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Abstract Predicting streamflow in a large arid and semi-arid basin is of great impor-
tance in understanding the availability of water for spatial planning and water resource
management. In this study, two geographic information system-based (GIS-based)
semi-distributed hydrological models were compared for predicting flow.
TOPMODEL and SWAT require the use of a GIS to process input data obtained
from various sources, such as the digital elevation model (DEM), topographic index
(TI), hydrologic response unit (HRU), meteorological stations, and soil- and land-use
maps. Daily hydro-meteorological data were collected from 1989 to 2007, and 90-m
resolution of DEM was considered. The models were compared, and their perfor-
mances for the prediction of peak flows and runoff volumes were discussed.
TOPMODEL and SWAT obtained good coefficient values for the validation period,
i.e., 0.61 and 0.68, respectively. According to relative error percentage (RE %)
criteria, TOPMODEL provided a promising value for the validation period (64 %)
for peak flows, whereas SWAT provided about 70 %. TOPMODEL provided 5-year
overestimation and 1-year underestimation for runoff volume; SWAT provided 2-year
underestimation and 4-year overestimation. For this study, both models obtained
promising simulation results for surface flow.
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1 Introduction

In hydrology, modeling is an effective tool, and it is used extensively in soil and water
management. The models permit fast processing and lower cost for evaluating management
strategies and preventing undesirable outcomes (Thompson et al. 2004; Awchi 2014).

The three types of hydrological models are data-driven, conceptual, and physically-based
models (Chow et al. 2005; Nyeko 2014). Subsequently, conceptual models are classified as
lumped or semi-distributed models (Jajarmizadeh et al. 2012). Geethalakshmi et al. (2008)
stated that a full understanding of catchment hydrology, especially large-scale catchments are
unachievable via fully-distributed models due to the lack of accessibility to the required data.
In addition, the lumped model is not capable of considering various land uses and the variety
of hydrological processes (Ghavidelfar et al. 2011). Hence, the sub-division of watersheds into
smaller parcels and making similar hydrologic units is a reasonable idea to conquer the
problems that arise with fully-distributed and lumped models. A hydrological model that
can present small individual units is the semi-distributed model (Wilby 1997).

In a semi-distributed model, the algorithms are simple but physically based, meaning that the
hydrologic system is derived from theories and principles of physics. Spatial heterogeneity is
considered by observing the physical characteristics of the catchment (Valeo and Moin 2001).
The semi-distributed model predicts the average behaviour of a catchment based on several
small homogeneous units, which are then aggregated for a few defined positions (Wilby 1997).
Several semi-distributed models have been used successfully worldwide, e.g., TOPMODEL
(Beven et al. 1995), Soil and Water Assessment Tool (SWAT) (Arnold et al. 1998) and the
Global Hydrology Model (GHM) (Anderson and Kavvas et al. 2002). In this study, the
TOPMODEL and SWAT models were compared for modelling streamflow. Reed et al.
(2004) stated that TOPMODEL and SWATwere popular for the simulation of large catchments.

Concerning the comparison of hydrological models, Singh and Woolhiser (2002) reported
that the World Meteorological Organization (WMO) had sponsored comparisons of watershed
model studies (WMO 1975, 1986, 1992). Also, such models have been compared for different
topics, such as regional climate and flow analysis (Michaud and Sorooshian 1994; Bell and
Moore 1998). TOPMODEL has been compared with several hydrological models, e.g., the
fully-distributed model MIKE SHE (Yang et al. 2000) and the semi-distributed Xinanjiang
model (Li and Zhang 2008; Peng et al. 2008). The comparisons showed that TOPMODEL
provided good simulation performance. Several comparisons of data-driven models and SWAT
have been published over the past decade (Demirel et al. 2009; Srivastava et al. 2006), including
a comparison of SWAT and Hydrologic Simulation Program-Fortran (HSPF) (Im et al. 2007;
Singh et al. 2004; Hua and Lian 2013). Several studies have investigated the capability of
different hydrological models with SWAT (Nasr et al. 2007; Sommerlot et al. 2013). However,
there is a need to compare of SWAT with hydrological models based on fully-distributed or
semi-distributed structures (El-Nasr et al. 2005; Borah et al. 2007; Shi et al. 2011).

Arid regions are becoming vulnerable around the world, and statistics show that the
consumption of natural resources is proceeding at an alarming rate (Faramarzi et al. 2010).
The main reasons are increased population, industrialization of rural catchments, and the
impacts of global climate change. Therefore, new techniques, such as hydrological models,
are important in planning future watersheds and managing water resources. There have been
few academic investigations of southern Iran, where the climate is arid and semiarid. This area
has an important role in the production of agricultural crops, but water is scarce. Obviously,
sparse data and the limited accessibility of data are governing obstacles in the use of
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hydrological tools. Hence, there is a lack of recognition of the capability of hydrological tools
and their importance in future applications and studies.

