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Abstract In this study, an event based rainfall runoff model has been integrated with Single
objective Genetic Algorithm (SGA) and Multi-objective Genetic Algorithm (MGA) for
optimization of calibration parameters (i.e. saturated hydraulic conductivity (Ks), average
capillary suction at the wetting front (Sav), initial water content (θi) and saturated water content
(θs )). The integrated model has been applied for Harsul watershed located in India, and Walnut
Gulch experimental watershed located in Arizona, USA. Nash-Sutcliffe Efficiency (NSE) and
correlation coefficient (r) between observed and simulated runoff have been used to test the
performance of runoff models. The SGA and MGA integrated runoff model performance is
also compared with the performance of the Hydrologic Engineering Center- Hydrologic
Modeling System (HEC_HMS) model. Range of NSE values for study watersheds with
integrated MGA, integrated SGA, HEC_HMS and for the event based rainfall runoff models
are [−0.61 to 0.79], [−0.5 to 0.74], [−3.37 to 0.82] and [−5.78 to 0.53] respectively. Range of
correlation coefficient values for study watersheds with integrated MGA, integrated SGA,
HEC_HMS and for the event based rainfall runoff models are [0.18 to 0.95], [−0.55 to 0.90],
[−0.18 to 0.97] and [−0.12 to 0.86] respectively. From the results, it is evident that the
integrated model is giving the best calibrated parameters as compared to manual calibration
methods. Genetic Algorithm (GA) integrated runoff models can be used to simulate the flow
parameters of data sparse watersheds.
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1 Introduction

Hydrological models are essential to watershed planning and management. The hydrological
models are more and more widely applied by the hydrologists and water resource managers to
understand natural processes that affect the watershed systems. There exists a many integrated
watershed management systems (Ratha and Agrawal 2014, 2015) and Geographical
Information System (GIS) based hydrological models for the water resources management
activities (Rao and Kumar 2004; Bhalla et al. 2011). These hydrological models can contain
parameters that cannot be measured directly due to measurement issues and scaling issues
(Zhang et al. 2008). Prediction capability of the models depends on the correct selection of the
model parameter values. Some of the model parameters values can be physically measured but
the other model parameters are difficult to measure on spatial and temporal scales. Parameters
which cannot be measured or whose value need to be found during runtime, need calibration to
produce the model predictions that are close to the observed values.

For flood forecasting, it is required to model individual storm events at the catchment scale
(Bates and Ganeshanandam 1990; Zarriello 1998; Moussa et al. 2002; Jain and Indurthy 2003;
Reddy et al. 2008, 2011). The first important challenge that awaits the modeler in this task is to
choose a rainfall runoff model and to calibrate a set of parameters that can accurately simulate
a number of flood events and related hydrographs shapes (Moussa and Chahinian 2009).
Rosenbrock 1960; Duan et al. 1992; Gan and Biftu 1996; Yapo et al. 1998; and Vrugt et al.
2003 studied various calibration algorithms and procedures. Although they differ in the ways
they seek the optimal value, they all aim at minimizing or maximizing objective functions.

