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Abstract Flood frequency analysis is concerned with fitting a probability distribution to
observed data to make predictions about the occurrence of floods in the future. Under
conditions of climate change, or other changes to the water cycle that impact flood runoff,
the flood series is likely to exhibit non-stationarity, in which case the return period of a flood
event of a certain magnitude would change over time. In non-stationary flood frequency
analysis, it is customary to examine only the non-stationarity of annual maximum flood data.
We developed a way of considering the effect of non-stationarity in the annual daily flow series
on the non-stationarity in the annual maximum flood series, which we termed the norming
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constants method (NCM) of non-stationary flood frequency analysis (FFA). After developing
and explaining a framework for application of the method, we tested it using data from the Wei
River, China. After detecting significant non-stationarity in both the annual maximum daily
flood series and the annual daily flow series, application of the method revealed superior
model performance compared to modelling the annual maximum daily flood series under the
assumption of stationarity, and the result was further improved if explanatory climatic vari-
ables were considered. We conclude that the NCM of non-stationary FFA has potential for
widespread application due to the now generally accepted weakness of the assumption of
stationarity of flood time series.

Keywords Climate change . Non-stationarity . Flood frequency analysis (FFA) . Norming
constants method (NCM)

1 Introduction

Flood frequency analysis (FFA) is concerned with determining the probability of occurrence of
extreme runoff events in rivers, and is open to a number of approaches (e.g. Vogel et al. 1993;
Katz et al. 2002; Kwon et al. 2008; Gilroy and McCuen 2012; Katz 2012; Li et al. 2015a). FFA
is conventionally conducted under the assumptions of: (i) independence of the flood series,
which means that the probability distribution parameters to be estimated come from indepen-
dent and identically distributed observations, and (ii) stationarity of the flood series, which
means that the environmental factors that generate or modify floods, such as climate and land
cover, are the same in the past, present and future (Khaliq et al. 2006; Gilroy and McCuen
2012; Li et al. 2015b). Under the conditions of climate change, land use change and river
regulation, acting individually or together, the assumption of stationarity is suspect (Katz et al.
2002; Xiong and Guo 2004; Milly et al. 2005, 2008; Gilroy and McCuen 2012; Salas and
Obeysekera 2014; Vasiliades et al. 2015), and design flood predictions made on this basis
would be questionable. Climate change and human activities impacting flood runoff is a global
phenomenon. There is a need then for development of effective non-stationary FFA methods.

Non-stationary FFA is most commonly approached using the method of time-varying
moments (Strupczewski et al. 2001a, b; Strupczewski and Kaczmarek 2001; Coles 2001; Katz
et al. 2002; Khaliq et al. 2006; Leclerc and Ouarda 2007; Villarini et al. 2009b, 2010; Gilroy
and McCuen 2012; Salas and Obeysekera 2014). Strupczewski et al. (2001a) introduced a
linear or quadratic time trend into the first two moments (mean and standard deviation) of the
observed Vistula River flood series over the period of 1921–1990 with six candidate proba-
bility distributions. In this case, non-stationarity was expressed based on the relationships
between the distribution parameters and the time-dependent moments, the maximum likeli-
hood method was adopted for parameter estimation, and the Akaike Information Criterion
(AIC) optimizing criterion (Akaike 1974) used for model selection. In other studies by these
authors, trends in 39 annual maximum flow series in Polish Rivers were investigated using the
non-stationary at-site FFA method of weighted least squares (Strupczewski and Kaczmarek
2001), and using the maximum likelihood method (Strupczewski et al. 2001b). Katz et al.
(2002) fitted the Generalized Pareto distribution by maximum likelihood estimation to the US
annual damage from flood series with a linear trend in the log-transformed scale parameter. A
detailed review of the time-varying moments approach applied to non-stationary FFA was
provided by Khaliq et al. (2006). Leclerc and Ouarda (2007) presented a method to perform
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regional FFA at ungauged sites when the assumption of stationarity was not valid. A non-
stationary approach using the Generalized Additive Models for Location, Scale and Shape
parameters (GAMLSS) (Rigby and Stasinopoulos 2005) was applied to seasonal precipitation
and temperature data from Rome (Villarini et al. 2010) and peak discharge data from the Little
Sugar Creek in Charlotte (Villarini et al. 2009b). Gilroy and McCuen (2012) developed a non-
stationary FFA method that accounts for climate change and urbanization influences, and
applied it to the Little Patuxent River in Guilford. Salas and Obeysekera (2014) suggested
placing the concepts of return period and risk as they apply in the stationary world into a non-
stationary framework by extending the geometric distribution to allow for changing exceeding
probabilities over time. Although the literature on non-stationary FFA contains variety in
certain aspects of the methodology, one common factor is exclusive reliance on the annual
maximum flood series. The innovation presented in this paper is to also make use of the annual
daily flow series for non-stationary FFA.

