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Abstract Ensemble streamflow predictions (ESPs) offer great potential benefits for water
resource management, as they contain key probabilistic information for analyzing prediction
uncertainty. Ensemble weather forecasts (EWFs) are usually incorporated into ESPs to provide
climate information. However, there is no simple way to combine both of them, since EWFs
are generally biased and under-dispersed. This study presents a new short-term (1 to 7 lead
days) probabilistic streamflow prediction system combining stochastic weather generation and
EWFs. The bias and under-dispersion of EWFs were first corrected using a weather generator-
based post-processing approach (GPP). The corrected weather forecasts were then coupled
with a hydrological model for streamflow forecasts. The proposed GPP forecast was compared
against two other forecasts, one using the raw EWF (GFS), and the other using a stochastic
weather generator (WG). The comparison was carried out over two Quebec watersheds, using
a set of deterministic and probabilistic verification metrics. The deterministic metrics showed
that the GPP forecast is consistently the best at predicting the ensemble mean streamflow for
both watersheds and for all the leads ranging between 1 and 7 days, followed by the WG
forecast. The probabilistic metrics showed negative or near zero skill retained by the GFS
forecast for the first 7 lead days. The WG system was much more skillful than the GFS. The
GPP forecast consistently displayed the highest skill and reliability in terms of all the metrics
applied. With increasing lead days, the skill and reliability of the GPP forecast tend to
converge toward that of the WG forecast, indicating that the short-term GPP forecast could
easily be linked to a pure WG forecast to extend the forecast horizon.
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1 Introduction

Water resource management relies extensively on hydrological modeling, which in turns
depends on meteorological forecasts for flow predictions on a short-term basis. For medium
to long-term forecasts, hydrology models generally rely on some form of resampling of the
climatological record. In either case, hydrologists need to bridge the gap between the water
sciences and the fields of meteorology and climatology. Recent initiatives such as the
Hydrologic Ensemble Prediction EXperiment (HEPEX) program bring together hydrological
and meteorological communities worldwide to build a research project focused on advancing
probabilistic hydrological forecast techniques (Schaake et al. 2006).

Generally speaking, there are two types of hydrological forecasts: deterministic and
probabilistic. In a deterministic forecast, the outcome is precisely determined, usually using
a deterministic weather forecast, without any consideration for uncertainty in the forecast.
Forecast uncertainty provides potentially important information that may be critical to the
decision-making process. Probabilistic forecasts are designed to provide this critical informa-
tion to decision makers (Cloke and Pappenberger 2009; Boucher et al. 2011). For example,
Days (1985) presented a probabilistic streamflow forecast procedure using the National
Weather Service River Forecast System for predicting streamflow. This system assumes that
each year of the historical data is a possible representation of the future. One streamflow trace
was simulated for each historical year using the current watershed conditions as the initial
conditions for each simulation. Several studies (Velazquez et al. 2009; Boucher et al. 2011)
have compared deterministic and probabilistic hydrological forecasts and consistently demon-
strated that ensemble forecasts have more skill than their deterministic counterparts.

Numerical weather predictions are usually incorporated into ensemble streamflow prediction
(ESP) to provide climate information (e.g., Clark and Hay 2004; Roulin and Vannitsem 2005;
Ghile and Schulze 2010; Tang et al. 2010; Şensoy and Uysal 2012; Dutta et al. 2012). A
hydrological forecasting system based on coupling the ensemble weather forecast (EWF) with
hydrological models is able to capture the uncertainties associated with the weather forecast and
thus to better predict river flows. For example, Roulin and Vannitsem (2005) showed that ESP
systems based on ensemble precipitation forecasts were much better than those based on the
historical precipitation input for two Belgian catchments. However, other studies have pointed
out that a post-processing step is required before using EWFs with hydrological models. Clark
and Hay (2004) assessed the possibility of using 8-day atmospheric forecasts from the National
Centers for Environmental Prediction for streamflow prediction over the contiguous United
States and found that the model output statistics (MOS)-based downscaling procedure increased
the skill of streamflow predictions for snowmelt-dominated watersheds where daily variations
in streamflow were strongly forced by temperature, while the skill of MOS-based forecasts in
the rainfall-dominated basin were equivalent to that of the climatic ESP.

