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Abstract Water scarcity is one of the most serious problems in many parts of the world that
affects negatively on the environment, society, and economy. In order to mitigate the negative
effects of this issue, optimal water resource management is pivotal. In current paper, imperi-
alist competitive algorithm (ICA) and cuckoo optimization algorithm (COA) which they are
two new evolutionary methods, were used in optimal operation of reservoir. Firstly, these
algorithms were used in solving several benchmark problems. Afterwards, optimal operation
policy of Karun4 reservoir was extracted. Karun4 is located in Chaharmahal Va Bakhtiari
province in western of Iran. Finally, the results which obtained from these methods were
compared with genetic algorithm (GA) and nonlinear programing (NLP). In benchmark
problems, COA converges to optimal point appropriately well and shows best performance.
In these problems, ICA represent suitable ability to achieve global optimum. Both COA and
ICA algorithms showed high performance in extraction of optimal operation policies from
Karun4, which was conducted over a period of 360 months, with the aim of maximizing
productivity. COA indicated the best performance with average value of 5.454 for objective
function, and ICAwith 6.461 value was at the second rank. In addition, GA objective function
value was 6.869. Also NLP solver of Lingo11 was used in order to optimal operation of
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Karun4 reservoir for evaluating the ability of these algorithms to achieve global solution.
Objective function value which was gained by NLP method was 5.243. The results reflect the
strength of COA in approaching global optimum.

Keywords Cuckoo optimization algorithm . Genetic algorithm . Imperialist competitive
algorithm .Karun4 reservoir . Optimal operation

1 Introduction

In recent decades, use of optimization techniques has attracted the attention of many re-
searchers to derive optimal reservoir operation policies. The strategies which optimize the
use of water resources in the system would need to use the maximum of available resources to
achieve optimum operation of the reservoir. To achieve this task, different optimization
approaches such as linear programming (LP) (Ponnambalam et al. 1989; Blanchini and
Ukovich 1993) dynamic programming (DP) (Yakowitz 1982; Foufoula-Georgiou and
Kitanidis 1988; Mousavi et al. 2005), stochastic dynamic programming (SDP) (Stedinger
et al. 1984; Alaya et al. 2003; Umamahesh and Sreenivasulu 1997; Galelli and Soncini-Sessa
2010) and evolutionary algorithms (EAs) (Cheng et al. 2008; Jian-Xia et al. 2005; Nagesh
Kumar et al. 2006; Labadie et al. 2012; Afshar et al. 2015; Ahmadi et al. 2015; Bai et al. 2015;
Chiang and Willems 2015; Porse et al. 2015) have been used in various studies. Yeh (1985)
offered a comprehensive review of reservoir operation model, with emphasis optimization
methods. Wurbs (1993), Chau and Albermani (2003), Labadie (2004), and recently, Rani and
Moreira (2010) offered an extensive review in connection with various optimization methods;
their research focused on optimizing the exploitation of storage system.

Although LP, DP, and SDP optimization models are useful tools in identifying optimal
policies for operation of reservoir, there are some computational assumptions in these models
which reduce the efficiency and flexibility of them (Momtahen and Dariane 2007). In use of
LP, the main limitation is that objective function and constraint must be linear. DP and SDP
models possess curse of dimensionality limits, in addition storage and inflow discretization of
reservoir (Rani and Moreira 2010). Meanwhile, EAs due to the pace and accuracy in solving
complex problems and high popularity owing to being independent on the type of problem are
more popular.

Genetic algorithm (GA) and its different types are the most promising EAs techniques and
they have wider applicability due to their flexibility and performance in optimization of
complex systems (Reddy and Nagesh Kumar 2006). At first time, GA was introduced in the
water resource systems by Esat and Hall (1994). Nagesh Kumar et al. (2006) used GA in
optimal operation of a reservoir and declared that GA can be used to optimize use of water
resources operation to reach maximum profit. Ahmed and Sarma (2005) developed a GA
model to derive optimal operating policies and compared its performance with SDP. They
indicated that GA benefits are more than SDP to obtain optimal operation policies. GA is well
known as a beneficial method to operate reservoirs (Oliveira and Loucks 1997; Sharif and
Wardlaw 2000), and its successfully application has been reported in some of issue in optimal
operation of reservoir (Labadie 2004; Esat and Hall 1994).

