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Abstract The pipe sizing of water networks via evolutionary algorithms is of great interest
because it allows the selection of alternative economical solutions that meet a set of design
requirements. However, available evolutionary methods are numerous, and methodologies to
compare the performance of these methods beyond obtaining a minimal solution for a given
problem are currently lacking. A methodology to compare algorithms based on an efficiency
rate (E) is presented here and applied to the pipe-sizing problem of four medium-sized
benchmark networks (Hanoi, New York Tunnel, GoYang and R-9 Joao Pessoa). E numerically
determines the performance of a given algorithm while also considering the quality of the
obtained solution and the required computational effort. From the wide range of available
evolutionary algorithms, four algorithms were selected to implement the methodology: a
PseudoGenetic Algorithm (PGA), Particle Swarm Optimization (PSO), a Harmony Search
and a modified Shuffled Frog Leaping Algorithm (SFLA). After more than 500,000 simula-
tions, a statistical analysis was performed based on the specific parameters each algorithm
requires to operate, and finally, E was analyzed for each network and algorithm. The efficiency
measure indicated that PGA is the most efficient algorithm for problems of greater complexity
and that HS is the most efficient algorithm for less complex problems. However, the main
contribution of this work is that the proposed efficiency ratio provides a neutral strategy to
compare optimization algorithms and may be useful in the future to select the most appropriate
algorithm for different types of optimization problems.
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1 Introduction

The optimal sizing of pipes in water distribution networks (WDNs) is an issue that continues to
require investigation. Optimal design refers to sizing the pipes of a WDN to ensure that various
requirements at the nodes (demands and pressure) and the lines (velocity) are met while
reducing the financial costs of the new pipes to be installed. Awide variety of factors affect this
problem. Therefore, optimal design for pipe sizing is not a direct and determined problem.

One of the complexities of WDN pipe sizing is the choice of pipe diameters as decision
variables. In this case, the constraints are the implicit functions of these variables and require
solving the conservation of mass and energy equations to determine the pressure heads at the
nodes. Currently, traditional methods based on mathematical techniques are limited to the
location of the local minima of the objective function, which depend on the starting point of
convergence.

Until a few years ago, water distribution design, upgrade, or rehabilitation was based on
trial and error, which was guided by experience. However, in the last three decades, a number
of researchers have attempted to solve the problem of WDN optimal design by applying
mathematical programming techniques.

The optimization of a WDN is by nature nonlinear. Notwithstanding, researchers have used
linear programming to reduce the original nonlinear problem complexity by solving a se-
quence of approximate linear sub-problems (Alperovits and Shamir 1977). This approach has
been adapted and improved by many researchers. Subsequent studies applied standard non-
linear programming methods (NLPs) to network design problems. However, NLPs are subject
to significant limitations: they do not guarantee global optima and typically use continuous
diameters as decision variables.

More recently, the application of heuristic and/or evolutionary techniques has proven to be
useful for solving WDN optimization problems. Evolutionary Algorithms (EAs) are a set of
optimization techniques based on the natural processes of evolution. Generally, EAs try to
optimize an objective function for a given design problem by exploiting the information from a
random initial solution. The search space is then explored based on this information to create
new populations that contain new solutions. According to established criteria, individuals who
are best adapted survive, and less adapted individuals perish.

In this work, the WDN design problem is formulated as a cost minimization problem with
pipe sizes as the decision variables. To date, many studies that utilized many different
algorithms have been published on this topic. Generally, researchers attempt to solve some
of the benchmarking problems available in the literature, matching (or not) the best solution
known to date in each of them. However, the performances of these algorithms have rarely
been compared by taking into account anything but the best solution obtained.

The drawback of these types of methods is the large number of simulations required to find
an optimal solution. In addition, these techniques are subject to certain parameters whose
calibration determines the proper performance of the algorithm. Consequently, the most
suitable calibration for each algorithm and problem is not immediately evident. Therefore, a
simple methodology to compare different algorithms to each other needs to be defined to
enable an understanding of the strengths and weaknesses of each algorithm according to the
characteristics of the problem under analysis.

This paper presents a methodology to compare the performances of EAs. This methodology
defines an efficiency rate (E), which relates the quality of the solution obtained to the
computational effort involved to reach that solution.
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Subsequently, this methodology was applied to the results obtained by four EAs for the
pipe-sizing problem of four benchmarking networks. The selected algorithms included a
PseudoGenetic Algorithm (PGA), a modified Particle Swarm Optimization Algorithm
(PSO), a modified Shuffled Frog Leaping Algorithm (SFLA) and a Harmony Search Algo-
rithm (HS). This work also includes a previous parameter calibration to determine the best E
values. Overall, at least 25,000 different simulations were performed for each network and
algorithm, which totals more than 500,000 simulations.

The results identify the most efficient of the four analyzed algorithms. The methodology
can be applied to many other evolutionary algorithms that have not been considered in this
work because the main objective of this study was to present an efficiency rate that neutrally
compares algorithm performance. This methodology is simple and can be easily reproduced by
any researcher to evaluate the performance of a heuristic or evolutionary algorithm.