There are several traditional methods available to calibrate the hydrological model parameters.
Recently, the computing based optimization methods have proven to be efficient and robust. When
calibrating hydrological models one or more objectives are often used to measure the agreement
between observed and simulated values. Seibert (2000) proposed an algorithm for single and multi-
criteria calibration for the Hydrologiska Byråns Vattenbalansavdelning (HBV) model. The results
obtained in their study indicate that the genetic algorithm is capable of optimizing the parameters for
a conceptual runoff model. Henrik (2003) presented the use of the calibration framework for
parameter estimation in the MIKE SHE integrated and distributed hydrological modeling system.
Their results showed that, the balanced Pareto optimum solution provides a better simulation of the
runoff. Muleta and Nicklow (2005) described an automatic approach for calibrating daily stream
flow and daily sediment concentration values estimated using Soil and Water Assessment Tool
(SWAT) andGenetic Algorithm (GA). Reca andMartinez (2006) developed a new computermodel
called Genetic Algorithm Pipe Network Optimization Model (GENOME) and the model is aimed
to optimize the design of new looped irrigation water distribution networks. Wang et al. (2006)
proposed an Interval FuzzyMulti- Objective Programming LakeWatershed System (IFMOPLWS)
method was used to solve an integrated watershed management problem and they have concluded
that the IFMOPLWS is a powerful tool for integrated watershed management planning and can
provide a solid base for sustainable watershed management. Zhang et al. (2008) developed single
objective and multi-objective optimization algorithms which were applied to optimize the param-
eters of the SWAT using observed stream flow data. Their results demonstrated the advantages and
disadvantages of single objective and multi objective parameter estimation methods. Xuesong et al.
(2009) presented the application of GA and Bayesian Model Averaging (BMA) to simultaneously
conduct calibration and uncertainty analysis using SWAT. Yang and Fan (2010) presented a new
sensitivity analysis scheme for the NAM/MIKE 11 model. They achieved a sufficiently accurate
Pareto set and a good diversity in the obtained front with the use of Non-dominated Sorting
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Differential Evolution (NSDE) for the model calibration. Sahoo et al. (2010) examined the use of a
loosely coupled GA as an auto calibration tool for optimization of model parameters for the
Hydrologic Simulation Program-Fortran (HSPF). The objective function was optimized by mini-
mizing the mean absolute error between corresponding observed and simulated average daily
stream flow in the San Antonio River watershed. Kamali andMousavi (2013) presented single and
multi-objective optimization algorithms for automatic calibration of Hydrologic Engineering
Center- Hydrologic Modeling System (HEC_HMS) rainfall runoff model and a fuzzy optimal
model to combine different criteria.

From the above research studies, it is observed that there is a need for the robust optimization
model for calibration of event based rainfall runoff model. Many of the continuous hydrological
models had the automatic calibration methods which use different soft computing techniques.
But, for management of watershed management activities and for designing of hydraulic
structures, an event based rainfall runoff model with proper automatic calibration methodologies
is needed. The present study focus on the event based rainfall runoff model and its integration
with single and multi-objective GA algorithms for automatic calibration of parameters.

2 Materials and Methods

2.1 Governing Equations

Hydrological processes like infiltration, overland flow and channel flow are considered for flow
simulation in the watershed. The infiltration model formulation was given in Reddy et al. (2007).
The full formulation of overland flow and channel flow was given in Reddy et al. (2011). Green
Ampt Mein Larson (GAML) model was used for simulation of infiltration process. The equation
for infiltration rate, given by Green-Ampt in 1911 (Mein and Larson 1973) is as follows.

f p ¼ Ks 1þ MSc
F

� �
ð1Þ

where, fp is infiltration capacity (cm/h), Ks is saturated hydraulic conductivity (cm/h),M is initial
moisture deficit, Sc is capillary suction at the wetting front (cm),F is cumulative infiltration in cm.
Initial moisture deficit M can be expressed as follows:

M ¼ θs−θi ð2Þ
where, θs is saturated water content and θi is initial water content. The continuity and momentum
equations for kinematic wave in one dimension are given as follows:

∂q
∂x

þ ∂h
dt

¼ re ð3Þ

So ¼ S f ð4Þ
where, So is slope of overland flow plane, Sf is friction slope of flow plane. The final form of
the FEM equation for kinematic wave equation, which is used to simulate the overland flow, is
as follows (Reddy et al. 2011):

C½ � hf gtþΔt ¼ C½ � hf gt−Δt B½ � 1−ωð Þqt þ ωqtþΔt
� �þΔt ff g 1−ωð Þ reð Þt þ ω reð ÞtþΔt

� �
ð5Þ
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where, h is the depth of flow (m), q is the unit width flow (m2/s), re is excess rainfall rate
(m/s), superscripts t and t+Δt indicate the variables at the previous time step and the current
time step. ω is the factor that determines the type of finite difference scheme involved. The
Crank–Nicolson scheme with ω=0.5 is used in this study. [C], [B] and {f} are global
matrices.