Despite EAs advantages, the main disadvantage of these algorithms is that they cannot
achieve global optimal solution and premature convergence in some cases. New EAs are being
developed to overcome these problems. Imperialist competitive algorithm (ICA) is new, which
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was introduced by Atashpaz-Gargari and Lucas (2007). It has been used on various problems
such as optimization of thermal energy transfer (Yousefi et al. 2012), classification (Mousavi
Rad et al. 2012), and recognition of faces (Oskuyee 2012). Furthermore, Cuckoo Optimization
Algorithm (COA) as one of the newest EAs has been recently introduced. Its application
evaluated in some fields such as industrial engineering (Mellal et al. 2012) and smart electrical
networks (Mokhtari Fard et al. 2012).

The reservoirs are one main resources for water supply in many regions. Optimal
operation of reservoir is an effective policy that can widely help to water manage-
ment. This issue is a hardness of optimization problem, which needs to use strong
methods to solve it. Therefore, experts have been ever searching for appropriate
optimization procedure. Use of powerful EAs being able to improve objective func-
tions even slightly, leads to comprehensive advancement in the relevant benefits or
costs. Based on Bno free-lunch^ theorem it is impossible for one EA to optimally
solve all optimizing problems (Wolpert and Macready 1997). Hence, we assess the
capability of COA and ICA in water resources management that reveals robustness of
them. Owing to the results, COA and ICA are recommended for other optimization
problems associated with water resources issues such as optimal cropping pattern or
optimal exploitation of aquifers and etc. Therefor purpose of this paper is to assess
the ability of ICA and COA to extract optimal operation policies of reservoir for the
first time.

2 Materials and Methods

2.1 Genetic Algorithm

GA is a special kinds of EAs, which is based on natural selection mechanism. GA is
a global method for solving different types of optimization problems, and like the
majority of EAs, it works on populations of solutions called population-by-population
(Goldberg and Kuo 1987). GA process form from several steps. Firstly, initial
population is generated consisting of various solutions randomly. Next population is
produced to improve objective function during an iterative process. At each step,
chromosomes of current population are selected to create next generation. It should be
considered that the selection probability of chromosomes, which showed more appro-
priate efficiency, is more than others. Selected chromosomes generate next population
based on two genetic operator: crossover and mutation. In crossover, generating two
new chromosomes is performed by changing genes between them. Mutation operator
is used to change in chromosomes and their genes alteration to create diversity in
population. Generating process continues in next steps to achieve appropriate result.

2.2 Imperialist Competitive Algorithm

As it mentioned, ICA was introduced by Atashpaz-Gargari and Lucas (2007). This algorithm
has a population-by-population approach; similar to many other evolutionary algorithms. ICA
simulates political–social evolution. At the beginning of ICA process, a population of initial
solutions (countries) is generated (like as chromosome in GA). More powerful countries are
considered as imperialists and others as colonies. For each optimization problem with N
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decision variables (these variables could be culture, language etc.) each country is defined as
an array of 1×N as follow:

country ¼ V1;V 2;…VN½ � ð1Þ

cost ¼ F countryð Þ ð2Þ
Where V1,V2,…VN are decision variables, F is objective function and cost is value of F.
In the next step, which is known as assimilation policy, the imperialists attract colonies in

their empires (colonies are affected by culture and the language of imperialists). In this step,
colonies with θ degree of deviation, and x units move to imperialists. This deviation causes a
more comprehensive search in decision space (Fig. 1). x and θ are random numbers with
uniform distribution.

x eU 0;β � dð Þ ð3Þ

θ eU −γ; γð Þ ð4Þ
where β = a number greater than one which makes colonies close to imperialists from two
sides, d is a distance between imperialists and colonies and γ is a parameter which determines
the amount of deviation from the original direction.

In each generation, some countries which do not have considerable progress,
encounter with revolution. Revolution operator prevents trapping algorithm in local
optimum. After moving colonies toward imperialists or revolution event, it is possible
that one of the colonies gets better situation than its imperialist. It could exchange
colony and imperialist’s position. Imperialistic competition is the most important step
in ICA, in which all the empires try to increase the number of their colonies. This
process occurs by losing the weakest colony from the weakest empire’s domain and
joining to stronger empires. Joining colonies to stronger empires takes place based on
probability. This probability is proportional in accordance with each imperialist
strength plus percentage of arbitrary from average power of colonies.