2 WDN Design Based on Evolutionary Algorithms

All evolutionary methods share some basic principles, such as a data structure that stores the
characteristics of a given individual, an objective function that measures the quality of the
solution, a selection mechanism to ensure the survival of the best individuals and a set of
parameters that modify these individuals.

In the field of WDN, some researchers have successfully applied EA to optimal reservoir
operations (Ostadrahimi et al. 2011), the calibration of water quality models (Afshar et al.
2011; Haddad et al. 2013), complex supply systems (Chung and Lansey 2008; Louati et al.
2011), hydraulic pressure control in WDNs (Araujo et al. 2006) and Best Management
Practice models (Artita et al. 2013; Iglesias-Rey et al. 2014). Similarly, in recent years
many researchers have applied these algorithms to multi-objective optimization problems
related to water networks (Afshar et al. 2013; Barlow and Tanyimboh 2014; Wang et al.
2014)

Consequently, some of these evolutionary optimization techniques, such as Genetic Algo-
rithms (Savic and Walters 1997), SFLA (Eusuff and Lansey 2003) or Harmony search (Geem
2006), have been successfully applied to WDN design. Some previous studies (Kollat and
Reed 2006; Marchi et al. 2014) compare some of these techniques based on different absolute
criteria, but previous studies have not yet defined a method that relates the quality of the
obtained solutions to the computational effort required to reach it.

Among the design issues of interest, this work considers the pipe-sizing problem. There-
fore, for a given network layout and demand, this problem requires that the cost of a given pipe
network be minimized. Furthermore, the objective function is subject to the constraints of the
problem (pressure, velocity, etc.). The details of the methodology and the objective function
used in the structure of the algorithms can be found in Mora-Melia et al. 2013.

3 Selection of Evolutionary Algorithms

All EAs are a combination of deterministic and random approaches, and the efficiency of the
algorithm depends on the search process. Thus, each EA features different parameters that
maintain the diversity in the algorithm population while guiding the search process. Analo-
gously, the random elements ensure the flexibility and robustness of the search pattern, and the
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obtained results are generally highly sensitive to the values of these parameters. Therefore, an
adequate parameter pre-calibration is paramount.

Four algorithms were selected from the currently available algorithms in the
literature. These algorithms were selected because they have already been successfully
applied to various problems related to the WDN design in the original form of the
algorithm. Thus, the algorithms developed in this work include evolutionary method-
ologies based on PGA, PSO, SFLA and HS. Although other EAs may have also been
included, the architectures of these algorithms are sometimes highly problem-specific.
Therefore, the inclusion of additional algorithms was not favorable due to space
limitations and the required parameter calibration explanations, which are given below,
particularly because this work primarily intends to describe the implementation of a
comparative performance standard methodology for WDNs.

Genetic algorithms were one of the first heuristic methodologies applied to the design of
water networks. The method of the proposed PGA tests the evolution of a random population
via a parallelism that is similar to the laws of natural selection, which occurs in a classic GA.
Three calibration parameters control the process: the Population size (P), Crossover frequency
(Pc) and Mutation frequency (Pm). The different stages of the optimization process and the
complete description of the PGA can be found in Mora (2013).

The PSO heuristic technique was proposed by Kennedy and Eberhart 1995 and is
inspired by the social behavior of a flock of migrating birds that attempt to reach an
unknown destination. Each particle (bird) contains a solution for the optimization
problem because it moves in the search space with a velocity vector that is initially
selected at random. The PSO was originally developed to optimize continuous spaces,
but this work utilizes an adaptation designed for the study of discrete spaces Jin et al.
(2007).

PSO also features several parameters to calibrate, such as the Population size (P), the
velocity limit of birds (Vlim) and the learning factors C1 and C2. Nevertheless, the original PSO
algorithm often easily falls into local optima, causing early convergences. Therefore, the
authors have introduced a new parameter in the formulation of this algorithm, the Confusion
Probability (Pc). This parameter determines the number of particles that do not follow the
social learning of other particles in each iteration.

The original SFLA (Eusuff and Lansey 2003) has been applied to several problems,
including WDN design. However, the original SFLA is often trapped in local optima. To
avoid this problem, this work includes a search-acceleration factor (C) proposed by Elbeltagi,
Hegazy, and Grierson (2007), creating a modified form of the algorithm. This modification has
not been applied to problems related to WDNs.

Up to five different parameters are used to control the optimization process in the modified
SFLA: the number of memeplexes (m), number of frogs per memeplex (n), the number of
evolutionary steps (Ns), the size of sub-memeplex (Q) and the search-acceleration factor (C).
For the SFLA, P is determined by the product m×n.

