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Abstract Accurate and reliable forecasting of reservoir inflow is necessary for efficient and
effective water resources planning and management. The aim of this study is to develop an
ensemble modeling approach based on wavelet analysis, bootstrap resampling and neural
networks (BWANN) for reservoir inflow forecasting. In this study, performance of BWANN
model is also compared with wavelet based ANN (WANN), wavelet based MLR (WMLR),
bootstrap and wavelet analysis based multiple linear regression models (BWMLR), standard
ANN, and standard multiple linear regression (MLR) models for inflow forecasting. Robust
ANN and WANN models are ensured considering state of the art methodologies in the field.
For development of WANN models, initially original time series data is decomposed using
wavelet transformation, and wavelet sub-time series are considered to develop WANN models
instead of standard data used for development of ANN model. To ensure a robust WANN
model different types of wavelet functions are utilized. Further, a comparative analysis is
carried out among different approaches of WANN model development using wavelet sub time
series. Seven years of reservoir inflow data along with outflow data from two upstream
reservoirs in the Damodar catchment along with rainfall data of 5 upstream rain gauge stations
are considered in this study. Out of 7 years daily data, 5 years data are used for training the
model, 1 year data are used for cross-validation and remaining 1 year data are used to evaluate
the performance of the developed models. Different performance indices indicated better
performance of WANN model in comparison with WMLR, ANN and MLR models for inflow
forecasting. This study demonstrated the effectiveness of proper selection of wavelet functions
and appropriate methodology for wavelet based model development. Moreover, performance
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of BWANN models is found better than BWMLR model for uncertainty assessment, and is
found that instead of point predictions, range of forecast will be more reliable, accurate and can
be very helpful for operational inflow forecasting.

Keywords Reservoir inflow. Neural networks .Wavelet analysis . Forecasting . Damodar
catchment

1 Introduction

Accurate reservoir inflow forecasting is necessary for planning and management of available
water resources. Inflow forecast can be applied for reservoir operation and management, flood
control, drought management, water supply for irrigation, industrial and domestic uses and
hydro-power generation. It emphasizes development of a model that is accurate and can be
easily applied for the operational reservoir inflow forecasting. Several approaches have been
applied to map the non-linear relationship between rainfall and runoff such as empirical,
conceptual, physically and data driven (Verma et al. 2010; Paudel et al. 2011; Adamowski
et al. 2013; Gad 2013). Data driven models have been applied in different fields of water
resources with promising results (Jain et al. 2001; Mehta and Jain 2009; Mukerjee et al. 2009;
Tiwari and Chatterjee 2010; Tiwari et al. 2013; Rath et al. 2013). In the previous years,
complex nature of water resource variables has brought increased attention to the potential of
soft computing technique methods including fuzzy logic and genetic programming (Kant et al.
2013), support vector regression (Herrera et al. 2010), and artificial neural networks (NN)
(Adamowski 2008; Tiwari et al. 2013). Neural network information processing systems and
capable of mimicking the functioning of human brain, and has been widely applied as an
effective method for modeling highly non-linear phenomenon in hydrological processes
(Abrahart et al. 2012).

One of the earliest uses of ANNs in reservoir inflow forecasting was used by Coulibaly
et al. (2000). This research was subsequently followed by numerous studies on reservoir
inflow forecasting (Jothiprakash and Magar 2012; Okkan 2012; Krishna 2014). Jothiprakash
and Magar (2012) used artificial intelligent (AI) techniques such as artificial neural network
(ANN), adaptive neuro-fuzzy inference system (ANFIS) and linear genetic programming
(LGP) to predict daily and hourly multi-time-step ahead intermittent reservoir inflow of
Koyna river watershed in Maharashtra, India. Similarly Valipour et al. (2013) developed
ANN and ARIMA models for forecasting the inflow of Dez dam reservoir using monthly
discharges from 1960 to 2007 and showed better performance of static and dynamic
autoregressive artificial neural networks to forecast the inflow to the dam reservoirs. Among
previous studies, feed forward back propagation neural networks (FFBP-NN), literally called
as ANNs, is the most commonly used method.