In seasonal rivers, generation of the maximum flood in a year is very closely related to
hydrological processes during the flood season in that year, so non-stationarity in the annual
daily flow series is likely to have some impact on non-stationarity in the annual maximum
daily flood (AMDF) series. The central theme of this paper is development of an approach for
incorporating non-stationarity information in the annual daily flow series in the non-stationary
FFA of the AMDF series. We did this using the norming constants method (NCM), which is
based on the Fisher-Tippett theory (Fisher and Tippett 1928). The core theory of NCM is that
the statistical parameters of the annual maximum flood distribution for a year can be mathe-
matically derived from the daily flow series within the year in terms of the maximum domain
of attraction of the annual maximum flood distribution. We elaborate our NCM-based
approach in this paper and illustrate its practical application using a case study of the Wei
River, China. FFA often makes use of maximum instantaneous flow data, which is particularly
important in small and medium size rivers, where the instantaneous peak daily flow can be
much higher than the mean daily flow. Due to limitations on data availability, we used mean
daily flow data, but the NCM applies equally well to instantaneous peak flow series.

This paper is organized as follows. First the NCM methodology is described, along with a
description of methods for calculation of the statistical characteristics of the annual daily flow
series, and covariate analysis to establish relationships between statistical parameters of the
annual maximum flood distribution and meteorological factors. Then, relevant information
about the Wei River basin is provided, and the data sets used in this case study are described.
The results and discussion of the case study follow, and finally we make conclusions about
application of NCM to the problem of non-stationary FFA.

2 Proposed Norming Constants Method (NCM) of Non-Stationary FFA

We suggest a four-step framework, termed the norming constants method (NCM) of non-
stationary FFA, for incorporating non-stationarity information in the annual daily flow series in
the non-stationary FFA of the AMDF series:

1. The AMDF series is tested for statistically significant non-stationarity, which is the basis
for then proceeding with non-stationary FFA.

2. Statistical characterization and non-stationarity detection is undertaken on the series of the
mean and variance of the annual daily flow series.
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3. If non-stationarity is detected in both the AMDF and the annual daily flow series in Steps
1 and 2, then non-stationary FFA based on the NCM is carried out.

4. If non-stationarity is present, meteorological covariate analysis is carried out to
establish relationships between the statistical parameters of the annual maximum
flood distribution and the meteorological factors for the NCM. All the models
are compared by the AIC criterion and assessed using residual plots and
statistics.

2.1 Detection of Non-Stationarity in Hydrological Time Series

Incorporation of non-stationarity information in the annual daily flow series does not
depend on the form of non-stationarity, whether it be monotonic, non-monotonic,
linear, non-linear or step-change trend. A number of tests are available for the purpose
of testing for non-stationarity in hydrological time series (Chiew and McMahon 1993;
Xu et al. 2004) and one or more of these might be appropriate, depending on the
nature of the data.

2.2 Probability Distributions of the Annual Daily Flow Series

The annual daily flow series refers to the hydrograph of all mean daily flows for a year,
and is denoted by Xt=(xd,t), d=1,2,...,v, where xd,t represents the flow rate of day d in
year t and v is the number of days in the year, referred to as the block length. When the
annual daily flow series is serially independent, the block length is 365 for non-leap
years or 366 for leap years. In essence, frequency analysis of the annual daily flow
series fits the flow-duration curve based on Xt with a probability distribution Ft

X(x).
With respect to the distribution of the annual maximum daily flood series, the distri-
bution Ft

X(x) of Xt is normally referred to as the parent distribution (PD). The daily
flows are often assumed to follow a Lognormal or Gamma distribution (Fennessey and
Vogel 1990; LeBoutillier and Waylen 1993; Krasovskaia et al. 2006; Gottschalk et al.
2013a, b). For the annual daily flow series of different years, although the distribution
function type is assumed to be the same, the statistical parameters might be different
due to the non-stationarity of the annual daily flow series.