T :Cn ¼ Cost imperiaalistnð Þ þ ξmean Cost colonies of empirenð Þf g ð5Þ
where T.Cn = total cost of the nth empire, and ξ = a positive number less than one, which is a

user-defined parameter. Figure 2 shows the process of attracting colonies by empires with

Fig. 1 Moving empire’s colonies toward the imperialist
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relevant probability (P). As shown in Fig. 2, empire No.1 is the weakest empire and empires
No.2 to N are in competition to attract the weakest colony. With specified probability, a
mechanism similar to roulette wheel has been used for selecting target empire of the weakest
colony. This process continues until one of the stopping criteria would fulfill. Figure 3 shows
the flowchart of ICA.

2.3 Cuckoo Optimization Algorithm

COA is a new evolutionary optimization algorithm for solving nonlinear optimization prob-
lems. This algorithm was introduced by Rajabioun (2011) inspired from lifestyle of a bird
called cuckoo. In the nature, cuckoos choose nests of other birds to lay their eggs. Cuckoos lay
eggs like host birds in their nests and thereby other birds survive their own generation.
Nonetheless, cuckoo’s eggs may be recognized and destroyed by the host bird. In such cases
cuckoos migrate to places where are more suitable for generation survival and egg-laying.
Now, if living area of cuckoo is decision space, each habitat will be a solution for problem.
Therefore, the algorithm begins with an initial population of cuckoos that inhabit in different
places.

habitat ¼ V1;V 2;…VN½ � ð6Þ

cost ¼ F habitatð Þ ð7Þ
Where V1,V2,…VN = decision variables, F = objective function, and cost = value of F.

Fig. 2 Imperialistic competition; empires competition to attract the weakest colony
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The best habitats were known by calculating their cost. Then in the next step, when eggs are
growing and maturing, cuckoos migrate to the nearest current appropriate location for egg-
laying. This migration is done in the nature up to a maximum certain distance. This maximum
distance is called egg laying radius (ERL) that each cuckoo lays its eggs in this radius
randomly. In an optimization problem for variables with upper limit (varhi) and lower limit
(varlow), ELR is calculated by the following equation:

ELR ¼ α� Number of current cuckoo0s eggs
Total number of eggs

varhi−varlowð Þ ð8Þ

where α = an integer number which handle maximum value of ERL. Figure 4 shows the
concept of ELR.

Because of cuckoos are found in different parts of the decision space, it is difficult to
determine that which cuckoo is related to which group. K-means clustering method used for
grouping cuckoos to solving this problem. Destination of other groups in the next generation
will be a group which has the best relative optimality. Cuckoos do not go through all the ways

Yes

No

Fig. 3 Flowchart of the ICA algorithm

Fig. 4 Egg laying in ELR ran-
domly, central star is the initial
habitat of the cuckoo; other stars
are the egg’s
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toward the target in a generation during immigration. They go through only λ percent of the
entire way and in this way possess deviation with φ value. λ is a number between zero and
one, with a uniform distribution, and φ also has uniform distribution with interval of [−w,w].
Usually, if w is equal to π/6, it will provide necessary convergence to achieve absolute
optimum. λ and φ caused a more comprehensive search in the decision space. Figure 5 shows
schematic immigration of cuckoos.

λ ¼ U 0; 1ð Þ ð9Þ

φ ¼ U −w;wð Þ ð10Þ
There is usually a balance between populations of birds in the nature because of factors

such as hunting, lack of food etc. Therefore, in COA, a number of Nmax controls the maximum
number of cuckoos. After several iterations, all cuckoos converge to the point where the most
profitable is, and the fewest number of eggs destroys. The point (habitat) would be answer of
optimization problem. Figure 6 shows the COA flowchart.