Short-term hydrological prediction is highly dependent on the quality of the meteorological
output variable, especially the precipitation forecast (Roulin and Vannitsem 2005), since the
hydrological prediction is usually based on daily meteorological inputs. However, EWFs
generally suffer from bias and tend to underestimate the ensemble spread (Hamill and
Colucci 1997; Eckel and Walters 1998), which limits their application to hydrological fore-
casts. The bias of EWFs can be introduced by systematic model errors, such as the imperfect
model formulation and parameterization of some climate processes, as well as by the use of
imperfect initial conditions, which can be amplified by the chaotic nature of the evolution
equations of the dynamical system. To address the bias and under-dispersion of EWFs, a
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number of post-processing methods have been proposed. Wilks (2006) classified these
methods into rank histogram techniques, ensemble dressing, Bayesian model averaging
(BMA), logistic regression, analog techniques and nonhomogeneous Gaussian regression
and compared their performances for post-processing EWFs.

All of these methods were developed to determine the underlying probabilistic distribution
of the forecasted precipitation and temperature. However, for ESP, continuous time series over
several days are needed to run hydrological models and it is not a simple task to go from daily
probabilistic distributions to the coherent sequences of daily variables needed to run hydrology
models. Chen et al. (2014a) presented a new method for post-processing EWFs using a
stochastic weather generator. This method has the significant advantage of readily generating
continuous time series that are fully consistent with the underlying distribution of EWFs.

However, one of the ultimate goals of using EWFs is for hydrological forecasting. The
performance of any new post-processing method should be validated for hydrological forecasts
at the watershed scale. Accordingly, this study evaluates the effectiveness of post-processing
EWFs for short-term (1 to 7 lead day) ESPs. The EWFs referred to herein are the Global Forecast
System (GFS) reforecast datasets. The 7-day EWFs are first subjected to post-processing using a
weather generator-based approach (referred to as the GPP) (Chen et al. 2014a). The use of the 7th
day as a limit of post-processing was based on the horizon for which the post-processed GFS
reforecasts displayed skill levels above those of the resampling approaches for precipitation. In
other words, past 7 days, the precipitation forecasts were no better than historical resampling
results (Chen et al. 2014a). The GPP system is further compared with two other ESP systems
over two Canadian watersheds in the province of Quebec. One directly links raw GFS EWFs to
the hydrological model (referred to as GFS), while the other is achieved by resampling the
historical meteorological record using a stochastic weather generator (referred to as WG).

2 Study Area and Dataset

2.1 Study Area

The proposed ESP system is evaluated over two Canadian catchments (Peribonka and
Yamaska) located in the Province of Quebec (Fig. 1). These two catchments were also used
by Chen et al. (2014a) for evaluating the effectiveness of post-processing EWFs. They are only
briefly described as follows. More details can be found in Chen et al. (2014a). Both the
Peribonka and Yamaska catchments are composed of several tributaries draining basins of
approximately 27,000 and 4843 km2, respectively. The southern parts of the Peribonka and
Yamaska catchments, known as the Chute-du-Diable (CDD) and the Yamaska (YAM) water-
sheds, respectively, are used in this study. The CDD and YAM watersheds differ in terms of
their size (9700 vs 3300 km2) and location, thus allowing the evaluation of basin characteristics
on ESP. The CDDwatershed is a snow-dominated forested basin located in Central Quebec. Its
hydrographs are strongly characterized by the snowmelt season. The smaller YAMwatershed is
located in southern Quebec (at the US border) in a mixed agricultural-forest setting.