Finally, the HS Algorithm simulates the evolution of a random population via a parallelism
similar to the improvisation process by which musicians finds the best harmony (Geem 2006).
HS can handle discrete and continuous variables and has been successfully applied to
computer science, engineering and economic problems. This work includes the original
method but applies it to four WDN pipe-sizing problems. Like other methodologies, the HS
algorithm features a set of three parameters to be calibrated: Harmony memory size (P),
Harmony Memory Considering Rate (HMCR) and Pitch Adjustment Rate (PAR).
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4 Efficiency Criteria

This work defines Efficiency (E) as a mathematical tool that relates the quality of the solution
obtained to the computational effort that requires each EA to find the final design solution. E is
an original concept proposed by the authors and represents a neutral and objective strategy to
compare the performance of different algorithms applied to solve the same problem, in this
case, the optimal pipe sizing of a WDN. To relate the concepts of quality and computational
effort, two rates must be formulated beforehand.

First, ηquality represents the quality of the solution. In this work, the quality of the solution is
related to the rate of successful solutions obtained for a specific WDN problem that satisfy
constrains imposed on the objective function. Importantly, ηquality can be defined according to
the requirements of the solutions to be generated. However, quickly obtaining a set of solutions
close to the lowest cost solution may sometimes be preferable. Therefore, a Bgood solution^
may be defined as a combination of solutions whose cost does not exceed a certain threshold
over the minimum cost. Hence, the quality index can be defined as follows:

ηquality ¼
Nsuccessful

Nsim
ð1Þ

where Nsuccessful is the number of Blowest^ or Bgood^ (sufficiently low) cost solutions,
depending on the optimization goal, and Nsim is the total number of simulations performed.

Second, the term convergence is related to the speed of convergence and requires the
algorithm to reach the final solution. If time factors are considered, the measurement of this
rate is not a trivial task, and results may significantly vary by computer. The number of factors
that can influence the run time is extensive: the algorithm structure, OS, processor speed and
number of processors, RAM memory and cache, GPU, etc.

One of the main objectives of the proposed methodology is the development of a tool that
can be easily reproduced and used by other researchers to compare the performance of
algorithms on the same basis. Therefore, time alone is not an adequate measure of convergence.

Alternatively, the convergence time can be measured by directly counting the number of
operations that constitute the algorithm during operation. Thus, the term convergence refers to the
number of objective function (OF) evaluations performed by the algorithm before finding the
final solution to the problem.

Evaluating the OF represents a call to the hydraulic calculation package and does not
necessarily coincide with the number of generations of the algorithm. The maximum number
of evaluations of the OF at each generation is equal to the initial population size. Thus,
between two different generations of a given algorithm, only the solutions that have experi-
enced a change from the previous generation are re-evaluated. The number of calls made by
each algorithm to a hydraulic package is one of the main differences between the rates at which
different algorithms converge on the solution.

The ratio of ηquality and convergence defines E and indicates the performance of the algorithm.
Specifically, the magnitude of E directly correlates with the solution quality and inversely
correlates with the computational resources required to reach this solution. Therefore, E is a
neutral measure to compare the different optimization algorithms.

E ¼ ηquality
ηconvergence

ð2Þ
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E reports the number of Bsuccessful^ evaluations obtained per call of the OF. Similarly, 1/E
gives the number of evaluations of the OF to be performed by the algorithm to find a
successful solution of the optimization problem.

E depends on both the optimization problem analyzed and the algorithm-specific defining
parameters. The results of this work show the best calibration ranges for each algorithm to
maximize E, whereas the complete statistical analysis was based on more than 500,000
simulations.

5 Methodology and Case Studies

Optimization methodologies based on EA cannot ensure that a problem global minimum is
found. Therefore, researchers have utilized a series of benchmarking networks to compare
algorithms. Currently, this type of problem can be classified into four groups (small, medium,
intermediate and large), according to the size of the search space. Wang et al. (2014) provided
a detailed description of these benchmark problems, including the number of decision
variables, the range of the diameters and other information. Similarly, the performance of
the algorithm depends not only on the nature of the problem but also on the calibration of the
algorithm parameters.

This paper proposes a method to measure the efficiency of optimization algorithms for
WDN pipe sizing. The proposed methodology includes two steps. First, the different algorithm
parameters for each network are calibrated. As such, the adopted methodology for tuning
evolutionary parameters begins with the selection of the problem. Next, the proposed meth-
odology applies several algorithm trial runs and tunes the operators. Finally, the results are
statistically analyzed to ensure the best possible configuration based on the quality of the
solutions and the convergence speed of the algorithm.

According to this calibration protocol, the most feasible combinations of different param-
eters within given intervals were tested for each algorithm. The initial range of values
considered was obtained from recommended sets of values found in the literature for each
algorithm and from values given in the authors’ previous work (Mora-Melia et al. 2010; 2013).
The majority of simulations to obtain the EA parameters were performed with a specific
application developed by the authors. To summarize the range of parameter values described
above, Table 2 shows all parameters considered for each of the techniques described and the
calibration range considered.