Continuity and momentum equations for one dimensional kinematic equation for channel
flow are given as follows:

∂Q
∂x

þ ∂A
∂t

−q ¼ 0 ð6Þ

S ¼ Sfc ð7Þ
where, A is area of flow in the channel (m2). Q is discharge in the channel (m3/s). The final
matrix form of the FEM equation, which is used for the simulation of the channel flow, is as
follows (Reddy et al. 2011):

C½ � Af gtþΔt ¼ C½ � Af gt−Δt B½ � 1−ωð ÞQt þ ωQtþΔt
� �þΔt ff g 1þ ωð Þqt þ ωqtþΔt

� 	 ð8Þ

where, A is area of flow in the channel (m2) and Q is discharge in the channel (m3/s).

2.2 Genetic Algorithm Formulation

The main difference between genetic algorithms and most of the traditional optimization
methods is that GA uses a population of points at one time in contrast to the single point
approach by traditional optimization methods (Rajasekaran and Vijayalakshmi 2007). In GA,
the optimization has been carried out either maximizing or minimizing the objective function
(fitness function) value. In this study, Single-objective GA (SGA) and Multi-objective GA
(MGA) models are integrated with FEM based rainfall-runoff model of Reddy et al. (2011). In
SGA, the Nash-Sutcliffe Efficiency (NSE) is used as objective function. In MGA, correlation
coefficient (r) and NSE are used as objective functions. The NSE and r are calculated as
follows:

NSE ¼ 1−

X
y− fð Þ2X
y−y

� �2 ð9Þ

r ¼ N
X

f yð Þ−
X

fð Þ
X

yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
X

f 2
� 	

−
X

f
� �2

� �s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N
X

y2
� 	

−
X

y
� �2

� �s ð10Þ

where, f is the model simulated runoff value, y is the observed runoff value, and y is the mean
of observed runoff values for the entire time period of the evaluation. For optimization of four
infiltration parameters, two constraints have been considered i.e. (i) the initial water content
should be less than saturated water content; (ii) parameters value should be within the specified
bounding limits.
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Infiltration and flow resistance parameters are input to an event based rainfall-runoff
model. However, it is very difficult to get the field values of infiltration and flow
resistance parameters for a given rainfall event. Hence, it is required to find out the best
parameters for a given rainfall event from the possible range of those parameter values.
GA will help to find the optimal parameter values and substantially reduce the burden of
manual calibration. In the present study, C programming code of GA developed by Prof
Kalyanmoy Deb (http://www.iitk.ac.in /kangal/index.shtml) is downloaded and modified
for the present problem (Srinivas and Deb 1994; Deb K 2001). It is loosely coupled with
the C programming code of Reddy et al. (2011) runoff model. The loose coupling of
models externally keeps the algorithms independent of each other. Interaction occurs
only in a common external file. The common file transfers the decoded parameters to
runoff model which uses the parameters as input and simulate runoff. Simulated runoff
will be transferred to the GA for fitness evaluation. The process is repeated till obtaining
the best fitness value.

2.3 SGA Integrated Runoff Model

Methodology flowchart for coupled runoff model with SGA is shown in Fig. 1. General steps
in the SGA integrated runoff model for calibration of four parameters are as follows:

Step 1: Initially, the required GA and runoff model inputs are given to the model.
The input datasets (FEM grid map, Land Use (LU) /Land Cover (LC), Soil
map, Drainage map) for the runoff model are prepared using remote sensing
and geographical data. The preparation of maps and detailed information
about the parameters are given in Reddy et al. (2011). The SGA inputs are
number of generations, population size, variable types, upper and lower
boundary values of the parameters, choice of selection, crossover operator,
crossover probability and mutation probability. For this study, the number of
generations and population size has been fixed to 100 and 8 respectively. In
SGA, the NSE is used as objective function. The upper and lower bounds
for the parameters have been fixed for the each rainfall event with the
available information (Keefer et al. 2008; Reddy et al. 2011). The roulette
wheel selection and uniform crossover are considered with crossover proba-
bility of 0.9 and mutation probability of 0.1.

Step 2: For generation zero, a set of initial population (8 sets of 4 variables) is created in
SGA based on given inputs, especially lower and upper boundaries of variables.
Each set of variables is transferred to the rainfall runoff model. With other inputs, the
rainfall runoff model is simulated for runoff. Once fitness values are evaluated for all
the populations, GAwill store the best ever population for generation zero. Based on
the best ever population, the GA creates a new population using crossover and
mutation operators.