2.2 Dataset

The dataset consists of both observed data and EWFs. The observed daily precipitation,
maximum and minimum temperatures (Tmax and Tmin) over the two watersheds were taken
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from the National Land and Water Information Service (www.agr.gc.ca/nlwis-snite) dataset
covering the period 1979–2003. This dataset was created by interpolating station data to a 10-
km grid using a thin plate smoothing spline surface fitting method (Hutchinson et al. 2009).
All the grid points within the watershed were averaged to obtain a single precipitation and
temperature time series for each basin. The daily discharge at the watershed outlet was
obtained from Environment Canada (http://www.ec.gc.ca/).

EWFs (daily total precipitation and mean temperature) with a global grid of 2.5° were taken
from the GFS reforecast dataset (http://www.esrl.noaa.gov/psd/forecasts/reforecast/) (Hamill
et al. 2006). Several previous studies have discussed the benefit of calibrating probabilistic
forecasts using ensemble reforecast datasets (e.g., Hamill et al. 2004, 2006; Hamill and
Whitaker 2006). Forecasts for each day since 1979 have been produced with GFS,
comprised of a 15-member run out to 15 days. The grid boxes covering the watershed were
selected; in this study, two grid boxes were selected and averaged for the CDD watershed and
one grid box was selected for the YAM watershed.

3 Methodology

3.1 Stochastic Weather Generator

Stochastic weather generators are algorithms that produce climate time series of arbitrary
lengths that possess statistical properties very similar to those of the input data. The Weather
Generator of École de Technologie Supérieure (WeaGETS) (Chen et al. 2012a), which is a
WGEN-like (Richardson 1981; Richardson and Wright 1984) three-variate (precipitation,
Tmax and Tmin) single-site stochastic weather generator programmed in Matlab, was used
in this study. In WeaGETS, the parameters are estimated biweekly.

The precipitation component of WeaGETS is a Markov chain for occurrence and a gamma
distribution for quantity. A first-order two-state Markov chain is used to generate the precip-
itation occurrence. For a predicted rain day, a gamma distribution is used to generate daily
precipitation amounts. The daily Tmax and Tmin are generated using a first-order linear

Fig. 1 Location map of the two catchments
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autoregressive model. Readers are referred to Chen et al. (2012a) and Richardson (1981) for
complete details. WeaGETS has been tested extensively at several locations under various
climates and found to be adequate at reproducing precipitation and temperature characteristics
(Chen et al. 2012a; Chen and Brissette 2014). The WeaGETS code is freely available on the
Mathworks File exchange site.

Stochastic weather generation as used in this study is similar to resampling the historical
database. However, it has several advantages over historical resampling. For example, weather
generators can generate events that are outside the historical record, either by drawing large
values from a properly fitted distribution or by allowing sequences of longer dry/wet series.
Weather generators also allow for the use of an infinite number of time series, thus producing
streamflow probability distributions that are much smoother than resampling the historical
record.

The generation of ensemble climate time series (WG-based resampling) for system verifi-
cation is based on a cross-validation approach (Wilks 2005) to ensure the independence of the
training and evaluation data. Given 25 years of available forecasts, when making forecasts for
a particular year, the remaining 24 years can be used as training data. One thousand time series
were generated for precipitation, Tmax and Tmin, to represent 1000 ensemble members for a
particular year. One thousand members are used to obtain the true expectancy of a weather
generator. A small number of samples could result in biases due to the random nature of the
stochastic process.

3.2 Weather Generator-Based Post-Processing Approach

For the GPP, the EWFs (precipitation and temperature) are first subjected to the post-
processing method of Chen et al. (2014a). This method uses a weather generator whose
parameters are skewed to the EWFs. The method is briefly summarized below. Full details
can be found in Chen et al. (2014a).

