains results by calculating the difference of forecast series and corrected error series (Guang-
Te and Singh 1994). Recursive least-squares method achieves the function of real-time
correction by updating parameters of forecast error factors according to input hydrological data
(Cattivelli et al. 2008). For the Kalman filtering method, through applying of modern stochastic
estimation theory, estimation of minimum variance of system status without deviation is
calculated. Thereafter, state variables are corrected by the way of weighting real-time forecast
models according to the principle of minimum error covariance matrix, so that the real-time
corrected results are obtained (Plett 2004). Xiong et al. (2001) had pointed out that the effect of
autoregressive error correction method is no worse than any other complex forecasting
methods, so the autoregressive error correction method is adopted for research in this paper.

However, it’s of great difficulty in acquiring high forecast accuracy only depending on one
single forecast model. Considering of the limitations and regional characteristics of
hydrological models under different physical backgrounds, many scholars put forward the
concept of combination forecast. Winkler and Makridakis (1983) proposed the concept of
combination of forecasts first, they had compared forecast results of single hydrological model
with two or more models’ combination forecast results. Furthermore, the concept of combi-
nation forecast had been widely used in other research fields, including statistics, manage-
ments, economics and meteorology (Terregrossa 2005; Rapach et al. 2009), etc. Shamseldin
et al. (1997) are the first to introduce the concept of combination forecast to rainfall-runoff
forecast models. Since then, many scholars have researched on combination forecast of
multiple hydrological models (Hersbach 2000; Bowler et al. 2008; Jiang et al. 2014).

In summary, Considering of the advantages of real-time correction and combination
forecast methods, this paper proposes the coupling forecast methods for flood forecasting
based on real-time correction and combination forecast methods.

2 Materials and Methods

2.1 Basic Concepts

2.1.1 Real-Time Correction Method

Auto-regressive (AR) error correction model is a kind of time series models which search the
relationship of relevant factors to forecast target component only through its own historical
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observations (Zhang et al. 2011; Zhao and Chen 2015). Since the effects of totally same data
fitted by different order numbers of AR models are different, we choose Akaike Information
Criterion (AIC) index to select the best order of AR model to fit object series (Symonds and
Moussalli 2011).

2.1.2 Multi-Model Combination Forecast Method

Multi-model combination forecast method assigns weights to all the hydrological models by
taking account of the performances of each hydrological model in the same station, and then
the final forecast results are calculated by summed up all the results of weighted hydrological
models (Bowler et al. 2008; Jiang et al. 2014). The results of combination forecast are
calculated as:

Ft ¼ F1; F2;…; Fnð Þ ¼
Xm
i¼1

ωiQ̂
i

t ð1Þ

Where Q̂
i
t denote the forecast result of i-th hydrological model, m denotes the number of

hydrological model, n denotes the length of forecast series, ωi denote the weight of i-th
hydrological model, and they submit to:

Xm
i¼1

ωi ¼ 1 ð2Þ

The expectation of variance of error series is marked as:

E Ft−Qtð Þ2 ¼ E
Xm
i¼1

ωiQ̂
i

t−Qt

 !2

ð3Þ

Where Qt denotes the observed series.
For the purpose of minimizing the expectation of variance of error series, the problem of

solving weights of all the hydrological models has transformed to solving the following linear
programming problem:

Min E
Xm
i¼1

ωiQ̂
i

t−Qt

 !2

¼ Min E
Xm
i¼1

ωi e
i
t þ Qt

� �
−Qt

" #2
¼ Min E

Xm
i¼1

ωie
i
t

 !2

s:t:
Xm
i¼1

ωi ¼ 1

8>>>><
>>>>:

ð4Þ

Where et
i denotes the error series of i-th forecast result.

By the introduction of Lagrange multiplier λ (Ioffe 1993), the objective function is
constructed as following:

L ω1;ω2;…;ωm;λð Þ ¼ E
Xm
i¼1

ωie
i
t

 !2

þ λ
Xm
i¼1

ωi−1

 !
ð5Þ

After differentiating the objective function with respect to ω1, ω2,…, ωm and λ respectively,
the weights of all the hydrological models can be obtained by solving the difference equations.
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2.2 Coupling Forecast Methods

According to the real-time correction method and combination forecast method mentioned
above, the research in this paper is mainly focused on real-time correction—combination
forecast (RC-CF) method, combination forecast—real-time correction (CF-RC) method and
Integral Parameters Optimization (IPO) method.