Although ANN methods have been used extensively as useful tools for prediction of
hydrological variables, it has some limitations in dealing with non-stationary data (Cannas
et al. 2006; Partal 2009). A non-stationary time series data has a variable variance and mean
that does not remain constant or same to their long-run mean over time, whereas the stationary
time series data reverts around a constant long-term mean exhibits a constant variance
independent of time. Daily flow time-series data are often non-linear and non-stationary
(Rao et al. 2003; Wang et al. 2006). Non-stationarity such as seasonal variations and trends
significantly affect modeling of time series and generally lead to poor predictability in practical
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applications (Francesco and Bernd 2000). Since the hydrological time series includes several
frequency components and have non-linear relationships, hybrid model approaches which
include different data-preprocessing and combine techniques, have been used to raise the
prediction performance of neural networks. Wavelet analysis has emerged as an effective tool
to simplify the non-stationarity in the dataset and has been widely applied by coupling with
neural networks for water resource variables forecasting (Zhou et al. 2008; Makwana and
Tiwari 2014; Kisi and Shiri 2012; Sahay and Sehgal 2013; Sahay and Srivastava 2014; Sehgal
et al. 2014a, b). To develop WANN model, wavelet sub time series generated using discrete
wavelet transformation (DWT) are used as inputs to the ANN models. The DWT decomposes
original time series data into many components and each component has a distinct role in the
original time series data. The low-frequency component or approximation generally reflects
the identity (periodicity and trend) of the original data whereas the high-frequency components
(i.e. details) uncover sharp fluctuations (Kucuk and Oglu 2006). There are several applications
of WANN models in water resource variables forecasting and successful application inflow
forecasting in the literature (Okkan 2012; Krishna 2014; Sehgal et al. 2014a, b). More recently,
Krishna (2014) developed and demonstrated the potential of wavelet analysis and moving
average (MA) methods in conjunction with two types of neural networks i.e. feed forward
neural network and radial basis (RB) neural network and multiple linear regression (MLR)
models in the prediction of the daily inflow values of Malaprabha reservoir, Belgaum, India.
The results showed that WANNmodel performs better compared to an ANN andMLRmodels
in forecasting the inflow hydrograph effectively. The author suggested undertaking further
studies using data from upstream gauging stations to strengthen the findings.

ANN models including WANN models are prone to uncertainty depending on the input
data arrangement in training and testing that leads to different optimal model structure and
parametric values (Abrahart 2003; Arhami et al. 2013). Bootstrap resampling method that
generates different realizations of dataset by resampling with replacement methodology is
found to be efficient, simple and comparatively less complex than Bayesian method to assess
uncertainty in the forecasts (Sharma and Tiwari 2009; Hinsbergen et al. 2009). Ensemble
forecasting utilizing bootstrap method has improved the model performance compared to a
single ANN model and provided assessment of uncertainty associated with the forecasts
making it easier to implement in practice (Tiwari and Chatterjee 2011; Wang et al. 2013).

Even though wavelet analysis has improved the performance of ANN models significantly
in different fields of water resources, the way wavelet sub time series are used to develop
WANNmodels are different in different studies. Some of the previous work emphasized use of
all the components for WANN model development (Wang and Ding 2003; Zhou et al. 2008;
Nourani et al. 2009; Adamowski and Sun 2010; Maheswaran and Khosa 2012), other removed
d1 components, considering it as noise, as its correlation with the original data was very little
and generated a new time series data by summing all the components except d1 component of
a particular time series data (Partal and Kisi 2007; Kişi 2009; Rajaee et al. 2010; Kisi and
Cimen 2011). In some of the previous studies, new wavelet time series was developed by
summing up effective wavelet components based on correlation analysis (Tiwari and
Chatterjee 2010, 2011). In this study, in spite of considering a selective method to generate
a new wavelet time series all the combination reported in the previous studies along with some
new approaches are tested. Moreover, during WANN model development for forecasting
water resources variables generally a particular wavelet transformation function and a
level of decomposition are applied. However, each wavelet functions have their own
strengths in capturing the different characteristics and physical structure of the
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hydrological processes and therefore, completely relying on a model based on a particular
wavelet function often leads to predictions that capture some phenomena at the expense of
others (Rathinasamy et al. 2013).

Therefore, in this study a combined bootstrap and wavelet based ANN model is proposed
first time for inflow forecasting including different analysis such as (i) wavelet analysis for
extracting non-stationarity from the dataset, (ii) uses combined strength of wavelet analysis
and bootstrap resampling on a single platform to produce a model that is accurate and reliable,
(iii) evaluate different combination approaches of discrete wavelet components, (iv) evaluate
performance of different wavelet functions, and (v) produce the inflow forecast with confi-
dence bands, assessing uncertainty associated with these forecasts.

2 Materials and Methods

2.1 Study Area

Damodar catchment, a part of the lower Ganges River, is located in the upper reaches of the
Damodar river basin in Jharkhand state of India (Fig. 1). The area lies between 23° 34′ and 24°
09′ North latitude and 84° 42′ to 86° 46′ East longitudes with an elevation variation between

Fig. 1 Location map of study area along with reservoirs and rain gauge stations
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122 and 1340 m above mean sea level. The catchment falls within sub-tropical climate and
daily mean relative humidity varies from 40 to 95 % with alternating dry and wet periods. The
daily mean temperature of the area ranges from 4 to 43 °C with average annual rainfall of
1390 mm most of which occurs in months from July to September. The study area comprises
of mixed forest, mainly with deciduous and tropical moist forest along with many thorny
bushes, and agricultural area. Damodar catchment consists of three reservoirs: Konar,
Tenughat and Panchet, these reservoirs are constructed on Damodar river during 1955, 1972
and 1959, respectively with the intention of hydropower generation, water supply for irriga-
tion, industrial and domestic uses, and flood control. Damodar catchment is further divided
into three sub-catchments: Konar sub-catchment, Tenughat sub-catchment and Panchet sub-
catchment with area of 997, 4480 and 5401 km2, respectively. The total area of the catchment
area is about 10878 km2 with the length of the main stream being 350 km draining into the
Panchet reservoir.