Step 3: The new population will be sent to the rainfall runoff model one by one and
fitness function values are evaluated for each population. Based on the
fitness values, GA will store for the best ever population and corresponding
fitness value. If the best fitness value satisfies the convergence criteria or
SGA generation reaches 100, then the process is stopped and runoff is
simulated for best ever solution.

Parameter Optimization for Event Based Runoff Model Using GA 4593
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2.4 MGA Integrated Runoff Model

Methodology flowchart for the MGA integrated model is shown in Fig. 2. The following
general steps are involved in the MGA integrated model.

Step 1: GA and runoff model inputs are same as SGA. In MGA, correlation coefficient (r)
and NSE are used as objective functions. The upper and lower bounds of parameters,
GA operators and their probability are taken as same as the integrated SGA model.

Step 2: For generation zero, a set of initial population (8 sets of 4 variables) is created in
MGA based on given inputs and fitness values are evaluated for all the populations.
Pareto optimal solutions are identified using nondominated sorting method.

Step 3: In MGA scenario, to select optimal solutions, an additional process is added with
GA. All acceptable solutions (Pareto) are assigned with rank one using
nondominated sorting GA method. All the possible solutions are then combined
with the sum of the weighted objective method.

Fig. 1 Flowchart for SGA integrated runoff model
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Step 4: If the combined value satisfies the convergence criteria or MGA generation reaches
100. Then the process is stopped and runoff is simulated for best ever solution.

2.5 Study Area Description

Walnut Gulch Experimental watershed located in Arizona State of United State of America
(USA) (Fig. 3) and Harsul watershed located in Nashik district, Maharashtra, India (Fig. 4) are
chosen as study watersheds. The model has been applied for two watersheds to test the validity
of the proposed integrated runoff model for providing accurate hydrology prediction and
uncertainty intervals. Finite element formulation of event based rainfall runoff model and input
layer preparation for Harsul watershed are explained in Reddy et al. (2011). Soils of theWalnut
Gulch Experimental Watershed are sandy gravely loams and major watershed vegetation
includes the grass and shrub species. The Walnut Gulch Experimental watershed consists of

Fig. 2 Flowchart MGA integrated runoff model
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42 major sub watersheds. The sub watershed selected for model application has an area of
7.8 km2. Digital Elevation Model (DEM), LU/LC, soil and rainfall data have been downloaded
from the online data access facility of the USDA-ARS (http://www.tucson.ars.ag.gov/dap//). In
this study, runoff parameters for the simulation model have been optimized using SGA and
MGA.

3 Results and Discussions

In the present study, the GA integrated runoff model has been auto calibrated for four
infiltration parameters simultaneously namely, saturated hydraulic conductivity (Ks), average
capillary suction at the wetting front (Sav), initial water content (θi) and saturated water content
(θs) for each rainfall event using GA. Twelve rainfall events in Harsul and four rainfall events
in Walnut Gulch are simulated using the integrated model. Parameters have been optimized
using SGA and MGA. The simulated results have been compared with HEC_HMS and Reddy
et al. (2011) model simulated results for same rainfall events. Roulette wheel selection and
uniform cross over operators are used in the SGA and MGA. Crossover probability of 0.9 and
mutation probability of 0.1 is used in simulations. In SGA, the value of NSE between
simulated and observed runoff has been taken as fitness value of population. The selection
operator has been set to maximize the value of fitness function, as the NSE varies -∞ to 1. The
population which is near to 1 will have less error. For twelve rainfall events of Harsul
watershed, the maximum and minimum fitness value observed are 0.65 and −0.57 respective-
ly. To improve the performance of the model, in addition to NSE, the correlation coefficient
has been taken as a second objective function in MGA. In MGA, the selection operator has
been set to maximize these two objective functions. Best population has been selected by
combining Pareto optimal solution using the sum of weighted objective method with 60 % of
NSE and 40 % correlation coefficient. The maximum and minimum total fitness has been

Fig. 3 Location map of Walnut Gulch watershed
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observed as 0.85 and −0.16 respectively. In single and multi-objective GA models, these
fitness values have been achieved within 100 generations with eight populations.