2.2.1 RC-CF Method

Suppose the number of hydrological models is m, the observed series is marked as Qt, and the
forecast results of all the hydrological models are marked as Qt

1,Qt
2,…,Qt

m. Firstly, by the use
of real-time correction method, the real-time corrected results of each hydrological model are
calculated as Qt

1∗,Qt
2∗,…,Qt

m∗. Then, according to multi-model combination forecast method,
coupling weights ω1,ω2,…,ωm of each hydrological model are calculated to obtain final RC-
CF results as:

FRC−CF
t ¼

Xm
i¼1

ωiQ
i*
t ð6Þ

2.2.2 CF-RC Method

Suppose the number of hydrological models is m. firstly, according to multi-model combina-
tion forecast method, coupling weights ω1,ω2,…,ωm of each hydrological model are calculated
to obtain combination forecast results as:

F*
t ¼

Xm
i¼1

ωiQ
i
t ð7Þ

Then, by the use of real-time correction method, real-time corrected results of Ft
* are

calculated as Ft
CF−RC.

2.2.3 IPO Method

Both of the RC-CF method and CF-RC method take the process of real-time correction and
multi-model combination forecast as isolated parts. However, in the process of real-time
correction and multi-model combination forecast, these two methods need to calculate a set
of parameters under a given target, respectively. So, we consider to take the process of real-
time correction and multi-model combination forecast as a whole part, and conform parameters
of two parts under a same target.

Suppose the number of hydrological models is m, the observed series is marked as Qt, and
the forecast results of all the hydrological models are marked as Qt

1,Qt
2,…,Qt

m. The order of
AR model should be confirmed firstly since the parameters of AR model are chosen as
decision variable in the IPO model. The simulation effects vary indeed when different orders
of AR model are tested on one series. The final simulation result of IPO model is determined
by two parts (real-time correction & combination forecast). So a better result of real-time
correction method doesn’t equal a better result of IPO method. Also, considering the
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complexity of dealing with the constraints, we decide to adopt second order AR model here.
But it need to be clarified that other order AR model is also accepted. The error series
calculated by corrected series and observed series are obtained as:

Ft−Qt ¼
Xm
i¼1

ωi Q
i
t−e

i
t

� �
−Qt

¼
Xm
i¼1

ωiQ
i
t−Qt−

Xm
i¼1

ωie
i
t

¼
Xm
i¼1

ωiQ
i
t−Qt−

Xm
i¼1

ωi α
1
i e

i
t−1 þ α2

i e
i
t−2

� �
ð8Þ

Where αi
1,αi

2 denote the parameters of ARmodel for i-th hydrological model, et
i denotes the

error series of i-th hydrological model.

Min E Ft−Qtð Þ2 ¼ Min E
Xm
i¼1

ωiQ
i
t−Qt−

Xm
i¼1

ωi α
1
i e

i
t−1 þ α2

i e
i
t−2

� �" #2
ð9Þ

(a) Constraints of parameters of AR model

The expression of AR(2) model is as:

xt ¼ cþ ϕ1xt−1 þ ϕ2xt−2 þ εt ð10Þ
Where xt denotes the t-th point of series x, xt−1 denotes the t-1-th point of series x, xt−2

denotes the t-2-th point of series x, c denotes the constant term, εt denotes the stochastic term.
To make sure that AR(2) model is steady (Kapetanios et al. 2003), ϕ1,ϕ2 meet the condition

as:

ϕ2 � ϕ1 < 1
ϕ2j j < 1

�
ð11Þ

The constraints of parameters of AR model can be expressed as:

α2
i � α1

i < 1
α2
i

�� �� < 1
i ¼ 1; 2;⋯;mð Þ

�
ð12Þ

(b) Constraints of coupling weights

The constraints of coupling weights can be expressed as:

Xm
i¼1

ωi ¼ 1 ð13Þ

Where ω1,ω2,…,ωm denote the coupling weights of combination forecast models.
Specially, the coupling weights don’t have to be positive.
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Differential Evolution (DE) algorithm is firstly proposed by Storn and Price (1995, 1997).
For the simplicity principle and convenience in computer programming, it has been applied for
solving various problems (Vasan and Raju 2007; Shaheen et al. 2009; Eum and Simonovic
2010; Piotrowski and Napiorkowski 2012). One form of DE algorithm is the DE/rand/1/bin
strategy. This format of DE contains three operators: mutation, crossover and selection.
Considering of different actions and value ranges of parameters of real-time correction and
combination forecast methods, an improved DE algorithm is proposed for the solution of IPO
model. In the DE/rand/1/bin format of DE algorithm, it contains three operators: mutation,
crossover and selection. In the process of mutation, it’s the operations among particles, so it’s
not proper for actions of improvement that make difference between parameters of real-time
correction and combination forecast methods. So we concentrate on the process of crossover
and selection. In the process of crossover, since the value ranges and sensitivities of parameters
of real-time correction and combination forecast methods are not exactly the same, different
crossover parameters that include CRrc and CRcf will be applied to crossover procedure for
parameters of real-time correction method and combination forecast method, respectively.
While in the process of selection, the particle which obtain a better value of object function
calculated by parameters of original particle and evolved particle is selected into next
population. Since better results of object function don’t mean better results of real-time
correction, so the index of certainty coefficient (R2) which is explained in Section 2.3.3 is
adopted for the selection between original particle and evolved particle. The index of R2 is
calculated by parameters of real-time correction method for evaluating the effect of real-time
corrected series of each hydrological model. The outline of solution to IPO model is illustrated
in Fig. 1.

2.3 Materials for Case Study

2.3.1 Description of the Study Area and the Data Used

In this research, the Jinsha River watershed, which has been investigated intensively recently
(Wang et al. 2011, 2014; Ouyang et al. 2014; Peng et al. 2014), is taken as the study area.
Jinsha River, which flows through Qinghai, Tibet, Sichuan, and Yunnan provinces, is an
important part of the upper Yangtze River. In the lower Jinsha River, it contains the most
abundant hydropower resources of Jinsha River. Xiluodu and Xiangjiaba reservoirs locate in
the lower reaches of Jinsha River, and these two reservoirs control an area of 458.8×103 km2,
accounting for 97 % of the watershed area. Approximate 10 years (1 June 2004 to 30
December 2013) of hydrological data, including hourly mean areal precipitation, potential
evapotranspiration and stream flow, are available for model calibration.

2.3.2 Description of the Hydrological Models

In this paper, three classical models which include XinAnJiang (XAJ) model, Antecedent
Precipitation Index (API) model, and Tank model are employed to help us with the research of
verifying the effect of the coupling forecast methods proposed above.

XAJ model was first proposed by Zhao Ren-Jun (1992), which is one of the few world
famous hydrological models in China. It has been researched for many years (Lu et al. 2008;
Huan and Zhu 2009; Tian et al. 2013, 2014). XAJ model is a dispersion model, which can be
used in humid areas and sub-humid regions of the wet season. The whole river basin is divided
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into many hydrological unit watersheds, and the outflow of each hydrological unit watershed is
obtained by runoff calculation. Then the process of river flood routing is enforced to get the
outflow of the export of hydrological unit watershed. Finally, the outflow of whole basin is
calculated by summing the outflow of all the hydrological unit watersheds.

START

Initial the parameters of the improved DE algorithm(maximum 

number of iteration max; population size s; number of hydrological 

models m; threshold of parameters of real-time correction method ; 

parameters of real-time correction method ; parameters of 

combination forecast method ; scaling factor F; crossover 

parameters CRrc and CRcf )

Randomly generate s initial particles in 

the feasible space and calculate the 

objective function values of each particle

Apply the mutation operation to each 

particle

Parameters of real-time 

correction method?

Apply the crossover operation to 

mutated particles and choose 

CRrc as the crossover parameter

Apply the crossover operation to 

mutated particles and choose 

CRcf  as the crossover parameter

Apply the selection operation to particles

Find the best one of all the particles

Satisfy the stop criteria?

END

onsey

no

yes

Fig. 1 Flowchart of the solution to IPO model
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API model is a rainfall and runoff related hydrological forecast model (Fedora and
Beschta 1989; Heggen 2001; Descroix et al. 2002), which has been adopted as a main
tool for flood forecasting in Yangtze River over 10 years. The model consists of three
parts: rainfall and runoff related model based on flood for runoff calculation, synthetic
unit hydrograph model for watershed confluence calculation, and Muskingum model
for river confluence calculation.