Note that the algorithm parameters can be divided into two groups. Specifically, the only
parameter common to all techniques is the initial size of the random population (P). The size of
P needs to be sufficient to guarantee the diversity of solutions and must grow with the number
of chain bits.

Conversely, each algorithm features specific parameters, and a proper calibration helps
reduce the randomness factor and improves the effectiveness of the search for minima. These
features ultimately significantly increase the probability of success. This work considers only
the calibration of specific parameters, whereas the population is considered constant at P=100
individuals.

After the parameters are calibrated, the second step of the methodology begins, which
consists of calculating the efficiency rates according to Eqs. (1) and (2). As noted earlier, the
efficiency of the algorithm directly correlates with the number of successful simulations per
OF evaluation.
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As indicated above, the benchmarking networks can be classified into four groups. In this
work, three medium-sized benchmarking networks were used to analyze the behavior of
algorithms from the standpoint of this new efficiency rate: Hanoi (Fujiwara and Khang
1990), New York Tunnel (Schaake and Lai 1969), and GoYang (Kim et al. 1994). Several
researchers have tested different models for these networks. Consequently, many solutions are
available in the literature, which allows the results to be compared and the conclusions to be
extended to networks with a search space of this order of magnitude.

A fourth benchmarking network was included in the analysis: the R-9 network of Joao
Pessoa (Gomes et al. 2009). The search space of this network is also medium-sized but closer
to the next category of benchmarking problem sizes (intermediate). This network was included
to study a more complex network within the size limits defined by the above classification.

Table 1 summarizes the most relevant operating conditions of all networks, the range of
diameters available and other information:

For the analyzed networks, all implemented EAs reached the best solution available in the
literature to date. However, for the R-9 network of Joao Pessoa, the best solution available in
the literature corresponds to the one obtained in this work. Due to the high solution variability,
each problem was solved at least 200 times for each parameter combination and algorithm.

In addition, solving WDN problems with this type of methodology requires the adoption of
a hydraulic solver. Here, the required calculations were performed using EPANET2 (Rossman
2000) and its library, the EPANET Toolkit because this solver is extensively used in the field.

6 Results

To ensure a representative sample and perform a reliable statistical analysis, each algorithmwas run
at least 25,000 times for each network. A statistical analysis of the results based on ηquality, convergence

and E is given below. First, the difficulty of pipe-sizing problems was analyzed. Figure 1 shows the
histogram of solutions for the four selected problems, considering all simulations and algorithms.

GoYang is a simpler problem because the probability of finding local solutions close to the
best solution identified is high (99 % of simulations has a lower overrun of 0.3 % than the
optimum). Therefore, the dispersion of solutions to the GoYang problem was lowest (only 303
different solutions for all runs) than that of other problems, despite the second largest solution
space of this problem. In contrast, the dispersion of results was highest for the Joao Pessoa
problem, with 16,101 different solutions found.

This dispersion is a key point to determine the complexity of the problem. The complexity
of the problem is sometimes associated with only the size of the solution space; however, the

Table 1 Data, original diameters and best solution obtained for selected benchmarking networks

Network Number of pipes Number of
possible diameters

Search space Best known
solution (×106 $)

Number of
different solutions

New York Tunnel 21 16 1.93×1025 38.642 2163

Hanoi 34 14 2.87×1026 6.081 4910

GoYang 30 8 1.24×1027 177.010a 303

Joao Pessoa 72 10 1×1072 192.366 16,101

a Cost in won (1,000 won ≈ 1 US$)
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optimization process is likely to become more complex as the number of local minima near the
optimum solution increases. This information is rarely published in the literature but is easy to
obtain as the simulations are performed.

The first step of the methodology based on E includes the calculation of the quality and
convergence rates. After performing the simulations, test runs were classified depending on the
calibration parameters and their success rate.

For the Hanoi, New York and GoYang networks, the success rate is the ratio of the number
of times the minimum was achieved to the total number of simulations required. For the Joao
Pessoa network, the low cost solution lacks sufficient replication due to the size and com-
plexity of the problem as well as the absence of thorough studies in the literature. Thus,
solutions whose cost did not exceed 1 % of the global minimum cost were considered
successful.

Figure 2 shows the success rate obtained for each network. The left side of each graph
shows the total rate of minimal solutions obtained for each network without any calibration,
whereas the right side shows the same success rate once the algorithm parameters had been
properly calibrated.

Figure 2 clearly reflects the importance of calibration parameters for EA. For all WDNs
analyzed, the optimal combination of parameters allows all algorithms to significantly increase
the number of successful solutions. Note that the number of successful solutions inversely
correlates with the number of local minima of networks for all algorithms. Specifically, the
number of minima is directly related to the complexity of the network and the algorithm
performance when searching for the global minima. Furthermore, the importance of parame-
ters in enhancing the search process varies by parameter. Some parameters are extremely
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value-sensitive, whereas others minimally affect the effectiveness of the algorithm. Table 2 shows
the specific parameters considered, the calibration range considered and the optimum parameter
calibration for each network and algorithm. The repeatability of obtaining minimal solutions is
related to the quality parameter in the efficiency of the algorithms, i.e., to ηquality in Eq. (2).