When Ft
X(x) is a Lognormal distribution, its probability density function and the mean and

variance of Xt are (Johnson et al. 1994; Stasinopoulos et al. 2008):

f Xt xð Þ ¼ 1

2πð Þ1=2σtx
exp −

ln xð Þ−μt½ �2
2σ2

t

( )
; x > 0;μt ∈ℜ ;σt > 0 ð1Þ

E X tð Þ ¼ ω1=2exp μtð Þ ð2Þ

Var X tð Þ ¼ ω ω−1ð Þexp 2μtð Þ ð3Þ

where μt and σt are the mean and standard deviation of the log-transformed annual daily flow
series Xt for the year t, and ω=exp(σt

2).
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When Ft
X(x) is a Gamma distribution, its probability density function and the mean and

variance of Xt are:

f Xt xð Þ ¼ 1

βγt
t Γ γtð Þ x

γt−1exp −
x

βt

� �
; x > 0; γt > 0;βt > 0 ð4Þ

E X tð Þ ¼ γtβt ð5Þ

Var X tð Þ ¼ γtβ
2
t ð6Þ

where γt and βt are the shape and scale parameters.
As the mean E(Xt) and variance Var(Xt) of Xt are derived from the parameters of the PD by

Eqs. (2)–(3) or (5)–(6), the character of the PD should be determined before investigating the
non-stationarity in the series of E(Xt) and Var(Xt) of the annual daily flow series.

We suggest adoption of both the maximum likelihood and L-moments (Hosking 1990)
techniques to estimate the statistical parameters (μt, σt) and (γt, βt) of the PD for each year.
This results in four optional scenarios for the annual daily flow series: Lognormal PD with
maximum likelihood method, Lognormal PD with L-moments method, Gamma PD with
maximum likelihood method, and Gamma PD with L-moments method. In order to determine
the optimal PD and parameter estimation method, these four scenarios are considered for
fitting the annual daily flow series of each year, and the Chi-squared test (Greenwood 1996),
the Nash-Sutcliffe efficiency between modelled and empirical probabilities (NSEpp), and the
Nash-Sutcliffe efficiency between modelled and empirical daily flows (NSEqq) are calculated
to assess the goodness-of-fit of each scenario.

2.3 Norming Constants Method (NCM)

The maximum statistic of a sample of random variables is also a random variable and has its
own probability distribution. For the annual daily flow series Xt=(xd,t), d=1,2,⋯,v of the year
t, the corresponding annual maximum daily flood statistic Zt

v of the year is derived as:

Zv
t ¼ max X tð Þ ¼ max

1≤d ≤ v
xd;t
� � ð7Þ

The extreme value distribution of Zt
v approaches one of three limiting forms, i.e. the

Fréchet, Weibull or Gumbel distribution, as the sample size increases (Fisher and Tippett
1928). These three extreme value distributions can be further combined into a single distribu-
tion function, the well-known Generalized Extreme Value (GEV) distribution. The Gumbel
distribution is more widely employed as the probability distribution of the annual maximum
flood event than the other two extreme value distributions (Kwon et al. 2008; Villarini et al.
2009a, b; Mujere 2011; Gottschalk et al. 2013a). The cumulative distribution function of the
Gumbel is given by:

FZv

t zvt
��dvt ; cvt� � ¼ exp − exp −

zvt −d
v
t

� �
cvt

� �	 

ð8Þ

where dt
v and ct

v are the norming constants of the year t satisfying the maximum domain of
attraction of the Gumbel distribution. From a theoretical perspective, the corresponding
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norming constants dt
v and ct

v can be derived from the statistical parameters of the parent
distribution Ft

X(x) of the annual daily flow series of year t (Cramér 1999; Embrechts
et al. 1997).

When Ft
X(x) is a Lognormal distribution, the expressions of the norming constants dt

v and ct
v

by the Lognormal parameters (μt and σt) can be derived as:

dvt ¼ exp μt þ σt 2lnvð Þ1=2− ln 4πð Þ þ ln lnvð Þ
2 2lnvð Þ1=2

" #( )
ð9Þ

cvt ¼ σt 2lnvð Þ−1=2dvt ð10Þ
When Ft

X(x) is a Gamma distribution, the expressions of the norming constants dt
v and ct

v by
the Gamma parameters (γt and βt) can be derived as:

dvt ¼ βt lnvþ γt−1ð Þln lnvð Þ−lnΓ γtð Þ½ � ð11Þ

cvt ¼ βt ð12Þ
After either the Lognormal or the Gamma distribution is selected as the PD that best fits the

daily flows of year t, and the corresponding PD parameters are estimated, the Gumbel norming
constants dt