Tank model is a conceptual runoff model. For its character of simply formulating
runoff formation process, it has been widely adopted (Tingsanchali and Gautam 2000;
Lee and Singh 2005; Li and Gowing 2005). The complicated process of converting
rainfall to runoff is summed up as the relationship between storage capacity of river
basin and outflow to simulate. Units of flood process that consist of runoff, slope
surface confluence, and river confluence is formulated by several water tanks contact
with each other. Based on the water depths of all the water tanks, the processes of
runoff, confluence, and infiltration are formulated.

2.3.3 Indices of Accuracy Assessment

Mean absolute error (MAE), mean relative error (MRE), certainty coefficient (R2) and root-
mean-square error (RMSE) are taken as the indices for accuracy assessment in this paper. The
definitions of all the indices are expressed as:

(1) Mean absolute error (MAE)

MAE ¼ 1

n

Xn
i¼1

Qi−Q̂i

��� ��� ð14Þ

WhereQi denotes the observed series, Q̂i denotes the forecast series, n denotes the length of

the series Qi and Q̂i.

(2) Mean relative error (MRE)

MRE ¼ 1

n

Xn
i¼1

Qi−Q̂i

� �
=Qi

h i2
ð15Þ

(3) Certainty coefficient (R2)

R2 ¼ 1−
Xn
i¼1

Qi−Q̂i

� �2" #
=
Xn
i¼1

Qi−Qi

� �2#
ð16Þ

Where Qi denotes the average value of observed series.

(4) Root-mean-square error (RMSE)

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

Qi−Q̂i

� �2
vuut ð17Þ
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3 Results and Discussion

3.1 Forecast Results of Hydrological Models

After calibrating parameters of all the hydrological models including XAJ model, API
model, and Tank model, three different results of outflow are calculated by each
hydrological model. Here, we take the forecast outflow of Xiangjiaba station from 1
June 2013 to 30 September 2013 as the basic data for the later research on coupling
forecast methods. The observed series and three forecast series of Xiangjiaba station
from 1 June 2013 to 30 September 2013 are showed in Fig. 2. Figure 2a~c are the
forecast results of XAJ, API and Tank models respectively. The basic data are divided
into two parts, the first part is taken as calibration period from 1 June 2013 to 31
October 2013, and the second part is taken as validation period from 1 September
2013 to 30 September 2013. The time interval is one hour. The results of accuracy
assessment in calibration and validation periods are listed in Table 1. From the indices
of MAE, MRE, R2, and RMSE in Table 1, we can see that three hydrological models
have similar forecast accuracy, and they behave a little better in calibration period
than in validation period.

(a)

(c) 

(b)

Fig. 2 Accuracy assessment results of the original forecast series calculated by XAJ, API, and Tank models
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3.2 Results of Real-Time Correction and Combination Forecast Methods

The real-time correction and combination forecast results are calculated based on the
data in calibration period, and are verified based on the data in validation period. The
accuracy assessment results of real-time correction and combination forecast methods
in calibration and validation periods are listed in Table 2. The indices R2 in calibra-
tion of real-time correction results obtained by AR models are 0.992, 0.99 and 0.992
respectively for XAJ, API, and Tank models, and there are remarkable improvement
of forecast accuracy in contrast to the original forecast results which obtain 0.914,
0.906 and 0.894 of indices R2 in calibration period. In the validation period, the
indices R2 of real-time correction results are 0.98, 0.973 and 0.982 respectively for
XAJ, API, and Tank models, and the indices R2 of original forecast results are 0.752,
0.736 and 0.768. Due to the strong correlation of the data that we adopt, the
performance of AR model is very well. The AR model works not so well in the
article (Zhao and Chen 2015), based on the ensemble empirical mode decomposition
(EEMD) and Auto-Regressive (AR), the author proposes the EEMD-AR hybrid model
and compare with EMD-AR and single AR models to prove that EEMD-AR hybrid
model gives better accuracy in predicting annual runoff. Since AR model works well
here, so we don’t try any other ways as described in the article above to improve the
AR model alone. In contrast to the perfect performance of real-time correction
method, the combination forecast method may not behave as good as the real-time
correction method, but it also shows promotion of forecast accuracy. Under the

Table 1 Accuracy assessment results of hydrological models

Model Period MAE (m3/s) MRE R2 RMSE (m3/s)

XAJ Calibration 549 0.098 0.914 815

Validation 790 0.122 0.752 1053

API Calibration 564 0.095 0.906 850

Validation 792 0.119 0.736 1088

TANK Calibration 620 0.106 0.894 903

Validation 740 0.112 0.768 1020

Table 2 Accuracy assessment results of real-time correction and combination forecast methods