The post-processing of ensemble precipitation forecasts is achieved by estimating relation-
ships between forecasted precipitation classes and probability of observed precipitation occur-
rence or observed wet-day precipitation for each specific season. Specifically, for any given
lead day, a precipitation class is first determined according to the forecasted ensemble mean
precipitation. The probability of observed precipitation occurrence corresponding to this class
is used as the probability of precipitation for this day. A gamma function is fitted for the
observed precipitation amounts within each class (one gamma function for one class). One
thousand random numbers drawn from a uniform distribution are then generated to represent
1000 members. If random numbers are less than or equal to the probability of observed
precipitation occurrence within this class, the corresponding members are predicted to be wet,
otherwise, they are predicted to be dry. If a member is deemed wet, the fitted gamma
distribution in the corresponding class is used to generate precipitation amounts with uniform
random numbers. All the procedures are repeated for all 7 lead days. In the end, one thousand
well-calibrated 7-day time series of precipitation are generated.

A linear regression method is used to correct the ensemble mean temperature. Linear
equations are fitted between the observed and ensemble mean temperature anomaly, using a
31-day window centered on the day of interest. To obtain Tmax and Tmin needed to run the
hydrology model, the corrected temperature anomaly is added to the mean of the observed
Tmax and Tmin. The spread of the ensemble temperature is added using a two-parameter
(mean and standard deviation) normal distribution. The corrected ensemble mean temperature
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for each day is used as the mean of the normal distribution. The standard deviation for each
season is obtained using an optimization algorithm proposed by Chen et al. (2014a). For a
given day, the temperature is found by multiplying the standard deviation by a normally-
distributed random number, and adding the bias-corrected ensemble mean temperature for that
day. As with precipitation, one thousand 7-day series of calibrated temperatures are generated.

Differently from other post-processing methods (e.g., BMA and logistic regression) that
only produce the underlying probability distribution of forecasted variables, the GPP method
directly generates the continuous time series, which makes it possible to be linked to
hydrological models for hydrological forecasts. The biases of precipitation occurrence are
also specifically considered. Additionally, the use of parametric distribution (e.g., gamma
distribution) to simulate precipitation amounts allows simulating the extreme values outside
the range of the observed data. This is one of the major advantages of this method over the
analog technique. In this study, the post-processed precipitation and temperature time-series
are un-biased and fully consistent with the EWFs for that 7-day period. The generation of the
EWFs for the ESP system verification is also based on the cross-validation approach. When
making forecasts for a particular year, the remaining 24 years are used as training data.

3.3 Hydrological Modelling

The hydrological model HSAMI, developed by Hydro-Québec, is used for the hydrology
forecast. HSAMI is a 23-parameter, lumped, conceptual, rainfall-runoff model. It has been
used to forecast natural inflows for over 20 years (Fortin 2000). It is used by Hydro-Québec for
hourly and daily forecasting of natural inflows on nearly 100 watersheds, with surface areas
ranging from 160 km2 to 69,195 km2. It was also used as an impact model in several climate
change impact studies (Chen et al. 2011, 2012b; Minville et al. 2009). Of the 23 parameters, 2
account for evapotranspiration, 6 for snowmelt, 10 for vertical water movement, and 5 for
horizontal water movement. Vertical flows are simulated with four interconnected linear
reservoirs (snow on the ground, surface water, unsaturated and saturated zones). Horizontal
flows are routed through two unit hydrographs and one linear reservoir. The model takes snow
accumulation, snowmelt, soil freezing/thawing and evapotranspiration into account. Model
calibration is done automatically using the Covariance Matrix Adaptation Evolution Strategy
(CMAES) (Hansen and Ostermeier 1996, 2001).