The upper and lower limit of the parameters for Harsul and Walnut Gulch watersheds are
given in Table 1. The optimized parameters for Harsul and Walnut Gulch watershed using
single and multi-objective GA are listed in Table 1. The observed and simulated hydrographs
for Harsul and Walnut Gulch watersheds are shown in Figs. 5 and 6 respectively. The model
simulation results for Harsul and Walnut Gulch watersheds are shown in Table 2.

Due to the random nature of GA, the global optimum is not guaranteed to be the best
solution. Thus, the global optimal solution is cross validated by evaluating each parameter on
its parameter space. Global optimum validation for the rainfall event Aug 22, 1997 is shown in
Fig. 7 and it is very clear from the figure that the global optimum solution is the optimum
solution for that event.

From the simulation results of Harsul watershed with integrated SGA model, it is seen that
the volume of the runoff has been simulated within a variation of 12.3 to 75 %, peak runoff has
been simulated within a variation of 2.25 to 50.3 %, and time to peak runoff has been
simulated within the variation of 0.05 to 69.49 %. For integrated MGA model, volume of
runoff has been simulated within the variation 4.2 to 65.1 %, peak runoff has been simulated
within the variation of 0.85 to 48.65 %, and time to peak has been simulated within the
variation 0.05 % to 69.87 %. From the hydrographs, it is observed that GA effectively
optimized the calibrated parameters. The overall shapes of the hydrographs are well captured
with the integrated model.

From the simulation results of the Walnut Gulch watershed with integrated SGA, it is
observed that the volume of runoff has been simulated within the variation in 4.30 to 46.00 %.
Peak runoff has been simulated within the variation of 0.86 to 16 %. Time to peak has been
simulated within the variation of 18 to 32 % except for the event on Aug 28, 2008. For this

Fig. 4 Location map of Harsul watershed (Reddy et al. 2011)
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event, the variation in time to peak is 74.69 %. For the integrated MGA, it is seen that the
volume of runoff has been simulated within the variation of 1.08 to 46.50 %. Peak runoff has
been simulated within the variation of 4.70 to 14.41 %. Time to peak has been simulated
within the variation of 18 to 34 % except for the event on Aug 28, 2008. For this event the
variation in time to peak is 74.07 %.

Average percentage error is the ratio between the sum of all events absolute error
percentage in a criteria and total number of events in the watershed. From the
simulation results of Harsul watershed with integrated SGA, for twelve rainfall events
the average percentage error for volume of runoff, peak runoff and time to peak are
44.76 %, 22.25 and 25.5 %.. For the integrated MGA, the average percentage error
for volume of runoff, peak runoff and time to peak are 39.42, 17.96 and 25.19 %. For

Fig. 5 Observed and simulated hydrographs generated GA Integrated runoff model (Single and Multi-
objective),Reddy et al. (2011) model and HEC_HMS model for Harsul watershed a Aug 22,1997 b
Aug 04,1997 c Jul 27,1997 d July 28,1997 e Jul 30,1997 f Sep 26,1997
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the four rainfall events of the Walnut Gulch watershed with integrated SGA, the
average percentage error for volume of runoff, peak runoff and time to peak are
30.85, 10.61 and 36.69 % respectively. For the integrated MGA, the average percent-
age error of the volume of runoff, peak runoff and time to peak are 30.17, 9.02 and
36.52 % respectively. For the eleven rainfall events of Harsul watershed, the percent-
age error for volume of runoff, peak runoff and time to peak for Reddy et al. (2011)
are 57.89, 28.30 and 24.27 %. It is observed that for all the rainfall events, integrated
model with SGA has better identified the parameters set than the runoff model by
Reddy et al. (2011). However, due to single objective function error percentage in
volume of runoff, Peak runoff and time to peak are comparatively high and these
errors are further reduced with MGA. From the results it is evident that the MGA has
performed better than SGA and runoff model by Reddy et al. (2011).