For the PGA, the mutation parameter is the most sensitive parameter. Thus, minima are
rarely obtained outside the recommended range. The crossing parameter did not differ across
the considered range in three of the four networks, but Pc>60 % slightly improves the results
for the New York network.

For the PSO algorithm, among the four parameters analyzed, the minimum solution is
sensitive to Vlim and Pconf: minima of the cost function were not identified outside the
proposed ranges of these parameters. C1 and C2 operate analogously within the range
considered, with slight improvements in the solutions when C1 and C2 are close to 2, as
recommended in the literature.

For the HS Algorithm, two parameters are critical to the performance of the algorithm.
Particularly, the pitch adjustment (PAR), a convergence parameter, is important: PAR values
higher than 50 % prevent the algorithm from obtaining a feasible solution. Moreover, the
effectiveness of the algorithm inversely correlates with the magnitude of PAR For the HMCR,
the HS algorithm converges to feasible solutions over the entire considered range. However,
the operation of the algorithm remarkably improves for HMCR>85 %.

Finally, the behavior of the calibration parameters of SFLA significantly differs from the
behavior of the above-described parameters. The accelerator coefficient (C) is the most
relevant parameter, and values close to 2 provide the best success rate for all but the New

3.26%

8.00%

12.60%

30.00%

18.46%

50.00%

1.32%

8.00%

Total simulations Optimal calibration

PSEUDOGENETIC ALGORITHM (PGA)

0.30% 1.06%

13.35%

27.25%

3.78%

16.94%

0.42%
1.81%

Total simulations Optimal calibration

PARTICLE SWARM OPTIMIZATION (PSO)

1.07%
3.00%

19.41%

33.50%

1.40%

8.00%

0.30%
1.50%

Total simulations Optimal calibration

HARMONY SEARCH (HS)

2.78%

8.10%

31.05%

44.80%

21.84%

58.60%

11.37%

18.40%

0%

Total simulations Optimal calibration

SHUFFLED FROG LEAPING ALGORIT. (SFLA)

Hanoi New York GoYang R-9 Joao Pessoa

Fig. 2 Success rate obtained for each network and algorithm. Importance of calibration parameters

Efficiency of Evolutionary Algorithms in Water Network Pipe 4825



York network (where C=1.5). In contrast, the success rate is essentially independent of the
submemeplex size (Q). Finally, the number of evolutionary steps (Ns) directly correlates with
the frequency of the minimum cost solution.

Several elements influence the convergence speed of each algorithm (ηconvergence). Specif-
ically, differences in the optimization process of each algorithm are important differentiating
factors in the eventual degree of convergence. However, the calibration of parameters plays a
key role in the speed of convergence to the final solution.

Figure 3 shows the average number of evaluations of the objective function for each
algorithm and network for the best possible parametric calibration. In each graph, the most
sensitive parameter remains constant at its optimum quality calibration value, whereas the full
ranges of the remaining parameters are presented.

The differences in the convergence speed between the different algorithms are remarkable
and vary by network. As expected, the number of OF evaluations is higher for the Hanoi and
Joao Pessoa networks because these networks are more complex. The HS algorithm requires
fewer OF evaluations to converge to the final solution for all analyzed networks. In contrast,
the SFLA algorithm requires more OF evaluations to reach the final solution. The largest
difference between HS and SFLA algorithms is in the Hanoi network, where SFLA required
12.5 times the number of evaluations conducted by HS to converge on a solution. The
behavior of PGA and PSO is situated between the extremes of HS and SFLA but much more
similar to that of the HS algorithm for almost all networks.

Table 2 Optimal parameter calibration for the four benchmarking networks

Algorithm Parameter
Range/divisions

Parameter
Range/divisions

Parameter
Range/divisions

Parameter
Range/divisions

PGA Pc
(10–90 %)/ 9

aPm
(10–90 %)/ 9

– –

Hanoi
New York
Joao Pessoa
Go-Yang

–
>60
–
–

3÷4
4÷5
1÷2
2÷3

–
–
–
–

–

PSO aVlim

(10–40 %)/ 4

aPconf
(10–40 %)/ 4

C1

(1.4–2)/ 4
C2

(1.4–2) 4

Hanoi
New York
Joao Pessoa
Go-Yang

20
20÷30
20
10

10÷20
10
10÷20
10÷20

2
2
2
2

2
2
2
2

HS aHMCR
(10–95 %)/ 10

aPAR
(10–95 %)/ 10

– –

Hanoi
New York
Joao Pessoa
Go-Yang

90÷95
85÷90
90÷95
85÷95

10
10÷40
10
10÷20

–
–
–
–

SFL Q
(20÷100)/ 5

aC
(1–3)/ 5

Ns

5–30/ 5

Hanoi
New York
Joao Pessoa
Go-Yang

20÷100
20÷100
20÷100
20÷100

2
2
2
1.5

30
30
30
30

aMore sensitive parameter of the algorithm for better performance
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The relationship between the calibration of specific algorithm parameters and the OF
evaluations is discussed below. For the PSO algorithm, the figure clearly shows the positive
correlation between the number of evaluations of the objective function and Pconf. Because the
probability of finding minimal solutions also decreases as Pconf increases, studying a wider
range of values was not indicated.