The basin-averaged minimum required daily input data for HSAMI are: Tmax, Tmin, liquid
and solid precipitations. Cloud cover fraction and snow water equivalent can also be used as
inputs, if available. A natural inflow or discharge time series is also needed for proper
calibration/validation. For this study, 10 years (1979–1988) of daily discharge data were used
for model calibration and another 10 years (1989–1998) of data were used for validation over
the CDD watershed. The optimal combination of parameters was chosen based on Nash-
Sutcliffe criteria. The selected parameter set yielded Nash-Sutcliffe criteria values of 0.913 and
0.835 for calibration and validation periods, respectively. For the YAM watershed, 8 years
(1995–2002) of daily discharge data were used for model calibration and 7 other years (2003–
2009) were used for validation, with the Nash-Sutcliffe criteria values of 0.749 and 0.712 for
the calibration and validation periods, respectively.

It should be noted that since raw GFS reforecasts only provide mean temperature, Tmax
and Tmin forecasts for running HSAMI were recovered by adding 50 % of the differences
between observed Tmax and Tmin to GFS temperature forecasts and subtracting 50 % of the
differences as observed by GFS temperature forecasts. To validate this choice, a test using
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station-based hourly temperature (24 values per day) shows that the daily mean temperature
estimated by averaging daily Tmax and Tmin is just as good as that estimated by averaging
hourly temperature (results not shown).

3.4 Verification of the Ensemble Streamflow Predictions

The three ESP systems are first compared in terms of their ability to reproduce the mean
annual hydrographs for CDD and YAMwatersheds. A set of verification metrics derived from
the Ensemble Verification System (EVS) (Brown et al. 2010) are then used to quantify the
quality of these systems. The metrics consist of both deterministic and probabilistic metrics.
The deterministic metrics measure the difference between the ensemble mean forecast and the
reference (observed discharge in this study) for a specific variable. They include the correlation
coefficient (r2), relative mean error (RME), mean absolute error (MAE) and root mean square
error (RMSE). The probabilistic metrics measure the forecast probability of an ensemble
forecast system. They include the mean continuous ranked probability skill score
(MCRPSS), Brier score (BS) and reliability diagram. The BS and reliability diagram only
verify discrete events within the continuous forecast distributions. One or more thresholds
have to be defined to represent the cutoff values from which discrete events are computed. Six
quantiles with probability of streamflow exceeding 10 % (lower decile), 33 % (lower tercile),
50 % (median), 67 % (upper tercile), 90 % (upper decile) and 95 % (95th percentile) are used
as thresholds in this study. All metrics are calculated for lead times ranging between 1 and
7 days. The details of these metrics can be found in Brown et al. (2010), Demargne et al.
(2010) and the User Manual of the EVS (Brown 2012) (http://amazon.nws.noaa.gov/ohd/evs/
evs.html).

4 Results

The three ESP systems are first compared in terms of reproducing the mean annual
hydrographs for two watersheds. Since similar results are obtained for all 7 leads, only the
results for the 1- and 3-leads are presented in Fig. 2 for illustration. To avoid bias from the
hydrological modeling process, streamflows for the reference period are represented by the
modeled streamflows and not by observations. The GFS system over-predicts the spring,
summer and winter discharges for the CDD watershed, and the entire year discharge for the
YAM watershed at both lead days, indicating the over-prediction of precipitation amounts in
the raw EWF. However, the winter discharge of the CDD watershed is reasonably reproduced,
because CDD is a snow-dominated watershed. The snowfall accumulates for a few months in
the winter. Hence, the over-prediction of precipitation has little effect on winter streamflow.
However, the overestimation of snowmelt peak discharge still indicates an over-prediction of
winter snowfall (Fig. 2a and b). In fact, the snowmelt peak discharge in snow-dominated
watersheds is mainly affected by temperature. The relatively good timing of the average peak
indicates that the ensemble mean temperature is not too biased.

The WG system reasonably reproduces the mean annual hydrograph for the CDD water-
shed with the exception of a slight over-prediction of the peak discharge. However, it under-
predicts the winter discharge and over-predicts the spring discharge for the YAM watershed.
This may be due to a slight cold bias in the historical resampling temperatures. The cold bias of
temperatures does not have much influence on the winter discharge for the snow-dominated
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watershed, but it significantly affects the winter discharge for the rainfall-dominated
watershed.