v and ct
v for year t are calculated using Eqs. (9)–(10) or (11)–(12). The non-

stationary FFA can then be conducted using the norming constants for each year.
An observed annual daily flow series would not normally be expected to satisfy the

assumption of independence. We followed other authors who have relaxed the requirement
for independence when fitting the daily flow series to probability distributions (e.g. Fennessey
and Vogel 1990; LeBoutillier and Waylen 1993; Krasovskaia et al. 2006; Gottschalk et al.
2013a). In this situation, the block length v should be a value less than 365 (or 366) days.
When the NCM is applied in practice, v should be calibrated to take an effective value
reflecting the real independence among the annual daily flow series, denoted here by veff.
The optimal value of veff can be derived in terms of the AIC criterion. When veff is determined,
it replaces v in Eqs. (9)–(12).

2.4 Meteorological Covariate Analysis

The main mechanism for flood runoff generation in most places is infiltration-excess runoff
generation. In this case, flood events are closely associated with heavy rainfall events, which in
turn can be related to other climatic variables. Thus, climate variables often at least partially
explain non-stationarity in a flood series. Including climatic factors as explanatory variables in
non-stationary FFA might have two benefits. First, it could help to provide physical meaning
to the non-stationary design flood prediction, and second, the results could be interpreted in the
context of runoff changes predicted by application of global circulation models and down-
scaling techniques.

In the proposed NCM, the estimated PD parameters are firstly expressed as linear
functions of covariates, and these functions are then substituted into Eqs. (9)–(10) or
(11)–(12) for calculating the time-varying norming constants dt

v and ct
v and conducting

non-stationary FFA.

3620 L. Xiong et al.



2.5 Model Selection and Assessment Criteria

The established models are compared using AIC criterion, where the maximum likelihood
value is penalized by the effective degrees of freedom (Akaike 1974; Rigby and Stasinopoulos
2005). While a smaller AIC value indicates better model performance, which identifies the
optimal model, there is no indication of how well the selected model captures the variability of
the non-stationary flood series. Examination of the normalized quantile residuals (subsequent-
ly referred to here as residuals) (Dunn and Smyth 1996) is an effective way for testing the
efficiency of the selected model. Thus, we suggest use of a combination of qualitative and
quantitative assessment criteria to assess the overall performance of the selected model. The
qualitative assessment involves visual inspection of the diagnostic residual plots, specifically,
residual versus observed year plot, ACF (Autocorrelation Function) plot (Guang-Te and Singh
1994), normal Q-Q plot, or the more effective worm plot (Buuren and Fredriks 2001;
Stasinopoulos et al. 2008). The worm plot is a de-trended Q-Q plot with the difference
between the empirical and theoretical quantile residuals on the vertical axis and the theoretical
quantile residuals on the horizontal axis. Quantitative assessment relies on statistics of the
Filliben correlation coefficient (Filliben 1975) and KS test (Massey 1951) of the residuals.
Centile curve plots can indicate how well the selected model captures the variability of the
observed flood series, and to assess how the observed flood events fall in relation to each
centile curve and the corresponding theoretical probability.

3 Study Area and Data

3.1 General Characteristics of the Study Area

The Wei River, the largest tributary of the Yellow River, originates from the NiaoshuMountain
at an elevation of 3 485 m above sea level in the Weiyuan county of Gansu province. Located
between the coordinates 33°40′-37°26′N and 103°57′-110°27′E in the southeastern part of the
loess plateau, the river has a length of 818 km and a drainage area of 134 800 km2 (Fig. 1).
After flowing west to east through the three provinces (autonomous region) of Gansu, Ningxia
and Shaanxi the Wei River joins the Yellow River at Tongguan in Shaanxi province. Two large
tributaries, the Jing River and the Beiluo River, join the Wei River in the middle and lower
reaches of the basin respectively. The Wei River is known regionally as the ‘Mother River’ of
the Guanzhong Plain of the southern part of the loess plateau because of its key role in the
economic development of western China (Song et al. 2007; Huang et al. 2014).

The Wei River basin is characterized by semi-arid and sub-humid continental monsoon
climate. Mean annual precipitation of the basin is about 570 mm but there is a strong
decreasing gradient from south to north. The southern region has a sub-humid climate with
mean annual precipitation of about 800–1000 mm, whereas the northern region has a semi-arid
climate with mean annual precipitation of about 400–700 mm. The annual mean temperature
over the entire basin is about 6–14 °C. The range in the annual potential evapotranspiration is
about 660–1600 mm, and the mean annual actual evapotranspiration from the land surface is
about 500 mm (Zuo et al. 2014).