The performance of integrated runoff models (SGA and MGA), Reddy et al. (2011)
model and HEC_HMS model are evaluated with NSE and correlation coefficient values.
The NSE and correlation coefficient for all the models are shown in Table 3. It is seen
that the integrated runoff models (SGA and MGA) are providing better performance than
Reddy et al. (2011) model. Range of NSE values obtained for Harsul watershed with
integrated SGA, integrated MGA, HEC_HMS and Reddy et al. (2011) models are
[−0.12, 0.65], [−0.61,0.79], [−3.37, 0.95] and [−5.78, 0.53] respectively. Range of
correlation coefficient values for Harsul watershed with integrated SGA and integrated
MGA, HEC_HMS and Reddy et al. (2011) models are [0.01, 0.86], [0.19, 0.95], [−0.18,

Fig. 6 Observed and simulated hydrographs generated by GA Integrated runoff model (Single and Multi-
objective), and HEC_HMS models for Walnut Gulch watershed a Jul 20, 2007 b Aug 23, 2009 c Aug 28, 2008 d
Aug 28, 2010
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0.97] and [−0.12, 0.86] respectively. For the rainfall events of the Walnut Gulch
watershed, the range of NSE values for integrated SGA, integrated MGA and
HEC_HMS models are [−0.52, 0.74], [0.49, 0.65] and [−0.13, 0.82] respectively. For
the rainfall events of the Walnut Gulch watershed, the range of correlation coefficient
values for integrated SGA, integrated MGA and HEC_HMS models are [−0.55, 0.90],
[0.18, 0.90], [0.54, 0.92].

Furthermore, to validate the model accuracy, the model efficiency values obtained
in the present study are compared with the available research studies. Lafdani et al.
(2013) evaluated the efficiency of Adaptive Neuro-Fuzzy Inference System (ANFIS)
based daily runoff simulation and it is reported that the maximum correlation
coefficient and NSE values are 0.86 and 0.79 respectively. Haghizadeh et al. (2014)
integrated ANN model and Watershed Modeling System (WMS) for estimating the
infiltration parameter. The performance of the model was evaluated using correlation
coefficient and the maximum value is 0.90. It is observed that the maximum corre-
lation coefficient and NSE values obtained from the present GA integrated runoff
model are 0.95 and 0.79 respectively.

From Table 2, it is observed that the HEC_HMS runoff model proving better
performance over integrated runoff models (SGA and MGA) for all rainfall events
of Walnut Gulch watershed and six rainfall events of Harsul watershed. For these
rainfall events, the performance of the GA integrated model over HEC_HMS may be

Fig. 7 The convexity of the NSE on the parametric space for the event Aug 22, 1997
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improved by increasing number of generations and by increasing search space. It is
also observed that HEC_HMS model involves manual optimization and model re-
quires the detail information of the parameters for each sub-basin.

4 Conclusions

Present paper focus on the applicability of GA based single and multi-objective
optimization algorithm for automatic calibration of event based rainfall runoff model.
The integrated GA runoff model has been applied for Harsul watershed, India and
Walnut Gulch watershed, USA. For comparison of the simulation results, the same
rainfall events have been calibrated and validated with HEC_HMS model. The model
performance has been tested using NSE and correlation coefficient. A set of param-
eters for a runoff model that resulted in a good fit with measured stream flow data
were obtained using SGA and MGA. The integrated GA runoff model structure has
reduced the time for calibration as compared to manual calibration. From the simu-
lation results, it is observed that the model has predicted the peak runoff and time to
peak reasonably well when compared with the observed data and simulation results
generated by the HEC_HMS. However, the volume of runoff was underestimated to
some extent in all twelve data sets. The developed GA integrated model can be useful
to use in real time flow simulation models and to simulate the flow parameter of data
sparse watersheds.

Table 3 Nash- Sutcliffe Efficiency (NSE) and correlation coefficient (r) values for the simulation events

Rainfall Event Reddy et al. (2011) model HEC_HMS SGA MGA

correlation
coefficient

NSE correlation
coefficient

NSE correlation
coefficient

NSE correlation
Coefficient

NSE

Harsul watershed

22081997 0.86 −3.7 −0.18 −3.37 0.86 0.33 0.95 0.78

23091997 0.40 −0.1 0.12 −0.46 0.55 0.40 0.63 0.33

04081997 −0.12 −4.94 0.97 0.95 0.01 0.06 0.77 0.54

27071997 0.65 −3.67 0.58 0.14 0.65 0.57 0.51 −0.61
28071997 0.46 −5.78 0.64 0.15 0.41 0.35 0.54 −0.23
30071997 0.79 0.43 0.56 0.08 0.81 0.65 0.81 0.66