Method Model Period MAE (m3/s) MRE R2 RMSE (m3/s)

Real-time correction XAJ Calibration 161 0.030 0.992 242

Validation 204 0.030 0.980 298

API Calibration 172 0.031 0.990 275

Validation 218 0.032 0.973 349

TANK Calibration 171 0.031 0.992 254

Validation 189 0.028 0.982 288

Combination forecast / Calibration 521 0.099 0.923 768

Validation 903 0.140 0.706 1148
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extreme case, when individual models are very similar to each other in their flood
forecasting ability, the combination system will produce forecasts only marginally
better than those of the individual models (Xiong et al. 2001). Also, it is likely that
the combination of the different forecasts might lead to bigger errors than the
individual ones at some particular time steps. The performance of combination
forecast method would not be so well under some situations.

3.3 Results of Coupling Forecast Methods

The accuracy assessment results of RC-CF, CF-RC and IPO methods in calibration and
validation periods are listed in Table 3. From the accuracy assessment results of three coupling
forecast methods, it’s obvious that these three methods show superiority when they compare
with both real-time correction method and combination forecast method. When comparing the
indices RMSE of these three methods, it’s not hard to find that the IPO method performs better
than other two methods which behave undifferentiated. For the RC-CF and CF-RC methods,
the indices RMSE of RC-CF and CF-RC methods are 240, 244 m3/s in the calibration period
and 311, 343 m3/s in the validation period respectively. Both of the two methods take the
process of real-time correction and combination forecast as isolated parts, and the performance
of them are close to each other. For the IPO method, the index RMSE is 207 m3/s in the
calibration period and 204 m3/s in the validation period. Compared with the index RMSE of
original forecast results and the results of real-time correction method, combination method,
RC-CF method and CF-RC method, the IPO method performs best. Since the optimization
algorithms like DE algorithm have excellent search ability, the IPO method is capable of
searching more suitable parameters of AR model and combination model under a same target
to obtain more accurate forecast results. In the article (Jiang et al. 2014), the author adopts
three widely used real-time satellite precipitation products for ensemble stream flow simulation
with the gridded xinanjiang (XAJ) model and shuffled complex evolution metropolis (SCEM-
UA) algorithm. Different input data are taken used for one rainfall-runoff model. However,
streamflow simulation performed poorly when the raw satellite precipitation data were taken as
input and the model parameters were calibrated with gauged data. By implementing the
precipitation error multiplier and the precipitation error model and then recalibrating the
model, the behavior of the simulated stream flow and calculated uncertainty boundary were
significantly improved. It indicates that error correction combined with ensemble forecast
method would be an available way to improve the accuracy of hydrological forecasting.
Moreover, by introducing the optimization algorithm, the IPO method are more capable of
searching better solution to improve the accuracy of hydrological forecasting.

Table 3 Accuracy assessment results of RC-CF, CF-RC and IPO methods

Method Period MAE (m3/s) MRE R2 RMSE (m3/s)

RC-CF Calibration 159 0.030 0.993 240

Validation 218 0.033 0.978 311

CF-RC Calibration 163 0.031 0.992 244

Validation 237 0.035 0.974 343

IPO Calibration 114 0.022 0.994 207

Validation 129 0.018 0.987 240
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From the expression of auto-regressive model, we can figure out that the forecast period of
these forecast methods is just one time step (one hour in this paper). Forecast period of just one
hour may hardly satisfy the need for actual flood forecasting. For the purpose of prolonging
forecast period, two methods are proposed to deal with this problem.

(a) Method A: Suppose the forecast period is n, and the time interval is one hour. We take
the RC-CF method for example, and other two coupling forecast methods are applied the
same. In the calibration period, parameters which contain (α1

1,α1
2), (α2

1,α2
2),…, (αm

1 ,αm
2 )

and ω1,ω2,…,ωm are calculated for the AR(2) model and combination forecast method.
While in the validation period, for the first n points, they are calculated as:

Q̂i ¼
Xm
j¼1

ω j Q
i
j− α1

j e
iþ1
j þ α2

j e
i
j

� �h i
i ¼ 1; 2;…; n ð18Þ

Where Q̂i denotes the i-th point of final forecast series, Qj
i denotes the i-th point of j-th

hydrological model’ original forecast series, ej
i is defined as:

eij ¼
e1*

j
¼ Q̂

i−2

j −Qi−2
j i ¼ 1

e2*j ¼ Q̂
i−1

j −Qi−1
j i ¼ 2

α1
j e

i−1
j þ α2

j e
i−2
j i ¼ 3; 4;…; n

8>><
>>:

ð19Þ

Where e1*
j
denotes the penult point of error series of j-th hydrological model in calibration

period, ej
2* denotes the last point of error series of j-th hydrological model in calibration period,

Q̂
i−2
j denotes the original forecast series of j-th hydrological model at point i-2 which also

denotes the penult point of original forecast series of j-th hydrological model in calibration

period, Q̂
i−1
j denotes the original forecast series of j-th hydrological model at point i-1 which

also denotes the last point of original forecast series of j-th hydrological model in calibration
period, Qj

i−2 denotes the penult point of observed series in calibration period, Qj
i−1 denotes the

last point of observed series in calibration period.
Then, for the left points in validation period, the final forecast results for every continuous n

points are calculated as described above.

(b) Method B: Suppose the forecast period is n, and the time interval is still one
hour. We take the RC-CF method for example, and other two coupling forecast
methods are applied the same. In the calibration period, n groups of parameters
are calculated for the AR(2) model and combination forecast method, and they
are expressed as:

α1;1
1 ;α2;1

1 ;ω1
1

� �
; α1;1

2 ;α2;1
2 ;ω1

2

� �
;…; α1;1

m ;α2;1
m ;ω1

m

� �n on
;

α1;2
1 ;α2;2

1 ;ω2
1

� �
; α1;2

2 ;α2;2
2 ;ω2

2

� �
;…; α1;1

m ;α2;1
m ;ω2

m

� �n o
;…;

α1;n
1 ;α2;n

1 ;ωn
1

� �
; α1;n

2 ;α2;n
2 ;ωn

2

� �
;…; α1;n

m ;α2;n
m ;ωn

m

� �n oo ð20Þ
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Where {(α1
1,i,α1

2,i,ω1
i ),(α2

1,i,α2
2,i,ω2

i ),…,(αm
1,i,αm

2,i,ωm
i )} are the parameters when the AR(2)

model which is expressed as xt+i−1=α1xt−1+α2xt−2 and combination method are applied to
calculate final forecast result.

While in the validation period, for the first n points, they are calculated as:

Q̂i ¼
Xm
j¼1

ωi
j
Qi

j− α1;i
j e

2*
j þ α2;i

j e
1*
j

� �h i
i ¼ 1; 2;…; n ð21Þ

Where Q̂i denotes the final forecast series of point i, Qj
i denotes the original forecast series

of j-th hydrological model at point i, e1*
j

denotes the penult point of error series of j-th

Table 4 Accuracy assessment results of RC-CF, CF-RC and IPO methods under different forecast periods by
method A

Method Period Forecast period (h) MAE (m3/s) MRE R2 RMSE (m3/s)

RC-CF Calibration / 159 0.030 0.993 240

Validation 1 218 0.033 0.978 311

2 334 0.050 0.946 490

3 432 0.065 0.912 627

4 562 0.086 0.860 793

5 609 0.093 0.839 850

6 654 0.100 0.814 912

12 779 0.120 0.756 1046

18 804 0.123 0.745 1069

24 816 0.126 0.740 1078

CF-RC Calibration / 163 0.031 0.992 244

Validation 1 237 0.035 0.974 343

2 354 0.053 0.943 504

3 456 0.069 0.908 642

4 580 0.089 0.857 800

5 631 0.096 0.834 862

6 677 0.104 0.810 922

12 811 0.125 0.745 1068

18 842 0.130 0.732 1096

24 857 0.132 0.725 1109

IPO Calibration / 114 0.022 0.994 207

Validation 1 129 0.018 0.987 240

2 208 0.029 0.968 378

3 258 0.037 0.951 469

4 321 0.045 0.933 546

5 336 0.048 0.930 560

6 402 0.059 0.904 656

12 544 0.079 0.843 838

18 748 0.109 0.737 1085

24 658 0.097 0.751 1056
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hydrological model in calibration period, ej
2* denotes the last point of error series of j-th

hydrological model in calibration period.
Then, for the left points in validation period, the final forecast results for every continuous n

points are calculated as described above.
After introducing the concept of two methods (method A & method B) for prolonging the

forecast period, and results of different forecast periods that consist of 1~6, 12, 18 and 24h are
calculated. The results of accuracy assessment for method A and method B are showed in
Tables 4 and 5, respectively. When calculating the forecasting results of method A, only one
type of AR(2) model is taken used to fit the error series, so there is only one accuracy
assessment result in the calibration period. When calculating the forecasting results of method
B, n (the length of forecast period) types of AR(2) model is taken used to fit the error series, so