3 ICA and COA Application in benchmark problem

In this section, for evaluating ICA and COA in optimization issues, two mathematical test
functions and a benchmark problem in water scope were considered. GA (as a criteria EAs)

Fig. 5 Immigration cuckoo to goal habitat
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was used for optimizing these problems. Ackley (Ackley 1987) and Rosenbrock (Rosenbrock
1960) were regarded as mathematical functions and also operation of four reservoir system as a
benchmark problem which was formulated by Chow and Cortes-Rivera (1974).

3.1 Mathematical Function

Ackley and Rosenbrock functions are well-known benchmark in evolutionary optimization
issues. Related equations to these two mathematical functions are:

Ackley : Fð x!Þ ¼ −20:exp −0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

x2i

vuut0@ 1A−exp
1

n

Xn
i¼0

cos 2π:xið Þ
 !

þ 20þ e ð11Þ

Rosenbrock : Fð x!Þ ¼
Xn−1
i¼1

100 xiþ1−xi2
� �2 þ xi−1ð Þ2

h i
ð12Þ

General information related to these two functions is shown in Table 1.
In order to optimize Ackley and Rosenbrock functions, population were considered 20 and

10, respectively. Numbers of iterations for each function were equal to 1000. The results
represented that COA has a high ability to find optimal points of mentioned functions and
approach to global solution with proper accuracy. ICA results represented suitable

Fig. 6 Flowchart of the COA algorithm
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performance compared with GA. Abridgement result of running these three mentioned
algorithms for Ackley and Rosenbrock functions have been shown in Table 2.

3.2 Four Reservoir Operation

Operation of four reservoir systems is a benchmark problem for reservoir scope. This problem
was introduced by Chow and Cortes-Rivera (1974). Schematic of four reservoir systems is
showed in Fig. 7. The aim of this benchmark is maximization benefits which obtain from
system release. Objective function for this issue is given below:

Max B ¼
XT
t¼1

XN
n¼1

b n;tð Þ:R n;tð Þ n ¼ 1; 2;…;N ; t ¼ 1; 2;…; T ð13Þ

where B = objective function, b(n,t) = benefit of nth reservoir at period t, R(n,t) = release of nth

reservoir at period t, T = period and N = number of reservoirs. Reservoir overflow and losses
were ignored in this problem. Hence, continuity equation was expressed as follows:

S n;tþ1ð Þ ¼ S n;tð Þ þ Q n;tð Þ þM :R n;tð Þ n ¼ 1; 2;…;N ; t ¼ 1; 2;…; T ð14Þ
where S(n,t+1) = nth reservoir storage at end of period t, S(n,t) = nth reservoir storage at beginning
of period t, Q(n,t) = reservoir nth inflow at period t, and M is a matrix as follows below:

M ¼
−1 0 0 0
0 −1 0 0
0 1 −1 0
1 0 1 −1

2664
3775 ð15Þ

Table 1 General information for Ackley and Rosenbrock functions

Name dimension Search domain Optimal variables Minimum

Ackley 20 ∓32.738 ∀i xi ¼ 0 F(x1,..,xn)=0

Rosenbrock 2 ±2.048 (x1,x2)=(1,1) F(x1,x2)=0

Table 2 GA, ICA, and COA running results for mathematical functions

Run number Ackley Rosenbrock

GA ICA COA GA ICA COA

1 6.26×10−3 3.67×10−4 8.88×10−16 2.68×10−3 2.77×10−5 8.72×10−6

2 8.82×10−3 3.25×10−4 1.4×10−15 4.42×10−4 2.74×10−5 9.07×10−6

3 6.24×10−3 1.70×10−4 1.12×10−15 2.07×10−4 2.96×10−5 8.26×10−6

4 9.76×10−3 6.58×10−5 8.92×10−16 1.02×10−3 2.6×10−5 8.16×10−6

5 8.95×10−3 2.19×10−4 1.23×10−15 4.56×10−4 2.90×10−5 8.30×10−6

Worst 9.76×10−3 3.67×10−4 1.23×10−15 2.68×10−3 2.96×10−5 9.07×10−6

Average 8.01×10−3 2.29×10−4 1.4×10−15 9.60×10−4 2.69×10−5 8.50×10−6

Best 6.24×10−3 6.58×10−5 8.88×10−16 2.07×10−4 2.6×10−5 8.16×10−6
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Release and storage of each reservoir has a specific range. Release upper bounded to be (4, 4.5,
4.5, 8) and for all reservoirs lower bounded is equal to 0.005. In four reservoir systems, initial
storage and final storage are equal and their values are (6, 6, 6, 8). In terms of inflow values,
benefits which gained from release and maximum permissible storage values are as follows:

To satisfy the constraint of reservoir storage, Eqs. (16), (17), (18) were applied:

Penalty1 n;tð Þ ¼ K S n;Tþ1ð Þ−S n;targetð Þ
� �2

f or n ¼ 1;…;N ; t ¼ 1;…;T if S n;Tþ1ð Þ < S n;targetð Þ

ð16Þ

Penalty2 n;tð Þ ¼ K S n;tþ1ð Þ−Smax n;tð Þ�2 f or n ¼ 1;…;N ; t ¼ 1;…;T if S n;tþ1ð Þ < Smin n;tð Þ
h

ð17Þ

Penalty3 n;tð Þ ¼ K S n;tþ1ð Þ−Smax n;tð Þ�2 f or n ¼ 1;…;N ; t ¼ 1;…;T if S n;tþ1ð Þ > Smax n;tð Þ
h

ð18Þ
in which Penalty1(n,t) = penalty functions which related to not being equal the storages of
beginning and end of operation period, Penalty2(n,t) = penalty functions for becoming less the
reservoir storage than minimum storage of reservoir; Penalty3(n,t) = penalty for becoming more
reservoir storage than maximum storage of reservoir; K = constants coefficient of penalty
function; S(n,target) = desirable volume of ith reservoir at the end of operation period. Mean-
while, in case of exceeds, penalty constraint was added to objective function.

Chow and Cortes-Rivera (1974) reported an optimum solution for this problem using LP
with value of 308.26. Murray and Yakowitz (1979) solved this problem using Differential
Dynamic Programming (DDP) method, and results showed the value of 308.23, a little less
than LP. Bozorg Haddad et al. (2011) reported that optimum solution with LP solver of Lingo
software was obtained 308.29. These researchers utilize Honey-Bee Mating Optimization
(HBMO) algorithm in addition to LP. They also reported that average objective function for
HBMO was 307.50 after 10 runs.

Fig. 7 Schematic of four-reservoir
system
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In this paper, ICA, COA and GAwere considered with 50 population and 20,000 iterations.
Objective function evaluations are approximately one million for each algorithm. ICA is close
to global optimum in best condition with 306.76 value. Furthermore, average performance of
ICA after 10 runs is 305.11. Also, average of objective function in different runs for COA is
306.90. In addition, COA in best condition has been converged to 307.92. Best, worst, and the
average situation of GA as an objective function for explained problem are 302.42, 299.89 and
301.54, respectively. Summarized consequence of ICA and COA after 10 runs with compared
to GA are written in Tables 3, 4, 5, and 6.

These results showed proximity of ICA and COA to global solution with 99.50 and
99.88 %, respectively. Best convergence for GA is less than 98.09 % as shown in above.
Releases and storage volumes obtained from these three algorithms are shown with their global
optimum values in Figs. 8 and 9.

4 Case Study

Karun is one of the main rivers in Iran that emanate from Zagros Mountains. It enters to
Khuzestan plain in downstream and then runs into to Persian Gulf. In recent decades, the
electricity potential production of this river attracted attention of water resources operators and
also extensive efforts has been done to actualize this potential. Among these actions, con-
structing series of Karun dams has been done for flood control and hydropower generation.
Karun4 is the highest concrete dam in Iran located downstream of the confluence of Armand
and Bazoft rivers and it is placed at 50°: 24 and 31°: 35 longitude and latitude, respectively.
Annual average inflow of Karun4 dam is about 6045 million cubic meters (MCM). It aimed to
hydropower utilization in Chaharmahal Va Bakhtiari province. In this paper, for operation of
Karun4 dam, time series for 30 years (1971–2000) were used. Maximum permissible storage
and minimum storage are 2190 and 1141, respectively and also installed power plant capacity
(PPC) is 1000 megawatt (MW). The operational policy in reservoir management can be
presented via a country in ICA or a habitat in COA. So if we have N (N = Number of

Table 3 Inflow values (Murray
and Yakowitz 1979) t Inflows

No. 1 No. 2

1 0.5 0.4

2 1 0.7

3 2 2

4 3 2

5 3.5 4

6 2.5 3.5

7 2 3

8 1.25 2.5

9 1.25 1.3

10 0.75 1.2

11 1.75 1

12 1 0.7
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population) operational policy, in fact, we will have N countries/habitats within the search
space. Evaluation of objective functions leads us to find the best solution (countries/habitat)
and presents tendency of solutions to reach near global optimum solution. According to Figs. 3
and 6, each of the proposed EAs can find out the optimal solution after particular iterations.