The mean annual natural discharge of the Wei River is about 10×109 m3, contributing
approximately 17 % of the discharge of Yellow River. The Wei River basin is one of the most
important industrial and agricultural production zones in China, which has led to large scale
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exploitation of the surface and groundwater resources. The annual discharge of the Wei River
at Linjiacun station during the decade 1991–2000 was 53.9 % less than that during the
preceding decade, while at Huaxian station it was 50.3 % less (McVicar et al. 2007; Song
et al. 2007).

3.2 Data

The observed mean daily flow series from Huaxian gauging station over the period 1954–
2009, provided by the Hydrology Bureau of the Yellow River Conservancy Commission, was
the source of the AMDF series. Huaxian hydrological station, located at 109°46′E, 34°35′N, is
about 70 km upstream of the junction of the Wei and Yellow rivers (Fig. 1). The catchment
area upstream of this station is 106 500 km2, or about 80 % of the total basin area (Fig. 1).

Meteorological data from 22 stations (Fig. 1) for the period 1954–2009 was provided by the
National Climate Center of the China Meteorological Administration (source: http://cdc.cma.
gov.cn). The data included five observed daily variables: daily precipitation (rain, mm), daily
maximum temperature (TMAX, °C), daily minimum temperature (TMIN, °C), daily mean
temperature (TMEAN, °C) and daily mean relative humidity (H, %). Time series of the areal
mean values of these daily climate variables for the basin above the Huaxian station were
generated using the Thiessen polygon method. From these data series, eight statistics were
calculated: annual maximum daily precipitation (rain1max), annual maximum 3-day precipita-
tion (rain3max), annual maximum 7-day precipitation (rain7max), annual total precipitation
(rainyear), annual mean of daily maximum temperature (TMAXmean), annual mean of daily
minimum temperature (TMINmean), annual mean of daily mean temperature (TMEANmean) and
annual mean of daily mean relative humidity (Hmean).

Fig. 1 Location, topography, hydro-meteorological stations and river systems of the Wei River basin
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4 Results of Case Study

4.1 Step 1. Temporal Trends in the AMDF Series

The lag-1 ACF value of the AMDF series was not significantly different from 0 at α=0.05,
meaning that the AMDF series was serially independent. We used the Mann-Kendall (MK)
test (Mann 1945; Kendall 1975; Yue and Wang 2004; Li et al. 2014) to test for the presence of
non-stationarity in the flood series. In non-stationary analysis of extreme value series, the focus
is commonly on non-stationarity in the mean. However, non-stationarity in the variance of the
distribution of the extreme value series may also have significant impacts on non-stationary
modelling (Katz and Brown 1992; Villarini et al. 2009a, b). Vinnikov and Robock (2002)
provided a technique for investigating temporal trends in the variance and higher moments of
the distribution of extreme value series. Their method constructs time series of the squares,
cubes and any higher powers of the residuals (anomalies) after the trend in the expected value
is subtracted from the observed time series. Trend analysis of these created series can then be
used to examine the variability of the series over time. The MK test detected significant
decreasing trends in both the mean and the variance of the distribution of the AMDF series
(Table 1).

4.2 Step 2. Temporal Trends in the E(Xt) and Var(Xt) Series

The PD and corresponding parameter estimation method were applied to the annual daily flow
series of different years from Huaxian station under the four scenarios described earlier:
Lognormal PD with maximum likelihood method, Lognormal PD with L-moments method,
Gamma PD with maximum likelihood method, and Gamma PD with L-moments method.
Examination of the assumption of independence for each of the observed annual daily flow
series unsurprisingly indicated that most of the annual daily flow series did not satisfy the
independence assumption. In this situation we relaxed the requirement for independence, as
explained previously.

When taking the Lognormal distribution as the PD, no rejection at the significance level of
α=0.05 using the Chi-squared test was detected for both the maximum likelihood and the L-
moments methods, which means that the scenarios of Lognormal PD with maximum likeli-
hood and L-moments techniques both satisfactorily fitted the 56 observed annual daily flow
series. For the Gamma distribution, there were rejections in 20 and 9 out of 56 years for the
maximum likelihood and the L-moments methods respectively. Thus, the Lognormal per-
formed better than the Gamma distribution as the PD. Boxplots of the NSEpp and NSEqq for the
period of 1954–2009 (Fig. 2) indicated that the L-moments was superior to the maximum
likelihood method, with almost all the NSEpp and NSEqq higher than 0.9. This data exploration
led us to select the Lognormal distribution as the PD of the annual daily flow series, and