Table 5 Accuracy assessment results of RC-CF, CF-RC and IPO methods under different forecast periods by
method B

Method Period Forecast period (h) MAE (m3/s) MRE R2 RMSE (m3/s)

RC-CF Calibration / / / / /

Validation 1 218 0.033 0.978 311

2 220 0.031 0.970 367

3 279 0.040 0.954 453

4 339 0.048 0.938 526

5 369 0.053 0.930 561

6 415 0.061 0.916 614

12 574 0.086 0.855 806

18 662 0.100 0.796 955

24 695 0.106 0.784 985

CF-RC Calibration / / / / /

Validation 1 237 0.035 0.974 343

2 220 0.032 0.971 358

3 289 0.042 0.956 444

4 346 0.051 0.943 504

5 397 0.058 0.928 568

6 440 0.066 0.916 613

12 647 0.100 0.836 856

18 770 0.119 0.767 1021

24 847 0.132 0.732 1095

IPO Calibration / / / / /

Validation 1 129 0.018 0.987 240

2 200 0.028 0.974 342

3 252 0.036 0.960 423

4 302 0.043 0.947 485

5 329 0.048 0.939 523

6 371 0.055 0.926 577

12 505 0.075 0.879 737

18 643 0.096 0.816 908

24 605 0.093 0.819 901
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the accuracy assessment results in calibration period are not listed for the reason of similarity
of each AR model and tedious data. Then, we choose the indices RMSE in Tables 4 and 5, and
Fig. 3 is drawn for following comparison and analysis. Figure 3a~c show RMSE results of a
same coupling forecast method that include RC-CF, CF-RC, and IPO methods calculated by
method A and method B. While Fig. 3d~e show RMSE results of three coupling forecast
methods calculated by method A or method B. From Fig. 3a~c, two points are clearly
discovered: (a) with the forecast period increasing, the RMSE increase the same which means
decrease of forecast accuracy and (b) method B is superior to method A. There is three reasons:

(a)                                  (b) 

(c)                                  (d) 

(e) 

Fig. 3 Indices RMSE in validation period of RC-CF, CF-RC and IPO methods under different forecast periods
by method A & method B
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(a) for method A, all the points except the first one of one forecast period are calculated based
on corrected error but not the real error and (b) for method A, all the points in one forecast
period are calculated based on real error by different AR(2) models and combination method
and (c) with the increasing of forecast period, much more error are accumulated for method A
and less precision for method B. From Fig. 3d~e, we can figure out that IPO method has an
advantage over RC-CF and CF-RC methods which have fairly effect. The reason of this
phenomenon is that the IPO method is capable of searching better solution for the problem
involving in this paper. In conclusion, IPO method combined with the proposed method B for
prolonging forecast period should be a good choice for improving the forecast accuracy.

4 Conclusions

On the basis of real-time correction and multi-model combination forecast methods, three
coupling forecast methods including RC-CF, CF-RC, and IPO methods are proposed in this
paper. By the utilization of three classical models which consist of XAJ, API, and Tank model,
three groups of forecast series are obtained for the research on coupling forecast methods.
Through applying coupling forecast methods based on the information collected, forecast
results that considering both real-time error correction and combination forecast are calculated.
The results show that the RC-CF and CF-RC methods have fairly effects and the IPO method
is superior to previous two methods. Besides, two methods are proposed for the purpose of
prolonging the forecast period when the problem of one time step forecast period is realized.
Thereafter, three coupling forecast methods are applied under different forecast periods based
on two methods proposed for prolonging the forecast period respectively. From the analysis on
the comparison of each forecast result, the IPO method combined with the second method for
prolonging the forecast period is testified to be the most effective method for improving the
forecast accuracy. It is found that the IPO method can be a viable alternative for flood
forecasting of multiple hydrological models. It is hoped that more efforts focus on improving
forecast accuracy and prolonging length of forecast period to develop better coupling forecast
method of multiple rain-runoff models.
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