5 Reservoir Operation Model

Electrical energy is known as one of the friendliest type of energy which compatible with
environment. In addition, electricity production by dam’s power plants is known as one of the
purest type of energy. Optimal releases from reservoirs always have been important issue for
managers and water resources operators. Optimal operation of water resources system is an
issue with monthly time step and usually becomes more important in long terms. A policy can

Table 5 Maximum permissible
storage value (Murray and
Yakowitz 1979)

t Maximum storage value

No.1 No.2 No.3 No.4

2 12 15 8 15

3 12 15 8 15

4 10 15 8 15

5 9 12 8 15

6 8 12 8 15

7 8 12 8 15

8 9 15 8 15

9 10 17 8 15

10 10 18 8 15

11 12 18 8 15

12 12 18 8 15

Table 4 Values of benefit (Murray
and Yakowitz 1979) t Benefit

No. 1 No. 2 No. 3 No. 4

1 1.1 1.4 1 2.6

2 1 1.1 1 2.9

3 1 1 1.2 3.6

4 1.2 1 1.8 4.4

5 1.8 1.2 2.5 4.2

6 2.5 1.8 2.2 4

7 2.2 2.5 2 3.8

8 2 2.2 1.8 4.1

9 1.8 2 2.2 3.6

10 2.2 1.8 1.8 3.1

11 1.8 2.2 1.4 2.7

12 1.4 1.8 1.1 2.5
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be effective which be optimized these resources for a long period to make profits. In this
research, operation of reservoir with hydropower purpose was desired. Objective function for
optimization issue is defined as follows:

Min F ¼
X360
t¼1

1−
Pt

PPC

� �
ð19Þ

Table 6 Results of GA, ICA, and COA for four-reservoir system

Number of runs GA ICA COA Global solution

1 302.42 306.29 307.65 308.29a

2 299.89 306.08 307.74

3 302.09 306.76 307.92

4 301.87 304.21 305.81

5 300.46 301.72 305.62

6 302.06 305.14 306.51

7 301.22 304.59 306.38

8 301.87 304.95 306.6

9 301.20 306.11 307.57

10 302.35 305.21 307.16

Worst 299.89 301.72 305.62

Average 301.54 305.11 306.90

Best 302.42 306.76 307.92

a According to Bozorg Haddad et al. (2011)

Fig. 8 Monthly reservoir releases for GA, ICA, and COA
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And operating model limitations are:

Smin≤St ≤Smax ð20Þ

0≤Rt ≤Rmax ð21Þ

0≤Pt ≤PPC ð22Þ

SPt ¼
St þ Qt−Rt−Smax if St þ Qt−Rt > Smax

0 if St þ Qt−Rt ≤Smax

	
ð23Þ

The continuity equation in operation of reservoir is:

Stþ1 ¼ St þ Qt−Rt−SPt−Lt ð24Þ

in which these equations, F = objective function; t = operating time step (monthly); T
= duration of operation (360 months); Pt = power generated during the period t
(MW); PPC = power plant installed capacity (MW); Smin = minimum reservoir
storage (MCM); St = reservoir storage in the beginning of period t (MCM); Smax=
maximum reservoir storage (MCM); Rt=reservoir release during the period t (MCM);
Rmax = maximum possible reservoir outflow during period t (MCM); SPt=reservoir
overflow during period t (MCM); St+1=reservoir storage at the end of period t
(MCM); Qt=river Inflow during the time period t (MCM); Lt=losses due to evapo-
ration and precipitation during period t (MCM).

Fig. 9 Monthly reservoir storage for GA, ICA, and COA
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For calculating losses, Eq. (25) is used.