Figure 3 indicates that the PAR does not indicate the rate of the convergence speed of the
HS algorithm. Additionally, the PAR values do not exceed 40 % in Hanoi and New York
networks because feasible solutions were not identified.

Furthermore, a relationship between Pc and the speed of convergence could not be
established for PGA. Thus, OF evaluations slightly decrease as Pc increases for the New York
network, whereas this trend is reversed in the Joao Pessoa network. Pc did not correlate with
the number of OF evaluations for the Hanoi and GoYang networks.

For the modified SFL algorithm, the speed of convergence is independent of the size of
submemeplex (Q) (Fig. 3). Moreover, the number of evolutionary steps (Ns) significantly
increases the number of OF evaluations, which decelerates convergence. This situation is logical
and is not represented graphically because Ns is by definition a multiplier of OF evaluations.

Finally, the rate between ηquality and ηconvergence allows the calculation of efficiency rates
according to Eq. 2. Figure 4 shows E for obtaining successful solutions for all tested networks.

PGA is far superior to PSO, HS and SFLA for the Hanoi and Joao Pessoa networks.
Numerically, the E of PGA is 15 times larger than that of PSO for the Hanoi network. In other
words, for each successful solution obtained by PSO, PGA obtains 15 successful solutions.
Moreover, the E value of PGA is approximately 2.9 times higher than those of HS and SFLA.
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Fig. 3 Number of evaluations of the OF based on the most sensitive parameters
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For the Joao Pessoa network, the E value of PGA is 9.5, 4 and 2.1 times higher
than those of the PSO, SFLA and HS algorithms, respectively. Therefore, we can
conclude that the PGA algorithm is the most efficient algorithm to solve complex
problems, i.e., problems with a greater dispersion due to a high number of local
minima near the global minimum cost.

However, the performance of the HS algorithm significantly improves for less complex
networks. Thus, the HS algorithm was most efficient in finding low cost solutions for the New
York and GoYang networks. These two networks represent the lowest dispersion of solutions
near the minimum within the tested ranges (see Fig. 1). Thus, the efficiency of the optimally
calibrated HS was 2.6, 4.3 and 4.8 fold higher than those of the optimally calibrated PGA, PSO
and SFLA algorithms, respectively, for the New York Tunnel network.

The difference between HS and the other networks is lower for the GoYang network.
Specifically, HS is 1.1, 1.74 and 1.14 times more efficient than PGA, PSO and SFLA,
respectively. This significant improvement in the efficiency of the HS algorithm is due to an
early convergence of the algorithm to its final solution. For networks characterized by a small
number of local minima and/or a smaller field of possible solutions, such as the New York and
GoYang networks, the HS algorithm is the most efficient methodology.

The great disadvantage of HS is its robustness. Figure 4 indicates the sensitivity of solutions
to the value of PAR for all networks. Specifically, HS operates effectively over only a very
narrow range of PAR, and the efficiency of HS is consequently very low because PAR requires
calibration. Conversely, PGA and SFLA are much more robust because they perform accept-
ably over broader parameter ranges. Thus, these EAs do not require a highly sensitive
calibration to obtain acceptable efficiencies.
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Fig. 4 Efficiency of EA in obtaining successful solutions for the four selected networks
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7 Conclusions

WDN design using evolutionary and/or metaheuristic methods is highly interesting because it
allows the solution to search beyond the local minimums of the objective function. Many
different techniques are currently available for WDN design, and an objective methodology to
compare the performances of different algorithms is considered to be of great interest to the
scientific community

This work presents a methodology for comparing algorithms based on an efficiency rate
(E), which relates the quality of the solution to the computational effort required to reach it.

The proposed methodology has been applied here to water network pipe-sizing problem.
Among different available Evolutionary Algorithms, a PseudoGenetic Algorithm (PGA), a
Particle Swarm Optimization Algorithm (PSO), a Harmony Search Algorithm (HS) and a
modified Shuffled Frog Leaping Algorithm (SFLA) were studied. The presented methodology
was tested on four benchmark networks: Hanoi, NewYork Tunnel, GoYang and R-9 Joao Pessoa.

However, many factors can influence the optimization process, such as the problem
characteristics, variable coding, objective function considered and specific algorithm operators.
Therefore, a thorough parameter calibration prior to implementing the described methodology
is important.