25081997 0.62 −5.17 0.84 0.69 0.60 0.21 0.60 0.11

26071997 0.63 −0.51 0.91 0.81 0.56 0.52 0.94 0.79

24081997 NIL NIL 0.87 0.64 0.75 −0.12 0.75 0.44

21081997 NIL NIL 0.43 0.03 0.2 −0.01 0.19 −0.01
26091997 0.12 −0.98 0.81 0.41 0.109 0.42 0.93 0.70

23081997 0.75 0.53 0.48 −0.27 0.65 0.14 0.39 0.72

Walnut Gulch watershed

20072007 NIL NIL 0.86 0.70 0.90 0.74 0.90 0.65

23082009 NIL NIL 0.54 −0.13 0.59 −0.52 0.18 −0.49
28082008 NIL NIL 0.92 0.82 0.83 −0.02 0.42 −0.05
28082010 NIL NIL 0.92 0.79 −0.55 0.32 0.73 0.34

4604 T. Reshma et al.



Acknowledgments Our sincere thanks to Mr. Guy Honore, Project coordinator, Indo German Bilateral Project-
Watershed Management, for providing the hydrological data of the Harsul watershed. Our sincere thanks to Mr.
Jeffry J. Stone, Hydrologist, USDA-ARS Southwest Watershed Research Center, for giving valuable suggestions
in downloading the hydro-meteorological database of the Walnut Gulch watershed from the online data access
website of the USDA-ARS Southwest Watershed Research Center. We also thank Prof. Kalyanmoy Deb, IIT
Kanpur for providing the GA codes through web link: http://www.iitk.ac.in /kangal/index.shtml. The authors also
thank the associate editor of this journal and three anonymous reviewers for their valuable comments which
improved the manuscript significantly.

References

Bates B, Ganeshanandam S (1990) Bootstrapping non-linear storm event models. National conference of
Hydraulic engineering, Dan Diego, pp 330–335

Bhalla RS, Pelkey NW, Devi Prasad KV (2011) Application of GIS for evaluation and design of watershed
guidelines. Water Resour Manag 25:113–140

Duan Q, Sorooshian S, Gupta V (1992) Effective and efficient global optimisation for conceptual rainfall runoff
models. Water Resour Res 28:1015–1031

DebK (2001) Nonlinear goal programming usingmulti-objective genetic algorithms. J Oper Res Soc 52(3):291–302
Gan T, Biftu G (1996) Automatic calibration of conceptual runoff models. Water Resour Res 32(12):3513–3524
Henrik M (2003) Parameter estimation in distributed hydrological catchment modelling using automatic cali-

bration with multiple objectives. Adv Water Resour 26:205–216
Haghizadeh A, Leila S, Hossein Z (2014) Optimization of the conceptual model of green-ampt using artificial

neural network model (ANN) and WMS to estimate infiltration rate of soil (case study: Kakasharaf
watershed, Khorram Abad, Iran. J Water Resour Prot 6:473–480

Jain A, Indurthy P (2003) Comparative analysis of event based rainfall runoff modeling techniques-
Deterministic, statistical and artificial neural networks. J Hydrol Eng 8(2):93–98

Kamali B, Mousavi SJ (2013) Automatic calibration of conceptual HEC_HMS using multi-objective fuzzy
optimal models. Civil Eng Infrastructures J

Keefer TO, Moran MS, Paige GB (2008) Long-term meteorological and soil hydrology database, Walnut Gulch
Experimental Watershed, Arizona, United States. Water Resour Res 44(W05S07)

Lafdani KE, Nia MA, Ahmadi A, Jajarmizadehm M, Gosheh GM (2013) Stream flow simulation using SVM,
ANFIS and NAM models (A case study). Caspian J Appl Sci Res 2(4):86–93