2.2 Dataset Used in the Study

Daily rainfall data were collected from Indian meteorological Department (IMD), Pune for five
stations covering the study area (i.e. R1, R2, R3, R4 and R5); daily outflow reservoir data for
Konar (KO) and Tenughat (TO) reservoirs and daily inflow data for Panchet reservoir (PI) were
collected from for 7 years from 01 January, 2001 to 31 December, 2007 from the Reservoir
Operation Department, Damodar Valley Corporation (DVC), Maithon, Jharkhand. From the
available dataset, first 5 years of dataset (from 01 Jan. 2001 to 01 Jan 2005) were considered
for training, whole data during 2006 were considered for cross validation and data during the
year 2007 were for evaluation of the developed standard and combined ANN models
(Table 1).

2.3 Artificial Neural Networks

Artificial Neural Networks (ANN) is a strong mathematical approach, based upon imitation of
human brain functioning by forming a model structure with the capability to map complex
non-linear relationships and processes that are inherent among several variables. In a simpler
term it is networks with nodes in form of feed forward neural network, consisting of different
layers with computational nodes such as an input layer, one or more hidden layers, and an
output layer. As this approach is found very fast and efficient in highly complex and noisy
environments to solve a wide range of problems, ANNs have been applied in numerous real-
world applications including time series predictions (Abrahart et al. 2012). For detailed study
on general properties of ANNs and its applications in water resource engineering, interested
readers are directed to refer Bishop (1995), Haykin (1999), Maier and Dandy (2010) and
Abrahart et al. (2012).

Table 1 Partitioning of data for
ANN model development Partition Duration of the data Number of data patterns

Training 01/01/2001 to 31/12/2005 1826

Cross-validation 01/01/2006 to 31/12/2006 365

Testing 01/01/2007 to 31/12/2007 365

Reservoir Inflow Forecasting Using Ensemble Models 4867



2.4 Wavelet Analysis

Wavelet analysis utilizes a wavelet function known as mother wavelet defined as
ψ(t)=∫−∞+∞ψ(t)dt=0 and successive wavelets can be derived as (Mallat 1989)

ψa;b tð Þ ¼ aj j−1
2ψ

t−b
a

� �
b∈R; a∈R; a≠0 ð1Þ

where a and b are the scale and time factor, respectively, and R is the domain of real numbers.
For a time series with a finite energy signal f(t)∈L2(R), the continuous wavelet transform is

defined as (Kisi 2010)

W f a; bð Þ ¼ aj j−1
2

Z
R

f tð Þψ* t−b
a

� �
dt ð2Þ

whereWf (a, b) is the matrix of wavelet coefficient or a contour map known as scaleogram and
ψ* denotes a complex conjugate function.

To avoid generation of large number of coefficients discrete wavelet transform (DWT) is
applied as it is a convenient way and very useful for solving practical problems. DWT is
obtained by constraining the wavelet dilation (a) and translation (b) parameters and defining
the DWT as (Mallat 1989)

ψm;n
t−b
a

� �
¼ a−m=2o ψ*

t−nboamo
amo

� �
ð3Þ

where, integers m and n determine the magnitude of wavelet dilation and translation, respec-
tively, a0 represents a specified dilation step greater than 1 (most commonly a0=2), and b0
represents the location parameter which must be greater than zero (most commonly b0=1).

2.5 Bootstrap Technique

There are three major sources of uncertainty such as parameter uncertainty, sub optimal
training and insufficient input variables, which significantly affect the output of the ANN
and WANN models. Bootstrapping a computational, data-driven simulation method has been
used widely to assess the uncertainty by measuring the variance σs

2. The bootstrap samples are
generated through intensive resampling of the data with replacement method, and these
resample’s or realizations of data provide a better understanding of the average and variability
of the original, unknown distribution or process, that help to assess uncertainty associated with
the estimate (Efron and Tibshirani 1993). Assuming a population Twith unknown probability
distribution F, where each sample is denote as ti = (xi, yi), where xi is a input vector and yi is the
corresponding output vector, is a realization drawn as independently and identically distributed
(i.i.d.) from T. Tn is a bootstrap resample denoted as Tn = {(x1, y1), (x2, y2), …., (xn, yn)},

where n is the size of original dataset obtained from empirical distribution function F̂ , by
putting a mass of 1/n for each t1, t2, …, tn. Similarly, a set of bootstrap samples such as T1,
T 2,…, T s,…, T S can be produced, where S is the total number of bootstrap samples, generally
ranging from 50 to 200 samples (Efron and Tibshirani 1993).