Based on the statistical analysis of the results for the proposed four evolutionary algorithms
selected as well as the concept of Efficiency (E) defined in this work, the following conclu-
sions can be drawn:

– The defined efficiency ratio faithfully describes the level of performance of the algorithm
while considering both the ability to obtain the best possible solution and the number of
objective function evaluations required to reach this solution (the inverse of E).

– A proper calibration of the specific parameters for each algorithm is crucial to maximize
the efficiency. Therefore, PGA and SFLA were the most robust techniques because they
can perform best over wider parameter ranges.

– According to the efficiency rate, PGA is the most efficient algorithm for sizing more
complex networks (Hanoi and R-9 Joao Pessoa). Specifically, PGA and SFLA are more
likely to identify the lowest-cost solution, but the computational effort required for PGA is
much lower. Finally, HS and PSO algorithms do not find many minimal solutions for the
most complex problems, which severely decreases their efficiency.

– In terms of efficiency, the HS algorithm is best for simpler pipe-sizing problems (New
York and GoYang networks). In these two networks, all techniques successfully more
frequently identified minimal solutions, but HS required fewer OF evaluations to meet the
convergence criterion and obtain the final solution.

– Although the selected optimization models may not necessarily represent the best algo-
rithm performance given in the literature, the PSO algorithm is clearly the worst algorithm
in terms of efficiency of all tested algorithms tested in this work. This poor performance is
due to difficulties encountered by PSO when finding optimal solutions. Furthermore, the
computational effort of PSO is not lower than those of other methodologies.

The authors of this paper consider the proposed methodology presented in this paper to be
simple and reproducible by other researchers intending to measure the performance of their
algorithms. This methodology will likely constitute a useful tool for future fair comparisons of
algorithm performance.

Efficiency of Evolutionary Algorithms in Water Network Pipe 4829



Acknowledgments This research study was funded by the Chilean CONICYT grant under the Program
FONDECYT Initiation for research in 2013 and 2014 (Project folio 11130666 and 11140128, respectively).

References

Afshar A, Kazemi H, Saadatpour M (2011) Particle swarm optimization for automatic calibration of large scale
water quality model (CE-QUAL-W2): application to Karkheh Reservoir, Iran. Water Resour Manag 25:
2613–2632. doi:10.1007/s11269-011-9829-7

Afshar A, Shojaei N, Sagharjooghifarahani M (2013) Multiobjective calibration of reservoir water quality
modeling using Multiobjective Particle Swarm Optimization (MOPSO). Water Resour Manag 27:1931–
1947. doi:10.1007/s11269-013-0263-x

Alperovits E, Shamir U (1977) Design of optimal water distribution systems. Water Resour Res 13:885–900. doi:
10.1029/WR013i006p00885

Araujo LS, Ramos H, Coelho ST (2006) Pressure control for leakage minimisation in water distribution systems
management. Water Resour Manag 20:133–149. doi:10.1007/s11269-006-4635-3

Artita KS, Kaini P, Nicklow JW (2013) Examining the possibilities: generating alternative watershed-scale BMP
designs with evolutionary algorithms. Water Resour Manag 27:3849–3863. doi:10.1007/s11269-013-0375-3

Barlow E, Tanyimboh TT (2014) Multiobjective memetic algorithm applied to the optimisation of water
distribution systems. Water Resour Manag 28:2229–2242. doi:10.1007/s11269-014-0608-0

Chung G, Lansey K (2008) Application of the shuffled frog leaping algorithm for the optimization of a general
large-scale water supply system. Water Resour Manag 23:797–823. doi:10.1007/s11269-008-9300-6

Elbeltagi E, Hegazy T, Grierson D (2007) A modified shuffled frog-leaping optimization algorithm: applications
to project management. Struct Infrastruct Eng 3:53–60. doi:10.1080/15732470500254535

Eusuff MM, Lansey KE (2003) Optimization of water distribution network design using the shuffled frog leaping
algorithm. J Water Resour Plan Manag 129:210–225. doi:10.1061/(ASCE)0733-9496(2003)129:3(210)

Fujiwara O, Khang DB (1990) A two-phase decomposition method for optimal design of looped water
distribution networks. Water Resour Res 26:539–549. doi:10.1029/WR026i004p00539

Geem ZW (2006) Optimal cost design of water distribution networks using harmony search. Eng Optim 38:259–
277. doi:10.1080/03052150500467430

Gomes H, de Bezerra STM, de Carvalho P, Salvino M (2009) Optimal dimensioning model of water distribution
systems. Water SA 35:421–431. doi:10.4314/wsa.v35i4

Haddad OB, Tabari MMR, Fallah-Mehdipour E, Mariño MA (2013) Groundwater model calibration by meta-
heuristic algorithms. Water Resour Manag 27:2515–2529. doi:10.1007/s11269-013-0300-9

Iglesias-Rey PL, Martínez-Solano FJ, Mora-Meliá D, Martínez-Solano PD (2014) BBLAWN: a combined use of
best management practices and an optimization model based on a pseudo-genetic algorithm. Procedia Eng
89:29–36. doi:10.1016/j.proeng.2014.11.156