Mein RG, Larson CL (1973) Modeling infiltration during steady rainfall. Water Resour Res 9(2):384–394
Moussa R, Voltz M, Andrieux P (2002) Effects of spatial organization of agricultural management on the

hydrological behaviour of farmed catchment during flood events. Hydrol Process 16(2):393–412
Moussa R, Chahinian N (2009) Comparison of different multi-objective calibration criteria using a conceptual

rainfall-runoff model of flood events. Hydrol Earth Syst Sci 13:519–535
Muleta MK, Nicklow JW (2005) Sensitivity and uncertainity analysis coupled with automatic calibration for a

distributed watershed model. J Hydrol 306:127–145
Ratha D, Agrawal VP (2014) Structural modeling and analysis of water resources development and management

system: a graph theoretic approach. Water Resour Manag 28:2981–2997
Ratha D, Agrawal VP (2015) A digraph permanent approach to evaluation and analysis of integrated watershed

management system. J Hydrol 525:188–196
Rajasekaran S, Vijayalakshmipai GA (2007) Neural networks, fuzzy logic and genetic algorithms synthesis and

applications. Prentice Hall of India private limited
Reca J, Martinez J (2006) Genetic algorithms for the design of looped irrigation water distribution networks.

Water Resour Res 42, W05416
Rao KHVD, Kumar DS (2004) Spatial decision support system for watershed management. Water Resour

Manag 18:407–423
Reddy KV (2007) Distributed rainfall runoff modeling of watershed using finite element method, remote sensing

and Gepgraphical Information Systems, IIT Bombay, Mumbai (unpublished thesis)
Reddy KVK, Eldho TI, Rao EP, Chitra NR (2008) A distributed kinematic wave-philip infiltration watershed

model using FEM, GIS and remotely sensed data. Water Resour Manag 22:737–755
Reddy KV, Eldho TI, Rao EP, Kulkarni AT (2011) FEM-GIS based channel network model for runoff simulation

in agricultural watersheds using remotely sensed data. Int J River Basin Manag 9:17–30
Rosenbrock H (1960) An automatic method for fitting the greatest or least value of a function. Comput J 3:175–184
Sahoo D, Smith PK, Ines AVM (2010) Autocalibration of HSPF for simulation of streamflow using a genetic

algorithm. Am Soc Agric Biol Eng 53:75–86

Parameter Optimization for Event Based Runoff Model Using GA 4605

http://www.iitk.ac.in/


Seibert J (2000) Multi-criteria calibration of a conceptual runoff model using genetic algorithm. Hydrol Earth
Syst Sci 4:215–224

Srinivas N, Deb K (1994) Multiobjective optimization using nondominated sorting in genetic algorithms. Evol
Comput 2(3):221–248

Vrugt, J. et al., 2003. Effective and efficient algorithm for multiobjective optimization of hydrologic models.
Water Resour Res 39(5)

Wang L, Meng W, Guo H, Zhang Z, Liu Y, Fan Y (2006) An interval fuzzy multiobjective watershed
management model for the lake Qionghai watershed, China. Water Resour Manag 20:701

Xuesong Z, Srinivasan R, David B (2009) Calibration and uncertainty analysis of the SWATmodel using Genetic
Algorithms and Bayesian Model. Averaging J Hydrol 374:307–317

Yang L, Fan S (2010) Sensitivity analysis and automatic calibration of a rainfall-runoff model using multi-
objectives. Ecol Inform 5:304–310

Yapo P, Gupta H, Sorooshian S (1998) Multi-objective global optimization for hydrologic models. J Hydrol 204:
83–97

Zhang X, Srinivasan R, Van Liew M (2008) Multi-site calibration of the SWAT model for hydrologic modelling.
Am Soc Agric Biol Eng 51:2039–2049

Zarriello P (1998) Comparison of nine uncalibrated runoff models to observed flows in two small urban
watersheds. First federal interagency hydrologic modeling conference, Las Vegas, NV, USA,7-163-7-170

4606 T. Reshma et al.


	Optimization of Calibration Parameters for an Event Based Watershed Model Using Genetic Algorithm
	Abstract
	Introduction
	Materials and Methods
	Governing Equations
	Genetic Algorithm Formulation
	SGA Integrated Runoff Model
	MGA Integrated Runoff Model
	Study Area Description

	Results and Discussions
	Conclusions
	References