In this study, several bootstrap resample’s are generated and used to train several different
ANN and WANN models, and an ensemble forecast is obtained and named as BANN and
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BWANN, respectively (Tiwari and Chatterjee 2010, 2011). For each Ts, a ANN and WANN
model is developed and trained using all n observations and the ANN and WANN outputs,
fANN(xi,ws/T

s) and fWANN(xi,ws/T
s), is then evaluated using a set As of observation pairs ti =(xi,

yi) that are not included to generate bootstrap resample’s. The performance of the ANNs and
WANNs in these validation tests is subsequently averaged/ensemble. These ensembled models
are also represents the generalization error for the ANN models relative to Tn that is denoted as
E0, and this can be estimated for ANN as (Twomey and Smith 1998)

Ê0 ¼

XS

s¼1

X
i∈As

yi− f NN xi;ws=T
sð Þð Þ2

XB

s¼1

Asð Þ
⋅ ð4Þ

where fANN (xi, wb/T
s) is the output of the ANN developed from the bootstrap sample Ts, in

which xi is a particular input vector and ws is the weight vector. Subsequently, the BANN
estimate ŷ(x) of all developed ANNs is given by the average of the S bootstrapped estimates
(Jia and Culver 2006; Tiwari and Chatterjee 2010, 2011) as

ŷ xð Þ ¼ 1

S

XS

s¼1

f NN x;wsð Þ: ð5Þ

and the variance is estimated as

σ2 xð Þ ¼

XS

s¼1

X
i¼As

yi− f NN xi=wsð Þ½ �2

S−1
ð6Þ

Several forecasts obtained from the ANN and WANN models trained using several
realizations of the training dataset are then used to generate the confidence band or
confidence interval (CI) at the α% significance level. These CIs indicate the frequency
containing the true value in the repeated simulation and is denoted as 100×(1 - α) %
with value of α is generally taken as 0.05 that corresponds to 95 % confidence bands.
The CIs covering the ensemble inflow ŷ (x) are estimated as (Efron and Tibshirani
1993).

CI ¼ UB; LBð Þ ¼ ŷ xð Þ þ tα=2n−pσ xð Þ; ŷ xð Þ−tα=2n−pσ xð Þ
h i

ð7Þ

where UB and LB represent the upper and lower band, respectively, and σ(x) represents
the standard deviation of S number of forecasts, tn − p

α/2 is the α/2 percentile for the t
distribution with n - p degrees of freedom. n and p are the number of inflow data
pattern and total number of parameters, respectively in the ANN and WANN models.

2.6 Development of ANN Models

To develop a robust ANN model, different structures of ANN model were developed
by using different combinations of input variables along with 1–10 numbers of hidden
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neurons with learning coefficient equal to 0.2 and momentum equal to 0.9 for which
the generalization error is found to be minimum. The dataset were standardized and
normalized to scale in the range of 0–1. The Levenberg–Marquardt method, consid-
ered as most efficient and fast second order training method, is used to minimize the
mean squared error between the forecast and observed reservoir inflows. To forecast
inflows of Panchet reservoir at 1 day (t) lead time, initially inflow of Panchet
reservoir at previous time step (i.e. t-1) is considered and then subsequently other
input variables were considered starting from one lag time, until performance of
model start deteriorating.

Selection of suitable wavelet function called as mother wavelet and a suitable level
of wavelet decomposition is a crucial issue, as there is no such study showing the
best performance of model for a particular wavelet function or decomposition level.
Another important property of wavelet function is its vanishing moment that limits
wavelets’ ability to represent polynomial behavior of the signal. It can be considered
that higher vanishing moments should capture the variations more effectively and
efficiently and should improve the model forecasting ability. Therefore in this study
different wavelet functions with different vanishing moments such as db2, db5, db10,
db20, Bior1.1, Bior3.3, Bior6.8, Haar, Coif1, Coif3, Coif5 were considered to develop
WANN models.

Optimum number of decomposition level for DWT of the time series are estimated using
the following formula (Nourani et al. 2008):

L ¼ int log Nð Þ½ � ð8Þ

where

L = Decomposition level
N = Number of time series data
This study uses N=1826, which produces L=3.

In this way for each wavelet function three level of decomposition is carried out
such as approximation (A3) and three details d1, d2 and d3. Inflow data at Panchet
reservoir, outflow data from Konar and Tenughat reservoir and rainfall data at five
gauging stations were initially decomposed using more frequently used mother wave-
let db5 into approximation (A3) and details (d1, d2 and d3) for each component. As
an illustration, only wavelet sub-time series of the rainfall at station DVC R2 and
inflow to Panchet reservoir are shown from 01 Jan. 2001 to 01 Jan 2007 in Fig. 2.
The time series data were also decomposed separately for training, cross-validation
and testing dataset, but just for representation they are shown together. Table 2 shows
the correlation between different wavelet components of a particular time series to the
inflow of Panchet dam. Some of the components have very good correlation and some
have no correlation. In spite of considering a selective method as discussed above to
generate a new wavelet time series, all the combinations reported in previous studies
along with some new approaches were tested in this study.