In this research, Roodan in southern Iran was chosen to evaluate streamflow modeling via
hydrological models. Two semi-distributedmodels, i.e., TOPMODEL and SWAT,were developed
for Roodan. To the best of the author’s knowledge, no similar study has been performed previously
in southern Iran. Consequently, the benefit of this study for the future will be the assessment of the
applicability of surface flow modelling via SWAT and TOPMODEL in Iran. Also, the results of
this study might be useful for similar regional climates. The objectives of this study are (i) the
development of TOPMODEL for Roodan; (ii) the use of the SWATmodel for Roodan; and (iii) a
comparison of the results of the two models for predicting daily streamflow.

2 Material and Methods

2.1 Study Area

The study area is located in southern Iran between the Hormozgan and Kerman Provinces,
which is called Roodan. The area and perimeter of watershed are 10,570 km2 and 700 km,
respectively. The mean elevation is 781 m and the average slope is approximately 20 %
(Fig. 1). Roodan is mountainous in the north and east, with low land in the central part. For the
period of 1989 to 2007, the average annual precipitation and temperature were 215 mm and
25 °C, respectively. The heaviest precipitation occurs between October and March. The
predominant soil type is a heterogeneous mix of clay, silt, and sand. The land in Roodan

Fig. 1 Location of Roodan and meteorological stations
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includes shrub land, shrub land mixed with grassland, and rock. The land uses are primarily for
irrigated agriculture, orchards, and urban areas. The hydro-meteorological data for this study
were from the years 1989–2007. Therefore, the models were calibrated with 1989–2001 data
and validated using 2002–2007 data. Government organizations provided the hydrological
data for this research (Ab Rah Saz Shargh 2009) and the related quality was acceptable for
modelling consideration by Jajarmizadeh (2013).

2.2 Hydrologic Simulator TOPMODEL (IDL Version)

The topographic index (TI) is based on an analysis of the topography and digital elevation data
of the catchment to predict the response to rainfall using the hydrological similarity theory
(Suliman et al. 2014). Its distribution is given through ln(α/tanβ), which was discussed in
detail by Quinn et al. (1991), where α is the drained area through a square grid per unit length
of contour and tan β is the local surface slope. See Beven and Kirkby 1979 and Beven et al.
1995. The TI of the entire catchment area can be obtained from the digital elevation model
(DEM). Basically, the assumptions used in TOPMODEL, as reported in Beven (1997) are 1)
exponential decline of transmissivity with depth or deficit; 2) approximate local hydraulic
gradient with the local surface topographic slope (tan β); and 3) a quasi-steady-state condition
for uniform recharge through the catchment. This simple, steady-state theory helps to develop
a relationship for both the wet and dry conditions of the catchment between the TI and local
saturation of the soil, which can be used to predict non-linear runoff contributing areas
(Romanowicz 1997). Romanowicz (1997) presented basic equations (Equations 1 and 2)
including the sensitive recession curve parameter (m) and soil transmissivity (To).
Equation 1 describes the subsurface drainage to streams, and Equation 2 illustrates the
calculation of the runoff production areas for the catchment area (Beven et al. 1995).

Qb tð Þ ¼ Toe
−λe−S tð Þ=m ð1Þ

ΔSi ¼ Si − S tð Þ� � ¼ m λ − λi

� � ð2Þ

whereQo is the initial flow, Qb is the subsurface flow, S is the average soil moisture deficit,ΔSt
is the difference between the average area deficits and local area deficits, St represents is the
saturation deficit at any point in the catchment area, S is the average deficit of soil at saturation
for the catchment, λt is the local topographic index, and λ is the average catchment topographic
index. A more detailed description of TOPMODEL was provided by Beven et al. (1994).

DEM and spatial entities, such as the locations of hydro-meteorological stations, were
investigated through GIS. Thiessen polygons were generated for the areal rain gauge stations
to compute the average precipitation in the catchment. This study was prepared for Roodan
with 90-m resolution from 1:25000 topographic maps. It derived various features, such as flow
direction, flow accumulation, stream network, and drainage areas, required to set up
TOPMODEL’s inputs. The multiple direction algorithm (D8) was used to calculate the
direction of flow in this study (Wolock and McCabe 1995). Based on that, the topographic
index map of Roodan was generated (Fig. 2a). High topographic index values were found for
the areas that contributed to high runoff. Figure 2b shows the histogram of topographic index,
and the major pixels that represent the same index, i.e., 12, 13, and 14, clearly were found
north of the study area and around the channels.
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The calibration process was prepared by fitting the discharge of the model to improve its
shape compared to the observed discharge using manual calibration process, see (Suliman et al.
2014). The model’s parameters were estimated at the highest efficiencies achieved; Table 1
provides the values of the parameters. Highly-sensitive parameters, such as the recession curve,
m, and the saturated transmissivity, To, were the most sensitive parameters according to
Romanowicz (1997) and Beven and Kirkby (1979). The value of m usually ranges from 0.01
to 0.1 m (Beven 1997), and To is based on the catchment’s condition (Romanowicz 1997). The
less-sensitive parameters were calibrated using the topographic and soil maps.