Table 1 Mann-Kendall (MK) test
results of the moments considered
in this study. The critical value of
the MK statistic is Z1−α/2 = 1.960,
at α=0.05; all trends were
decreasing

Moment Z statistic

Mean of the AMDF distribution −4.637
Variance of the AMDF distribution −2.975
Calculated E(Xt) series −4.332
Calculated Var(Xt) series −3.951
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employ the L-moments technique to estimate the parameters of the PD. Examples of the
frequency analysis of annual daily flow series with corresponding NSEpp and NSEqq under the
four scenarios (Fig. 3) illustrate the differences in the distributions and parameter estimation
methods. Finally, the E(Xt) and Var(Xt) series for the period of 1954–2009, calculated by
Eqs. (2)–(3), both had significant decreasing trends indicated by the MK test (Table 1).

4.3 Step 3. Non-Stationary Flood Series Modelling with NCM

As significant non-stationarity was detected in both the annual daily flow series and the
AMDF series, we could progress to investigating the impact of the non-stationarity in the
annual daily flow series on the non-stationarity in the AMDF series using NCM. The estimated
shape parameter κ of the GEV distribution fitted to the observed AMDF series from Huaxian

Fig. 2 Boxplots of the a Nash-Sutcliffe efficiency between modelled and empirical probabilities (NSEpp) and b
Nash-Sutcliffe efficiency between modelled and empirical daily flows (NSEqq) of the four scenarios applied to the
56 annual daily flow series of Huaxian station. The four scenarios are (S1) Lognormal parent distribution (PD)
with maximum likelihood method, (S2) Lognormal PD with L-moments method, (S3) Gamma PD with
maximum likelihood method, and (S4) Gamma PD with L-moments method

Fig. 3 Six examples of frequency analysis of the annual daily flow series with corresponding NSEpp and NSEqq
under the four scenarios used in the study
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station was close to zero (0.039), suggesting that the Gumbel distribution was more appropri-
ate (Stedinger et al. 1993; Gilroy and McCuen 2012). For any year t, the Gumbel norming
constants dt

v and ct
v can be theoretically derived by Eqs. (9)–(10) given the corresponding fitted

PD parameters (μt and σt) and the block length v. The block length for an annual maximum
flood event is ostensibly 1 year, whereby v=365 (or 366). As the annual daily flow
series in most years was not serially independent, v should take a value lower than
this, which might explain the sporadically poor model fits by the Lognormal and
Gamma distributions, expressed by outliers in the boxplots of both NSEpp and NSEqq,
even for the optimal scenario of Lognormal PD with L-moments parameter estimation
method (Fig. 2). For the observed AMDF series, we derived an optimal value of veff=

343 days in terms of the AIC criterion (Fig. 4a). Time-varying norming constants d
veff
t

and c
veff
t for the period of 1954–2009 were then calculated by Eqs. (9)–(10) with the

estimated μt and σt series and the optimal veff. The result indicated decreasing trends

for both d
veff
t and c

veff
t (Fig. 4b).

In application of non-stationary FFA by NCM, the residuals should theoretically be
approximately independent and normally distributed if the fit of the model is correct. The
independence and normality of the residuals indicate that the selected model describes all the
systematic information and the remaining part (residuals) are independent and normally
distributed random noise. For the Wei River data, the model residuals were found to be
randomly distributed and serially independent (Fig. 5a, b). Most of the points in the normal
Q-Q plot (not illustrated in this paper) were evenly distributed on or around the 1:1 line—a
pattern also revealed by the worm plot (Fig. 5c). Almost all of the worm points were within the
95 % confidence intervals, indicating good consistency between the selected model and the
observed flood data. The statistics of the model residuals (Table 2) indicated no significant
departure from normality of the residuals. The centile curves plot (Fig. 5d) showed most of the
points within the region between the 5 and 95 % centile curves and the decreasing
trend was also captured. The empirical frequency was within 5 % of the theoretical
probability for all centile curves, except for the 50th percentile, which had a differ-
ence of 7.1 % (Table 3). The above qualitative and quantitative assessment criteria
together suggested that: (i) the model residuals were approximately independent and

Fig. 4 a Calibration of veff in terms of the AIC criterion and b calculated time-varying norming constants series
d
veff
t and c

veff
t ; the series were derived by Eqs. (9) and (10) respectively with the Lognormal μt and σt series

estimated from the annual daily flow series by the L-moments method and the veff=343
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identically distributed random noise, and (ii) the NCM provided a reasonably good fit
to the non-stationary AMDF series by considering the relationship of the non-
stationarities in the annual maximum floods to the non-stationarities in the annual
daily flow series.