The GPP system reproduces the mean annual hydrographs very well for both watersheds
and all leads. Overall, this preliminary test clearly show that the post-processing of the EWFs
is necessary, and that historical resampling may be adequate for snow-dominated watersheds,
but it is more problematic for smaller or warmer watersheds. This further confirms the ability
of the post-processing method presented by Chen et al. (2014a) to remove the biases of
ensemble forecasts.

Figure 3a–h present the quality of the ensemble mean streamflows in terms of r2, RME,
MAE and RMSE. The statistics were calculated for all forecast-observation pairs. As indicated
in Fig. 3a and b, the observed discharge and ensemble mean discharge predicted by the GFS
system show a strong correlation for the CDD watershed and a relatively lower correlation for
the YAM watershed. However, they are consistently better than those predicted by the WG
system for all leads, especially for the YAM watershed. This performance can be attributed to
the fact that the GFS system consistently over-predicts the discharge overall, as indicated in
Fig. 2, while theWG system over-predicts the discharge for some seasons and under-predicts it
for others, especially for the YAM watershed. The GPP system slightly improves the corre-
lation for the CDD watershed and markedly improves the correlation for the YAM watershed.
Moreover, there is a progressive decline in the correlation with increasing lead time, especially
for the YAM watershed. However, the degradation in the correlation is more rapid for the GPP
system than it is for the GFS system. This is especially noteworthy, when after 6 lead days, the
GFS system’s correlation is close to or even slightly better than that of the GPP system,
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Fig. 2 Mean annual hydrographs of ensemble mean streamflow predicted by three ESP systems (GFS, WG and
GPP) for 1- and 3-lead days over the CDD and YAM watersheds. The mean annual hydrographs simulated using
observed meteorological data (OBS) are also plotted
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indicating the use of the 7th day as the limit of post-processing is reasonable in terms of the
correlation between observed and predicted streamflow.

The ensemble mean discharge is considerably over-predicted by the GFS for both water-
sheds, as shown in Fig. 3c and d. The bias for the CDD watershed is much greater than that of
the YAMwatershed, with mean RMEs of 60.5 and 88.1 %, respectively, across all 7 lead days.
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error (RMSE) and mean continuous ranked probability skill score (MCRPSS) of ensemble mean streamflow
predicted by three ESP systems (GFS, WG and GPP) for 1- to 7-lead days over the CDD and YAM watersheds
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However, little bias is observed for the ensemble mean discharge predicted by both WG and
GPP systems, with the latter being slightly better.

Similarly to RMEs, the ensemble mean streamflows predicted by the GFS display a large
error for both watersheds and all 7 leads in terms of the MAE and the RMSE (Fig. 3e–h). The
WG system consistently performs better than the GFS system, while GPP is consistently the
best. With increasing lead time, the quality of ensemble mean streamflow predicted by raw
GFS slightly degrades for both watersheds. This may be due to the lack of spread in shorter
lead ensemble forecasts and the larger spread in longer lead forecasts (Chen et al. 2014a).
Meanwhile, the GPP’s performance gradually decreases with increasing the lead time,
outlining the diminishing skill of the EWF.