Jin Y-X, Cheng H-Z, Yan J, Zhang L (2007) New discrete method for particle swarm optimization and its
application in transmission network expansion planning. Electr Power Syst Res 77:227–233. doi:10.1016/j.
epsr.2006.02.016

Kennedy J, Eberhart R (1995) Particle swarm optimization. Proceedings of ICNN’95 - International Conference
on Neural Networks. IEEE, pp 1942–1948. doi:10.1109/ICNN.1995.488968

Kim JH, Kim TG, Kim JH, Yoon YN (1994) A study on the pipe network system design using non-linear
programming. J Korean Water Resour Assoc 27:59–67

Kollat JB, Reed PM (2006) Comparing state-of-the-art evolutionary multi-objective algorithms for long-term
groundwater monitoring design. Adv Water Resour 29:792–807. doi:10.1016/j.advwatres.2005.07.010

Louati MH, Benabdallah S, Lebdi F, Milutin D (2011) Application of a genetic algorithm for the optimization of
a complex reservoir system in tunisia. Water Resour Manag 25:2387–2404. doi:10.1007/s11269-011-9814-1

Marchi A, Dandy G, Wilkins A, Rohrlach H (2014) Methodology for Comparing Evolutionary Algorithms for
Optimization of Water Distribution Systems. doi: 10.1061/(ASCE)WR.1943-5452.0000321

Mora-Melia D, Iglesias-Rey P, Fuertes-Miquel V, Martinez-Solano F (2010) Application of the harmony search
algorithm to water distribution networks design. Taylor & Francis Group. pp 265–271. doi: 10.1201/b10999-67

Mora-Melia D, Iglesias-Rey PL, Martinez-Solano FJ, Fuertes-Miquel VS (2013) Design of water distribution
networks using a pseudo-genetic algorithm and sensitivity of genetic operators. Water Resour Manag 27:
4149–4162. doi:10.1007/s11269-013-0400-6

Ostadrahimi L, Mariño MA, Afshar A (2011) Multi-reservoir operation rules: multi-swarm PSO-based optimi-
zation approach. Water Resour Manag 26:407–427. doi:10.1007/s11269-011-9924-9

4830 D. Mora-Melia et al.

http://dx.doi.org/10.1007/s11269-011-9829-7
http://dx.doi.org/10.1007/s11269-013-0263-x
http://dx.doi.org/10.1029/WR013i006p00885
http://dx.doi.org/10.1007/s11269-006-4635-3
http://dx.doi.org/10.1007/s11269-013-0375-3
http://dx.doi.org/10.1007/s11269-014-0608-0
http://dx.doi.org/10.1007/s11269-008-9300-6
http://dx.doi.org/10.1080/15732470500254535
http://dx.doi.org/10.1061/(ASCE)0733-9496(2003)129:3(210)
http://dx.doi.org/10.1029/WR026i004p00539
http://dx.doi.org/10.1080/03052150500467430
http://dx.doi.org/10.4314/wsa.v35i4
http://dx.doi.org/10.1007/s11269-013-0300-9
http://dx.doi.org/10.1016/j.proeng.2014.11.156
http://dx.doi.org/10.1016/j.epsr.2006.02.016
http://dx.doi.org/10.1016/j.epsr.2006.02.016
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1016/j.advwatres.2005.07.010
http://dx.doi.org/10.1007/s11269-011-9814-1
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000321
http://dx.doi.org/10.1201/b10999-67
http://dx.doi.org/10.1007/s11269-013-0400-6
http://dx.doi.org/10.1007/s11269-011-9924-9


Rossman LA (2000) EPANET 2.0 User’s manual. EPA/600/R-00/057, Water Supply and Water Resources Div.,
National Risk Management Research Laboratory, Cincinnatti (USA)

Savic DA, Walters GA (1997) Genetic algorithms for least-cost design of water distribution networks. J Water
Resour Plan Manag 123:67–77. doi:10.1061/(ASCE)0733-9496(1997)123:2(67)

Schaake J, Lai FH (1969) Linear programming and dynamic programming application to water distribution
network design. M.I.T. Hydrodynamics Laboratory, Cambridge

Wang Q, Guidolin M, Savic D, Kapelan Z (2014) Two-Objective Design of Benchmark Problems of a Water
Distribution System via MOEAs: Towards the Best-Known Approximation of the True Pareto Front. J Water
Resour Plan Manag 04014060. doi: 10.1061/(ASCE)WR.1943-5452.0000460

Efficiency of Evolutionary Algorithms in Water Network Pipe 4831

http://dx.doi.org/10.1061/(ASCE)0733-9496(1997)123:2(67)
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000460

	Efficiency of Evolutionary Algorithms in Water Network Pipe Sizing
	Abstract
	Introduction
	WDN Design Based on Evolutionary Algorithms
	Selection of Evolutionary Algorithms
	Efficiency Criteria
	Methodology and Case Studies
	Results
	Conclusions
	References