As a comparison with the NCM, the conventional stationary FFA model was also applied to
the AMDF series by fitting the Gumbel distribution and estimating the invariable norming
constants dv and cv by the L-moments technique over the entire AMDF series. A
decreasing trend of the residuals was indicated (Fig. 6a), and a serial correlation could
not be rejected (Fig. 6b). The worm plot indicated an acceptable result, with almost
all the points falling within the 95 % confidence intervals (Fig. 6c), but the stationary
model had a larger AIC value than the NCM, and the normality of the residuals was
just unacceptable in terms of the Filliben correlation coefficient (Table 2). Further-
more, all the centile curves were horizontal (Fig. 6d), which does not describe the
variability of the AMDF series, and there were discrepancies of 5 % or more for three
of the centile curves (Table 3).

Fig. 5 Residual plots and the centile curves plot for the NCM (time-varying d
veff
t and c

veff
t series were calculated

as described in Fig. 4b). a Residual versus observed year plot, bACF plot, cworm plot, and d centile curves plot;
the blue points are the observed AMDF series, the red line is the 50 % centile curve, the dark grey region is the
area between the 25 and 75 % centile curves and the light grey region is the area between the 5 and 95 % centile
curves
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4.4 Step 4. Meteorological Covariate Analysis for the NCM

The estimated μt and σt sequences for the period of 1954–2009 were expressed as multivariate
linear functions of the meteorological covariates. The fitted expressions were then substituted
into Eqs. (9)–(10) for calculating the time-varying norming constants (with veff=343) and the
covariate combinations for both PD parameter sequences were optimized in terms of the AIC
criterion. This produced significant covariates for μt and σt, the optimal AIC value and the
statistics of the residuals (Table 2, Fig. 7). The optimal fitted expressions of μt and σt by
meteorological covariates were:

μt ¼ 3:5751þ 0:0819Hmean−0:4496TMEANmean ð13Þ

σt ¼ 2:6093−0:0376Hmean þ 0:0056rain3max þ 0:0012rainyear ð14Þ

For the NCM with meteorological covariates (NCM-MC) a slightly smaller AIC value was
observed compared to that of the NCM without considering the relation of the PD parameters
(μt and σt) to meteorological factors (Table 2). The residuals were randomly distributed and
serially independent, and without outliers (Fig. 7a, b). The normal Q-Q plot (not illustrated in
this paper) had almost all the points distributed on the 1:1 line—a pattern also revealed by the
worm plot (Fig. 7c), where all the points were located within the 95 % confidence intervals and
aligned on or around the fitted cubic polynomial line. The statistics of both the Filliben

Table 2 Summary of the AIC values and statistics of the residuals for the NCM, the stationary model and the
optimal NCM with meteorological covariates (NCM-MC)

Statistic NCM Stationary model NCM-MC

μt – – Hmean,TMEANmean

σt – – Hmean,rain3max,rainyear
AIC 904.94 969.37 900.62

Filliben correlation coefficient 0.985 0.974 0.995

KS statistic Dks 0.128 0.105 0.060

The critical values of the Filliben correlation coefficient is Fα = 0.978 and the KS statistic isDα=0.182, at α=0.05

Table 3 Comparison between the empirical frequency of the observed flood events falling below each centile
curve and the corresponding theoretical probability for the NCM, the stationary model and the optimal NCM
with meteorological covariates (NCM-MC)

Model Frequency—probability (%)

5 25 50 75 95

NCM 3.6 26.8 42.9 76.8 91.1

Stationary model 0.0 32.1 50.0 67.9 98.2

NCM-MC 5.4 28.6 53.6 75.0 96.4

The values in boldface indicate that the discrepancies between the empirical frequency and corresponding
theoretical probability are equal to or larger than 5 %
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correlation coefficient and the KS test of the residuals (Table 2) indicated that the residuals
were normally distributed random noise. The centile curves plot (Fig. 7d) showed the majority
of the points falling within the 5–95 % region, and the centiles captured the decreasing trend of
the flood series. The empirical frequency was within 5 % of the theoretical probability for all
centile curves (Table 3).