For several water resource variables forecasting, wavelet analysis has improved the
ANN model performance significantly, but there is no specific method for selection of
appropriate wavelet components for WANN model development and different studies
have applied different approaches to develop WANN models. In this study, a
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(a) Original time series  

(b) A3 component 

(c) d1 component 

(d) d2 component 

(e) d3 component 

(i) Rainfall at station DVC R2 

(a) Original time series  
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(c) d1 component 

(d) d2 component 

(e) d3 component 

(ii) Panchet reservoir inflow 
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Fig. 2 Wavelet sub-time series of the reservoir release from (i) Rainfall at station DVC and (ii) inflow to Panchet
dam from 01 Jan. 2001 to 31 Dec 2007
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comprehensive examination is carried out to compare and select the best approach for
inflow forecasting. Five approaches tested in this study are: (i) all the 4 components
(i.e. A3, d1, d2 and d3) of 8 input variables (i.e., R1, R2, R3, R4,R5, KO, TO, PI) with
lag 1 (Approach 1) (ii) all the four components of input variables and lags found best
for ANN model (i.e., A3, d1, d2 and d3 of PI with lag 1; A3, d1, d2 and d3 of TO with
lag 1; A3, d1, d2 and d3 of R1 with lag 1, 2 and 4; A3, d1, d2 and d3 of R2 with lag 1
and 2) (Approach 2) (iii) all the significant wavelet components separately having
correlation >0.10 with lag 1 (A3 of R1, R2, R3, R4,R5, KO, TO, PI; d1 of Ko, PI, d2 of
KO, TO, PI; d3 of KO, TO, PI) (Approach 3) (iv) newly constructed time series
adding significant components of each parameter excluding d1 component (lag input
as best ANN) (A3, d2 and d3 of PI with lag 1; A3, d2 and d3 of TO with lag 1; A3, d2
and d3 of R1 with lag 1, 2 and 4; A3, d2 and d3 of R2 with lag 1 and 2) (Approach
4), and (v) newly constructed time series adding significant components having
correlation >0.10 of each variable (A3 of R1, R2, R3, R4,R5, KO, TO, PI; A3+ d1+,
d2+d3 of KO; A3+ d2+d3 of TO; A3+ d1+, d2+d3 of PI) (Approach 5).

In this study, MLR models are also developed to compare the performance of
different ANN models. To further evaluate the effectiveness of wavelet analysis
similar to WANN models, BWMLR models are also developed and evaluated to
forecast 1 day lead time reservoir inflow of Panchet dam. Next, BWANN and
BWMLR models are developed by combining several WANN and WMLR models
trained using different realizations of the dataset generated using bootstrap
resample’s. In this way BWANN and BWMLR hybrid models contain capabilities
of both wavelet analysis and powerful bootstrap resampling techniques. Different
realizations of data patterns were generated using Bootstrap.xla an Excel-add-in
(Barreto and Howland 2006). The WANN models were developed using all the
approaches discussed above. The BWANN and BWMLR models are the ensemble
of WANN and MLR models, respectively, trained using 100 realizations of training
dataset generated using bootstrap resampling. A flow chart showing the development
of different models is shown in Fig. 3.

Table 2 Correlation between
inflow of Panchet reservoir and
different wavelet components of
input variables

Variables Correlation of variables with inflow of Panchet
reservoir

Original A3 d1 d2 d3

R1 0.27 0.48 −0.02 −0.02 0.01

R2 0.26 0.47 −0.02 −0.04 −0.02
R3 0.29 0.50 −0.02 −0.05 0.03

R4 0.27 0.42 −0.02 0.03 0.06

R5 0.24 0.42 −0.02 0.00 0.04

Konar outflow 0.68 0.56 0.12 0.30 0.26

Tenughat outflow 0.71 0.77 −0.03 0.13 0.20

Panchet inflow 1.00 0.82 0.22 0.40 0.35
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2.7 Performance Indices

The performance of the developed ANN, WANN, MLR, WMLR, BWANN and BWMLR
models were evaluated using five performance indices defined below:

(i) The coefficient of determination (R2):

R2 ¼

Xn

i¼1

Oi−O
� �

Pi−P
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

Oi−O
� �2Xn

i¼1

Pi−P
� �2

vuut

0
BBBBBB@

1
CCCCCCA

2

ð9Þ

where Oi and Pi are the observed and forecasted inflow, respectively, Ō and P are the means of
the observed and forecasted inflow, respectively, and n is the number of data patterns. Range of
R2 varies from 0 to 1, with 1 presents a perfect forecasting model.
(ii) The Nash-Sutcliffe coefficient (E) is defined as:

E ¼ 1−

X n

i¼1
Oi−Pið Þ2

Xn

i¼1

Oi−Oi

� �2
ð10Þ

The Nash–Sutcliffe efficiency varies from -∞ to 1. The value of 1 shows the perfect
model.