2.3 Hydrologic Simulator SWAT (Version 2009)

SWAT is a semi-distributed model derived for alternative management decisions on water
resource management in small and large watersheds. SWATwas produced by the United States
Department of Agriculture’s (USDA’s) Agricultural Research Service (ARS) and has been
upgraded over a period of 30 years (Arnold et al. 2012). SWATwas developed for hydrologists
as a secondary tool for evaluating the impact of the management of water, sediment, and
agricultural chemical concentrations in catchments. While the SWAT model is suitable for
simulating long-term phenomena, it is not favorable for detailed, single-event evaluations, such
as flood routing. Recently, SWATwas combined with GIS to provide a better understanding of
catchment geometry and the scientific visualization of data and maps. SWAT involves a semi-
distributed meaning when a given watershed is divided into a number of subbasins, which are
integrated based on hydrologic response units (HRUs). In SWAT, HRUs have been considered
as lumped units in each subbasin that includes unique land cover, soil, and management
configuration. Then, the water balance has been routed in each HRU as shown in Equation 3:

SWt ¼ SW 0 þ
Xt

i¼1

Ri − Qsurf ; i − ETi −Wseep − Qgwrf ; i

� �
ð3Þ

Fig. 2 (a) Distribution of the topographic index, (b) Histogram of the topographic index and (c) HRU
visualization in the SWAT model
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where SWt=final soil water content (mm); t=time (days); SW0=initial soil water content (mm);
Ri=precipitation on day i (mm); Qsurf,i=surface runoff on day i (mm); ETi=evapo- transpiration
on day i (mm); Wseep=percolation on day i (mm); and Qgwrf,i=groundwater return flow, or base
flow, on day i (mm). A detailed description of the SWAT model and its equations are available
in Neitsch et al. (2011).

Table 1 Values of the calibrated parameters for TOPMODEL and SWAT

Sensitivity rank Parameter Description Initial range Optimal
value

TOPMODEL

1 m Control the rate of exponential decrease of
transmissivity with increasing soil moisture
and infiltration characteristics (m)

0.01–0.1 0.099

2 To Control the peak flow and shape of storm
hydrograph (m2/h)

0–10 3

3 QO Initial observed discharge (m/timestep) 0.1E-4–0.45E-4 0.21E-4

4 SRmax Maximum root zone storage, physically
based, control Evaporation and local
saturation deficit (m)

0.02–0.1 0.024

5 SRO Initial root zone storage value (m) 0–0.2 0.02

6 CHV Control surface routing velocity, physically
based (m/h)

2000–6000 4000

7 Td Time delay constant, control the recharge
rate from unsaturated to saturated zone (h)

10–40 20

8 Δ Effective suction head 0.11–0.25 0.16

9 Δθ Moisture deficit 0.25–0.36 0.3

SWAT

1 CH_K2 Effective hydraulic conductivity of main
channel (mm/hr)

0–150 55.6

2 ALPHA_BF Base flow alpha factor (days) 0–1 0.9

3 CN2_SHRB SCS runoff curve number for antecedent
moisture condition type II for Shrub land

40–90 89

4 CN2_MIGS SCS runoff curve number for antecedent
moisture condition type II for Mixed
Grassland and Shrub land

40-90 51

5 *SOL_AWC Available water capacity of the soil
layer (mm/mm soil)

(−50)–(+50) (−0.11)