As indicated by MCRPSS (Fig. 3i and j), the ensemble streamflow predicted by the GFS
system shows negative or near zero skill relative to the reference. It is worth observing that the
MCRPSS is always less than −0.2 for the YAM watershed. Meanwhile, the forecast skill
consistently increases with the forecast leads. Again, this may be caused by the lack of spread
of shorter lead-time ensemble forecasts and the larger spread of longer lead-time forecasts. The
ensemble streamflows predicted by WG display zero skill for the YAMwatershed and positive
skill for the CDD watershed, relative to the references. The GPP system consistently increases
the skill of the ESP, especially for the YAM watershed. Although the skill of the GPP system
progressively deteriorates with an increase in lead time, it is still greater than that of the WG
system for the 7-lead day. Even though Chen et al. (2014a) showed that the post-processed
EWFs retained little skill after 7 days for precipitation relative to the climatology, the
combination of precipitation and temperature (which has a higher skill level) provides more
skill than that of the climatic ESP at 7 days. Additionally, the ESP skill is watershed-size
dependent. The predictive power of ESP is consistently higher for the CDD watershed than for
the YAM watershed.

For probabilistic metrics computed for discrete events, such as for BS and reliability
diagrams used in this study, a number of thresholds have been defined. Since similar trends
are obtained for all six thresholds, only the results with a probability exceeding the median
(50 %) are presented to illustrate the trends for both metrics.

BS can be decomposed into three components: reliability, resolution and uncertainty
(Brown 2012). Figure 4 presents the BS and its components of ensemble streamflows
predicted by all three ESP systems for both watersheds and 7 forecast leads. The reliability
term of a BS measures how close the forecast probabilities are to the true probabilities, with
smaller values indicating a better forecasting system. The resolution term measures how much
the predicted probabilities differ from the hydrological average, with larger values indicating a
better forecast system. According to its definition, the value of an uncertainty component is
0.25 (0.5×(1–0.5)) when using median as the threshold.

In terms of the BS and its reliability and resolution components, the GPP system is
consistently more accurate than the other two systems at predicting ensemble streamflows
for both watersheds and all 7 lead days and the WG system is more accurate than the GFS
system. Additionally, all of the systems are more accurate with their predictions for the CDD
watershed than for the YAM watershed.

As displayed by the BSS levels, the GFS system shows negative skill for all 7 forecast leads
at the YAMwatershed. The WG system is consistently more skillful than the GFS system with
positive BSS values for the YAM watershed. The GFS system is very skillful for the CDD
watershed when using the median as the threshold for all 7 leads. However, it is still
consistently worse than the other two systems. The GPP system is consistently more skillful
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than the other two systems. Even though the skill of the GPP system decreases with the
increase of forecast leads, the smallest BSS value of GPP is greater than the largest BSS value
of the other two systems for both watersheds.

Figure 5 presents the reliability diagrams of the three ESP systems using probabilities of
streamflow exceeding the median (50 %) as a threshold, for 1- and 3-lead days over the two
watersheds. The sharpness histograms are presented alongside the reliability diagrams.
Overall, the probabilities of streamflow are typically over-predicted by the GFS system for
two watersheds, with the exception of the 1-lead day forecast with probability being lower than
50 % for the CDD watershed. This forecast has little resolution, especially at the lower forecast
probabilities, as indicated by its reliability curves that are below the 1:1 reference line for most
cases. The GFS is overconfident, as reflected in the U-shape sharpness (too sharp but with little
reliability). Overall, the WG system is much more reliable than the GFS system, with little or
no decrease in the sharpness for two watersheds. However, the observed probabilities are
typically under-forecasted for the CDD watershed when forecast probability is lower than
50 %. In particular, the observed lower probabilities (<20 %) are considerably under-
forecasted for the YAM watershed. However, the higher probabilities (>20 %) are reasonably
well predicted. The GPP system dramatically improves the reliability and resolution of ESP for
both watersheds and for 1- and 3-lead days, as displayed by reliability curves close to the 1:1
reference line. More importantly, there is little or no decline in the sharpness.
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Fig. 4 BS and its decomposed components (Brier score uncertainty (BSunc), Brier score reliability (BSrel), and
Brier score resolution (BSres)) of (left) GFS, (middle) WG, and (right) GPP ensemble streamflow predictions for
1–7 lead days over the (a)–(c) CDD and (d)–(f) YAM watersheds. Probability exceeding 50 % is used as the
threshold. The BSS of the ensemble forecasts relative to the observed discharge is also presented
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5 Discussion and Conclusion