(iii) Root mean square error (RMSE):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

Oi−Pið Þ
2

vuut ð11Þ

Hydro-meteorological Dataset 
R1, R2, R3, R4, R5, KO, TO, PI

Wavelet Decomposi�on 
(A3, d1, d2, d3)

NN  

Resampling of 
Training Dataset 

BNN WNN

Resampling of Wavelet 
Sub Time Series Dataset

BWNN 

Training Cross-valida�on Tes�ng 

Forecast, Upper band, Lower band

MLR  WMLR BWMLR

Fig. 3 Flow chart showing the development of different models
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Table 3 Best ANN model structure for different input variables for testing dataset

Model Input variables Number of optimal
hidden neurons

ANN
architecture

Performance indices

R2 E
(%)

RMSE
(m3/s)

Pdv
(%)

MAE
(m3/s)

1 PI(t-1) 2 1-2-1 0.80 64.49 263.51 19.36 90.20

2 PI(t-1;t-2) 3 2-3-1 0.81 64.21 264.84 62.34 113.11

3 PI(t-1); TO(t-1) 2 2-2-1 0.86 69.55 244.03 47.46 74.05

4 PI(t-1); TO(t-1;t-2) 9 3-9-1 0.86 71.68 235.59 33.01 74.94

5 PI(t-1); TO(t-1); KO(t-1) 7 3-7-1 0.79 62.14 272.09 33.37 86.11

6 PI(t-1); TO(t-1); KO(t-2) 7 3-7-1 0.84 70.49 240.49 0.09 75.63

7 PI(t-1); TO(t-1); R1(t-1) 3 3-7-1 0.86 70.03 242.12 49.74 74.30

8 PI(t-1); TO(t-1); R1(t-1;t-2) 5 4-5-1 0.87 73.20 229.17 29.17 73.77

9 PI(t-1); TO(t-1); R1(t-1;t-2;t-3) 6 5-6-1 0.86 70.57 240.42 42.51 73.39

10 PI(t-1); TO(t-1); R1(t-1;t-2;t-4) 9 5-9-1 0.89 75.01 221.80 15.38 71.80

11 PI(t-1); TO(t-1); R1

(t-1;t-2;t-4;t-5)
4 6-4-1 0.88 72.75 231.86 28.83 75.24

12 PI(t-1); TO(t-1); R1

(t-1;t-2;t-4); R2(t-1)
2 6-2-1 0.90 77.94 208.39 4.09 69.87

13 PI(t-1); TO(t-1); R1

(t-1;t-2;t-4); R2(t-1;t-2)
7 7-7-1 0.90 80.74 194.74 2.85 68.10

14 PI(t-1); TO(t-1); R1(t-1;t-2;
t-4); R2(t-1); R3(t-1)

7 7-7-1 0.89 79.06 203.04 3.62 72.28

15 PI(t-1); TO(t-1); R1

(t-1;t-2;t-4); R2(t-1);
R4(t-1)

4 7-4-1 0.90 78.32 206.60 15.91 68.12

16 PI(t-1); TO(t-1); R1

(t-1;t-2;t-4); R2(t-1);
R5(t-1)

6 7-6-1 0.89 77.95 208.36 28.15 85.37

PI, TO, KO, R1, R2, R3, R4 and R5 represent inflow of Panchet, Outflow of Tenughat, outflow of Konar, Rainfall
at stations 1, 2,3,4 and 5, respectively. Whereas t represents at time t and t-1 represents at time t-1, etc. The entries
in bold show the best fit models found during the study
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RMSE is always greater than 0, with value 0 the model fits the data perfectly.(iv)
Percentage deviation in peak (Pdv):

Pdv ¼ Pp−Op

Op
100 ð12Þ

where Op and Pp represents peak values of observed and forecasted inflow, respectively.

Table 4 Performance of WANNmodels with different mother wavelets using all the wavelet components of best
found ANN model #13

Mother wavelet
function

Vanishing
moment

Hidden
neurons

Performance indices

R2 E (%) RMSE (m3/s) Pdv (%) MAE (m3/s)

db2 2 8 0.74 53.08 303.90 16.91 145.99

db5 5 7 0.93 85.47 169.11 22.27 67.48

db10 10 8 0.74 44.81 329.62 40.23 158.88

db20 20 5 0.47 16.15 406.27 76.47 270.08

Bior1.1 1 10 0.61 35.92 355.15 45.82 155.59

Bior3.3 3 6 0.67 44.70 329.93 21.70 179.08

Bior6.8 6 1 0.71 49.65 314.82 59.44 157.35

Haar 1 10 0.61 35.92 355.15 45.82 155.59

Coif1 2 6 0.80 52.60 305.45 15.61 140.87

Coif3 6 10 0.87 71.83 235.50 1.49 94.53

Coif5 10 7 0.80 62.75 270.79 14.69 130.53

The entries in bold show the best fit models found during the study

Table 5 Performance of WANN models developed using different approaches for 1 day lead inflow forecasting

Input variables Input variables Performance indices

Hidden
neurons

R2 E
(%)

RMSE
(m3/s)

Pdv
(%)

MAE
(m3/s)