Lt ¼ Et :
At þ Atþ1

2000

� �
for t ¼ 1;…;T ð25Þ

In which Et = evaporation from reservoir surface during the period of t (millimeter); At and
At+1 = reservoir areas at the beginning and end of the period t (square kilometer), respectively.

Also, for calculating power generation, the following equations were used:

Pt ¼ g:e:
Rpt

PF:Mult
:
Ht−Twt

� �
1000

f or t ¼ 1;…; T ð26Þ

Rpst ¼ Rt−Rpt f or t ¼ 1;…; T ð27Þ

Ht ¼ Ht þ Htþ1

2
f or t ¼ 1;…; T ð28Þ

where g = acceleration of gravity (m2/sec); e = efficiency of power plant; Rpt = release from
plant during period t (MCM); PF = plant functional coefficient; Mult = 106 times of the
number of seconds during period t; Ht = average reservoir water level in period t (m); and Twt

= reservoir tailwater level during period t (m); Rpst = spill from plant after hydropower
generation during period t (MCM); Ht and Ht+1 = reservoir water level in the beginning and
end of the period t (m).

6 Results and discussions

GA, ICA and COAwere used to find optimal operation of reservoir policies. In order to assess
GA, ICA and the COA properly, it is necessary to compare their performance in best situation.
The best situation is achieved when parameters are optimum. Generally, EAs parameters are
opted by trial and error method. In this study, the most important parameters of GA, ICA and
COA have selected to achieve applicable convergence by utilizing trial and error. In GA, this
parameter is crossover fraction, in ICA, assimilation coefficient, and in COA is motion
coefficient. After selecting the appropriate values, their performances were compared. For
impartial comparison these algorithms, populations of each methods was considered 50.

In this research, roulette wheel was used for GA due to better performance. Uniform
mutation function was also used because of its high convergence to achieve optimal solution
compared to other existing functions. Crossover fraction is one of the most effective param-
eters in GA that suitable value was different for it. Therefore, crossover fraction was investi-
gated to improve GA performance from 0.6 to 0.9 with a step of 0.05. This problem was run
five times with each crossover fraction to determine best value for it. The average of objective
function in these five runs was considered as a criterion for selecting best crossover fraction.
Figure 10 shows effect of different crossover fraction value in objective function after 1000
iterations. Suitable crossover fraction for this problem is obtained 0.75.

Like as GA, ICA parameters were determined by trial and error method and sensitivity
analysis of effective parameters. These parameters are summarized in Table 7. Assimilation
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coefficient (β) is the most sensitive parameter of ICA and in this problem β = 1.6 generated
best convergence of ICA. Figure 11 shows the effect of this parameter on convergence in ICA.

COA possesses various parameters. Parameters values for this algorithm are shown in
Table 8 which set by trial and error method. Optimal value for these parameters depends on
type of problems. Suitable value for λ is obtained from sensitivity analysis due to performance
sensitivity of this algorithm to minor changes in motion coefficient (λ %). Figure 12 shows
objective function values for variation in motion coefficient.

After determining appropriate values for GA, ICA and COA, their performances were
investigated in optimizing operation of reservoir. Since random selection of initial population
in three methods makes a direct effect on final results, it should not only be satisfied with
outcomes of a run, performance of methods should be assessed in a series of runs. In current
study, to evaluate GA, ICA and COA, 10 runs with 2000 iterations (approximately 100,000
function evaluations) were considered. The results of these algorithms can be evaluated from
several aspects:

A) Average of objective function
According to the results which obtained from 10 runs for each algorithm, average

value of objective function for GA, ICA, and COA are 6.869, 6.461, and 5.454,

Fig. 10 Selection of best crossover fraction for GA

Table 7 Appropriate values for
ICA parameters Parameter Value

Number of countries 50

Number of imperialist 5

Revolution rate 0.15

β 1.6

γ 0.04

ξ 0.01
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respectively. Therefore, COA has an advantage over two other methods for this stand-
point. Next to COA, ICA and GA are placed in second rank and third rank, respectively.

B) Distance between average and best performance
If distance between averages results with best performance of each method is consid-

ered as criterion for evaluation, COA again has better performance than GA and ICA. But
according to this criteria GA has done better performance than ICA. Coefficient of
variation for GA, ICA and COA are 0.043, 0.059 and 0.032, respectively.