4.5 Implication of NCM for Design Flood Estimation

The NCM with meteorological covariates (NCM-MC) takes full advantage of the non-
stationarity in the annual daily flow series and closely related climate factors. For the Wei
River, this method produced the most reliable estimate of the magnitude of a design flood
under non-stationary conditions. Flood magnitudes with a 0.01 annual exceedance probability
(corresponding to 100-year flood events under stationary conditions) were estimated for each
observed year for the NCM-MC. The 0.01-probability flood quantile of the stationary FFA
model was also estimated and compared with that from the NCM-MC. The 95 %
confidence intervals of the 0.01-probability flood quantiles were evaluated with the

Fig. 6 Residual plots and the centile curves plot for the stationary model. a Residual versus observed year plot, b
ACF plot, cworm plot, and d centile curves plot; the blue points are the observed AMDF series, the red line is the
50 % centile curve, the dark grey region is the area between the 25 and 75 % centile curves and the light grey
region is the area between the 5 and 95 % centile curves
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parametric bootstrap technique (Kyselý 2010; Tramblay et al. 2013) for both the
stationary and the NCM-MC models.

For the stationary FFA model, the estimated 100-year flood event was a constant
magnitude of 7 300 m3/s (Fig. 8). For the NCM-MC, a great range of variability was
apparent in the estimated design flood (Fig. 8). The flood magnitudes under the 0.01-
probability ranged from a minimum of 2 000 m3/s (in 1997) to a maximum of 14
100 m3/s (in 1983). In this case, the assumption of stationarity would seem to over-
estimate design flood magnitudes for the future. In the case of increasing trend in the
flood series (e.g. Robson 2002), design floods could be under-estimated, potentially
increasing risk of flood damage or dam failure into the future. On the other hand,
where the trend is decreasing (e.g. Ishak et al. 2013, and our Wei River case study)
design floods could be over-estimated, possibly imposing unnecessarily high costs on
society for future flood protection. The NCM proposed here for non-stationary FFA
has application to both of these cases.

Fig. 7 Residual plots and the centile curves plot for the optimal NCM with meteorological covariates (time-
varying d

veff
t and c

veff
t series were calculated by Eqs. (9) and (10) respectively after a procedure of expressing the

estimated Lognormal μt and σt series as linear functions of meteorological covariates and veff=343). a Residual
versus observed year plot, b ACF plot, c worm plot, and d centile curves plot; the blue points are the observed
AMDF series, the red line is the 50 % centile curve, the dark grey region is the area between the 25 and 75 %
centile curves and the light grey region is the area between the 5 and 95 % centile curves
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5 Conclusions

The fundamental assumption of stationarity for flood frequency analysis is suspect under the
conditions of climate change and large-scale anthropogenic activities that affect flood runoff.
Recognizing this problem, we developed a solution termed the norming constants method
(NCM) of non-stationary flood frequency analysis (FFA). Our approach was to incorporate
non-stationarity information in the annual daily flow series into the non-stationary FFA of the
AMDF series.

A four-step framework is appropriate for applying the NCM of non-stationary FFA.
The basis of applying the NCM is testing the presence of non-stationarity in the
hydrological time series. As the time-varying statistical parameters of the AMDF
distribution are mathematically derived from the annual daily flow series, the form
of non-stationarity of the AMDF series is unimportant, and any suitable test for non-
stationarity can be employed.

In applying the NCM, we suggest that both Lognormal and Gamma distributions be fitted
to annual daily flow series, and both the maximum likelihood and L-moments techniques be
used to estimate the statistical parameters of the distributions. Statistical tests will determine
the most appropriate scenario for the annual daily flow series. Our suggested solution to the
serial correlation apparent in most annual daily flow series is to calibrate the value of block
length v in terms of the AIC criterion, to reflect the real independence within the annual daily
flow series. Application of the suggested NCM to data from Huaxian hydrological station on
the Wei River, China, found that by considering information concerning the non-stationarity in
the annual daily flow series, the NCM performed better than a model based on the assumption
of stationarity. Incorporating climate factors as explanatory variables further improved the
model performance, and made the non-stationary FFA more physically meaningful. On this
basis, estimation of design flood magnitude should be more reliable using the NCM approach
than a method that assumes stationarity. While our test application of the NCM approach was
limited to only one study site, the results were sufficiently promising to suggest that the
method could have widespread global application in providing more realistic information for
flood risk assessment.

Fig. 8 Flood quantiles for the 0.01 annual exceedance probability for both the stationary model and the optimal
NCM with meteorological covariates (NCM-MC). CI is the confidence interval of the corresponding flood
quantile
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