Approach 1 All the 4 components of 8
variables with lag 1

9 0.91 82.84 183.21 37.79 67.72

Approach 2 All the four components of input
parameters and lags found best
for ANN model

7 0.93 85.47 169.11 22.27 67.48

Approach 3 All the significant wavelet components
separately having correlation >0.10
with lag 1

6 0.88 76.63 213.79 42.33 73.70

Approach 4 Newly constructed time series adding
significant components of each
parameter excluding d1 component
(same lag input as found for best ANN)

7 0.93 87.15 159.05 11.31 65.83

Approach 5 Newly constructed time series adding
significant components of each parameter

8 0.84 69.39 245.46 19.32 82.22
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(v) Mean absolute error (MAE):

MAE ¼ 1

n

Xn

i¼1

Oi−Pij j ð13Þ

MAE is always a positive number, with its minimum value 0 representing a perfect
model.

3 Results and Discussion

3.1 Performance of ANN Models

The performance of ANN model for different input variables and for optimum number
of hidden neuron in terms of different performance indices is shown in Table 3.
Considering all the performance indices, performance of model #13 was found to be
the best. Hydrograph and scatter plot between observed and forecasted values are
shown in Fig. 4. It is observed that simulated values show the general behavior of the
observed values, even though performance of model is not very good for medium and
high inflow values forecast. It can be considered that for best ANN model, outflow of
Tenughat, inflow of Panchet reservoirs and rainfall values at stations R1 and R2 are
found effective, whereas some of the input variables are not found effective in
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Fig. 5 Performance of WANN model (a) Hydrograph (b) Scatter plot using Model 4

Table 6 Performance of MLR and WMLR models for 1 day lead inflow forecasting

Model Input variables Performance indices

R2 E (%) RMSE
(m3/s)

Pdv
(%)

MAE
(m3/s)

MLR Same input variables as used for best ANN model 0.76 73.72 227.43 32.43 71.69

WMLR Same input variables as used for best WANN
model

0.80 77.41 210.88 32.36 66.28
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simulating inflow forecast at Panchet reservoirs such as outflow of Konar, rainfall at
stations R3, R4 and R5. This may be due to the reason that these data have high co-
linearity with other hydro-climatic data and add negligible information for the im-
provement of daily inflow forecasts at Panchet reservoir. With R2=0.90, E=78.32,
RMSE=206.60 m3/s and Pdv=15.91 and MAE=68.12 m3/s, performance of best ANN
model can be considered satisfactory, but higher value of RMSE compared to MAE
shows that model is not able to simulate high inflow values accurately. It may be due
to the reason that ANN models are not able to extract non-stationarity from the
training dataset.
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Fig. 6 Hydrographs and scatter plots for performance comparison of (a) MLR and (b) WMLR models

Table 7 Performance of BWMLR and WBANN models for 1 day dead inflow forecasting

Model Input variables Performance indices

R2 E (%) RMSE (m3/s) Pdv (%) MAE (m3/s)

BWMLR Ensembled forecast of 100 MLR models
calibrated using realization of training
data, input same as for best ANN model

0.80 77.44 210.74 32.09 66.23

BWANN Ensembled forecast of 100 ANN models
trained using realization of training data,
input same as for best WANN model

0.86 82.91 183.40 41.30 70.97
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3.2 Performance of WANN Models

WANN models were initially developed using all the wavelet sub time series components of
input variables and lagged information for all the components were the same as found best for
ANN model (Model #13 ) (i.e. Approach 2). Subsequently, performance of several wavelet
functions with different vanishing moments was considered to select an appropriate wavelet
function. The performance of WANN models using different wavelet functions and vanishing
moment is shown in Table 4. It can be observed that wavelet function db5 performed best
among all the wavelet functions considered. It can also be observed that performance of
WANN model developed using db5 wavelet function with 5 vanishing moment performed
better than standard ANN model in terms of different performance indices.

Once performance of WANN model was found better than ANN model, another issue
addressed was to found the appropriate selection of wavelet components or wavelet sub time
series to develop a robust WANN model. The performance of WANN models considering
different approaches are presented in Table 5. It can be observed that performance of WANN
models developed using newly constructed time series (i.e. Model 4) by adding significant
components of each variables excluding d1 component and by considering the same lagged
time information as found best for ANN, resulted in improved performance.

The performance of best found WANN modeling approach is also shown in form of
hydrograph and scatter plot as shown in Fig. 5. It can be observed that the observed values
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are simulated very well and performance is considerably improved particularly for peak values
as these are very close to 1:1 regression line. It can be observed that wavelet analysis with
proper selection of wavelet function and vanishing moment along with suitable wavelet
selection method can significantly improve the model performance.