C) Best performance proximity to global optimum
NLP solver of Lingo11 was used as an optimization tool for this problem to evaluate

final answer proximity of these methods with global optimum. Objective function values
attain to 5.243, after Lingo running about 90 h. With regard to this value and values
obtained from objective function using ICA, GA and COA, it is clear that COA shows
very high ability in achieving to global optimum. Afterwards, ICA has a good conver-
gence to achieve global optimum. Most important advantage of COA and ICA in
comparison with GA is high convergence of these methods to approach global optimum.

D) Run-time and parameter setting time
In terms of algorithm running time, ICA is much faster than two other methods. This

merit could be a good point to choose ICA as an optimizer algorithm. ICA run times in

Fig. 11 Selection of best assimilation coefficient for ICA

Table 8 Appropriate values for
COA parameters Parameter Value

Number of cuckoos 50

Maximum number of cuckoos (Nmax) 50

Minimum number of eggs for each cuckoo 2

Maximum number of eggs for each cuckoo 4

λ 2

α 1
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operation of reservoir is approximately 7 times faster than COA and 5 times faster than
GA. Quick and easy parameters setting is superiority of COA over other methods.

Final results which obtained from each method are shown in Table 9. According to the
results, it can be say that COA and ICA are outperformed than GA, generally. Furthermore,
approaching to optimum solution after 100,000 function evaluations shows ability and strength
of COA algorithm in various optimization problems.

Fig. 12 Selection of best motion coefficient for COA

Table 9 Objective function values of GA, ICA, and COA for Karun4 dam

Number of runs Objective value

GA ICA COA Global solution

1 6.856 6.737 5.246 5.243

2 6.993 6.553 5.555

3 7.014 6.384 5.708

4 6.713 6.754 5.334

5 7.338 6.247 5.516

6 6.196 6.491 5.342

7 6.918 6.495 5.573

8 7.051 5.586 5.272

9 6.901 6.999 5.681

10 6.712 6.364 5.311

Mean 6.869 6.461 5.454

Best 6.196 5.586 5.246

Worst 7.338 6.999 5.708

Standard deviation 0.297 0.378 0.173

Coefficient of variation 0.043 0.059 0.032
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7 Conclusions

This research is made of two main parts. First part, application and evaluation of GA, ICA and
COA algorithm were done in test problem. Second part, contains operation of real reservoir. At
first part, Ackley and Rosenbrock functions were considered as optimization functions
together with benchmark problem. The results of mathematical functions showed COA, ICA
and GA have higher ability to achieve optimum solution, respectively. In four reservoir
systems, ranking of algorithms were same as above. In this problem, COA, ICA and GA at
best convergence achieve to 99.88, 99.50, and 98.09 % of total global optimum, respectively.
At second part, COA and ICA performance tested in operation of one reservoir system with
hydropower aim. Karun4 dam was used as a case study for this purpose. COA, ICA, and GA
were used to achieve related policies for monthly optimal reservoir operation in 30 years
(1971–2000). These results indicate that COA and ICA possess better performance than GA.
The average values of objective functions for COA, ICA and GAwere obtained 5.454, 6.461,
and 6.869, respectively.

To evaluate algorithms performance in approaching global solution, best performances of
these algorithms were compared with objective function value which obtained from Lingo.
According to results, COA represents highest convergence in achieving near-optimal solution
and after that ICA has been more successful in approaching optimum solution. Objective
function value obtained by Lingo is 5.243 and objective function for best performance of
COA, ICA and GA are 5.246, 5.586 and 6.196, respectively.

In terms of algorithms run times, ICA performed better than three other algorithms. ICA run
time in operation of reservoir issue is approximately seven times faster than COA and five
times faster than GA. In terms of ease, COA has a general superiority of setting parameters
over other algorithms. Another desirable feature of COA is high flexibility and simplicity. Due
to ability and flexibility of COA and ICA in solving operation of reservoir optimization
problems, these methods can be used in other water resources optimization issues. These
methods not only compete with traditional optimization methods, but also traditional methods
can be replaced with these methods, in solving various problems of water resource
optimization.
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