This study presented an ESP system for short-term hydrological forecasts using the post-
processing method for EWFs. The proposed ESP system (GPP) was further compared to the
other two systems (GFS and WG) for hydrological predictions over two Canadian watersheds
in the province of Quebec. Overall, the WG system is generally better than the GFS system at
predicting the ensemble mean streamflow for both watersheds and all leads ranging between 1
and 7 days. The GPP system is consistently better than the other two systems in terms of the
overall deterministic metrics. Probabilistic metrics indicate that little skill is retained for the
ESP produced by the GFS system, indicating that post-processing the EWFs is necessary for
hydrological predictions. The WG system, which only takes into account the historical record
of climate events, is consistently better than the raw EWFs. However, this system assumes that
the past climatology is adequate at representing the current climatology, which is a weakness in
the context of an evolving climate. Post-processing the EWFs considerably improves the
predictive power of the ESP for all leads of between 1 and 7 days.

The performance of ESP systems is watershed-dependent in this study. All forecast systems
consistently perform better over the CDD watershed, most likely due to the difference in
watershed size. The CDD watershed is much larger than the YAM watershed and it is more
consistent with the scale of the numerical weather model. The post-processing procedure used
for calibrating the EWF also acts as a statistical downscaling method, and because the spatial
resolution of the GFS reforecasts is much larger than the area of the YAM watershed, the post-
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Fig. 5 Reliability diagrams of ensemble streamflow predicted by three ESP systems (GFS, WG and GPP) for 1-
and 3-lead days over the (a)–(b) CDD and (c)–(d) YAM watersheds. The probability of streamflow exceeding
50 % (Q>50 %) is used as a threshold
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processing method faces a more difficult task. Chen et al. (2014a) indicated that the ensemble
precipitation forecasts retained little skill past 7 days. However, this study showed that the GPP
system was still more skillful than the WG system at the 7th lead day with the exception of
using r2 as a metric. There are two likely reasons why the skill of the ESP system exceeds that
of the EWF. The first reason is that the ESP reflects the synergic effect of precipitation and
temperature. Even though there was little skill for precipitation forecast, the temperature
retained a significant skill level after 1 week. The second reason is the lag between precipi-
tation and streamflows, as the precipitation for 1 week may still affect the runoff for the
following week. However, with increasing lead days, the skill and reliability of the GPP
forecast converges toward that of the WG forecast, indicating the possibility of combining
GPP and WG forecasts for short- to medium-term ESP. The lead time at which the both
forecasts converge can be used as a transition point between the two forecast systems.

This study coupled EWFs to a lumped hydrological model for ESP. To use the lumped
model, all observed grid points within the watershed were averaged. Averaging precipitation
and temperature may lead to a loss of information on the spatial variability, and particularly for
precipitation and for larger watersheds. In such cases, it may be more reasonable to use a
distributed hydrological model for the flow forecasts. To properly achieve this, the raw EWFs
would have to be post-processed using a multi-site stochastic weather generator which adds a
complexity layer to the forecast, even though multi-site weather are now freely available (i.e.,
Chen et al. 2014b).

The weather generator-based approach post-processed precipitation and temperature
independently. However, a correlation usually exists between precipitation and tem-
perature. A previous study (Chen et al. 2014a) showed that the GFS forecasts
overestimated the precipitation–temperature correlation, while the GPP forecasts slight-
ly underestimated the correlation. These results are not entirely surprising since any
post-processing method is expected to alter the precipitation–temperature correlation,
unless it is specifically taken into account.

Finally, the proposed GPP system was only tested over two Quebec watersheds rather than
watersheds from different climate regions. For a broader use of this system, a more compre-
hensive test, including using more datasets from different climate regions and comparisons
with other approaches such as BMAwould be required in further studies.
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