3.3 Performance of MLR and WMLR Models

Similar to several previous studies, developed ANN and WANN models are compared with
MLR model to benchmark the performance. In this study in addition to MLR models, wavelet
based MLR models (WMLR) are developed and the performance is compared with ANN and
WANN models. MLR and WMLR models are developed by using the same input variables as
used for best ANN and WANN models, respectively, and the performance of both the models
is shown in Table 6. It can be observed that the performance of WMLR models is better than
MLR models, but WANN model performed better than both the MLR and WMLR models as
these two models are not able to simulate medium and high inflow values satisfactorily
(Fig. 6). This can also be observed from the higher RMSE values compared to MAE values
for both the models.

3.4 Performance of BWANN and BWMLR Models

Performance of BWANN and BWMLR models is shown in Table 7 in terms of different
performance indices and hydrograph and scatter plots using models (a) BWMLR and (b)
BWANN are shown in Fig. 7. It can be observed that ensemble forecasts obtained using
BWANN models is better than BWMLR models. It can also be seen that performance of
BWANNmodels is not as good as obtained usingWANNmodels, but BWANNmodels can be
considered as more robust and accurate as these models are ensemble of several WANN
models trained using different realizations of the training dataset. All these individual WANN
models are developed using 100 different realizations of the training dataset, these realizations
are applied to train the ANN models, and the ensemble of all these models are used to develop
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a new forecast for a new dataset. Further, the ensemble models initially generate 100 forecasts
for a new testing/validation dataset using all these 100 trained models. Though the perfor-
mance of ensemble BWANN models could have been better by generating ensemble of some
of the better performing models, but these forecasts are the ensemble using all the 100
forecasts instead of omitting any of the non-performing models. Therefore it is advocated that
the performance of BWANN model is better as these are the ensemble of 100 forecasts and are
more reliable and accurate even if the new dataset for the forecasts has different complexity
and variability compared to those applied for training of these ensemble models.

Instead of better performance of WANN models their reliability in generating same
forecast for the newer even or dataset is questioned. Moreover, it cannot be guaran-
teed that if the training and testing dataset are changed or interchanged then their
performance during forecast will remain the same. Therefore, assessment of uncer-
tainty associated with the forecast is very important to know the reliability of the
models and to implement the model in operational forecasting. The another advantage
of BWANN model is that using different forecasts, uncertainty band or confidence
bands can be constructed to see the uncertainty associated with the forecasts. Figure 8
depicts 95 % forecasted confidence bands and the corresponding observed values.
Confidence bands not only show general behavior of the observed time series but that
the values are simulated very well. It can be observed that higher inflow values
contain higher uncertainty whereas lower inflow values have low uncertainty.
Moreover, it can be observed that ensemble forecasts underestimate higher values
(Fig. 7b), but BWANN models are able to assess the uncertainty associated with these
forecasts. It shows that bootstrap technique is capable of uncertainty assessment and
increases the reliability of WANN model forecasts.

4 Conclusions

Bootstrap wavelet based ANN model (BWANN) is developed in this study for inflow
forecasting of Panchet reservoir in India and performance is compared with standard ANN,
wavelet based ANN (WANN), bootstrap wavelet based MLR (BWMLR) and wavelet based
MLR (WMLR) models. A robust ANN model was developed by considering several combi-
nations of parameters such as input variables, optimization parameters, training algorithms and
hidden neurons. WANN models are developed by considering different wavelet functions and
approaches to ensure an efficient WANNmodel. Based on this study following conclusions are
drawn:

& Wavelet analysis with proper selection of wavelet function and vanishing moment along
with suitable wavelet selection method can significantly improve the WANN model
performance.

& WANN model perform better than standard ANN, MLR and WMLR models for inflow
forecasting.

& Optimum number of input selected for ANN model development are also best with
different number of wavelet sub time series excluding d1 components for best WANN
model development.

& Out of several wavelet functions and vanishing moments, db5 wavelet function with 5
vanishing moment provide best WANN model for inflow forecasting.
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& WANN model not only have capabilities to simulate all the observed values very well, it
simulates peak inflow values far better compared to remaining models.

& Performance of ANN model is improved significantly by including reservoir outflow and
rainfall information in the upstream and nearby areas.

& Selection of significant input is very crucial as inclusion of randomly selected input
variables may significantly reduce the model performance.

& Best WANN model can be developed by taking different wavelet components excluding
d3 components of wavelet sub time series of input variables similar to those found best for
ANN model. Second best approach found is by considering all the wavelet sub time series
of raw input variables found best for ANN model.

& WANN model can deal with non-stationary dataset effectively and can be used as suitable
tool for inflow forecasting. It has the potential to perform better for different non-stationary
water resource variable forecasting.

& Forecasts obtained using BWANN models are not as good as WANN models, but they are
more stable and consistent in case of change in training data pattern.

& BWANN models are very effective to assess the uncertainty associated with the inflow
forecasts and have high applicability in operational inflow forecasting.

& Inflow forecasts can be improved by considering discharge releases from upstream
reservoirs, and rainfall values in upstream and nearby locations in the upstream boundary.

& Ensemble forecasts not only provide quantitative point estimate but also provide probabi-
listic forecasts by generating confidence bands, which would be helpful for flood control
and reservoir management authority in decision making.
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