6 ESCO Soil evaporation compensation factor 0.01–1 0.56

7 SURLAG Surface runoff lag coefficient 1–24 11

8 GWQMN Threshold depth of water in the shallow
aquifer required for return
flow to occur (mm)

0–5000 3094

9 *SOL_K Soil conductivity (mm/hr) (−50)–(+50) 0.01

10 CANMX Maximum canopy index (mm) 0–100 16.6

11 CH_N2 Manning coefficient for channel 0–0.3 0.13

12 RCHRG_DP Groundwater recharge to deep aquifer 0–1 0.42

* These distributed parameters varied according to a relative change (+/−50 %) that maintains their spatial
relationship
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The development of the SWAT model for Roodan included automatic watershed
delineation, land use/soil/slop and HRU visualization (Fig. 2c), determination of
weather stations, and the adjustment of watershed data. To run SWAT for Roodan,
the SWAT database was modified for visualization of input files, such as DEM map,
stream map, outlet of the watershed, land use/crops, soil types, and meteorological
stations. Hence, the calibration of the model was conducted in regard to sensitive flow
parameters. As suggested by Winchell et al. (2010), sensitivity analysis was conducted
based on 26 input parameters that had high flow sensitivity when using the SWAT
model. Final selection of the sensitive parameters included a report of sensitive
parameters with Hypercube-one-factor-at-a-time (LH-OAT) analysis (Nossent and
Bauwens 2012). Table 1 shows the sensitive parameters and their initial ranges for
calibration via SWAT. To avoid repeating the calibration procedure and the detailed
input data and ranges of parameters for the SWAT model, we referred to Jajarmizadeh
et al. (2014, 2015).

2.4 Assessment of the Model’s Performance

Discharge data measured at the outlet of the basin were used to assess the model’s
performance by exploring and evaluating several efficiency criteria. The mean abso-
lute error (MAE), coefficient of determination (R2), Nash-Sutcliffe efficiency (NS)
(Nash and Sutcliffe 1970), Pearson’s correlation coefficient (r), and relative errors
(RE%) were the five criteria used to provide dynamic and systematic error informa-
tion concerning the simulation.

2.4.1 Mean Absolute Error (MAE)

MAE is a measure of the average error of a time-series simulation. Lower values of MAE
indicate better performance of the model.

MAE ¼
X n

i¼1
Qsim;i � Qobs;ij
��

n
0≤MAE ð4Þ

2.4.2 Coefficient of Determination, R2

R2 describes the total variance proportion of the observed data explained by simulation. The
possible range is (0.0 – 1.0), and a higher value of R2 indicates a better value.

R2 ¼
X n

i¼1
Qobs;i � Qobs

� �
Qsim;i � Qsim

� �� �2

X n

i¼1
Qobs;i � Qobs

� �2X n

i¼1
Qsim;i � Qsim

� �2 0 < R2≤1 ð5Þ

2.4.3 Nash-Sutcliffe Efficiency, NS

NS is commonly used in time series data to compare simulated and measured flows. It ranges
from (−∞ to 1), and higher values indicate better agreement.
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NS ¼ 1−

X n

i¼1
Qsim;i � Qobs;i

� �2
X n

i¼1
Qobs;i � Qobs

� �2 −∞ < NS≤1 ð6Þ

2.4.4 Pearson’s Correlation Coefficient, r

Pearson’s r is the most common coefficient used to measure the linear correlation between two
variables. Values range between +1 and −1, which are the total positive and negative
correlations, and the zero value has no correlation.

r ¼
X n

i¼1
Qobs;i � Qobs

� �
Qsim;i � Qsim

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX n

i¼1
Qobs;i � Qobs

� �2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX n

i¼1
Qsim;i � Qsim

� �2rs −1 < r≤ þ 1 ð7Þ

2.4.5 Relative Error, RE%

RE is an indication of the magnitude of the absolute error compared to the total measurement
values.

RE %ð Þ ¼ 1

n

X n

i¼1
Qsim;i � Qobs;ij
��
Qobs;i

*100 0≤RE ð8Þ

where,

n is the number of days
Qobs,Qsim are observed and simulated discharges
Qobs;Qsim are the means of the observed and simulated discharges.

3 Results and Discussion

3.1 Performances of the TOPMODEL and SWAT Models in Trend Analysis

The overall evaluation results of TOPMODEL and SWAT compared to observed time series at
the outlet station for calibration and validation periods were analyzed and presented. Better
performance can be achieved at values of R2, NS, and r closer to one and at MAE and RE
values closer to zero. The TOPMODEL and SWAT models were calibrated and validated
using the daily data of the periods (1989–2001) and (2002–2007), respectively. Figure 3
compares observed, TOPMODEL, and SWAT data during the calibration period. Clearly, both
models experienced acceptable fluctuations with the observed data. However, overestimation
and underestimation were observed for some years. For instance, the models had similar
underestimation trends for peak flows, which occurred earlier in the modelling. The highest
recorded flow of 4209 m3/s was predicted by TOPMODEL and SWATas 3997 and 3315 m3/s,
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respectively. Trend analysis showed that TOPMODEL slightly overestimated low flows,
which is obvious for 1996 in Fig. 3b for the calibration period.

Generally, SWAToutperformed TOPMODEL for peak flows in the validation period, as shown
by Fig. 4a. Also, both models had roughly the same trends in predicting flows (Fig. 4b and c).
Generally, the trend analysis showed that SWAT outperformed TOPMODEL for high flows in
recognition of events and values in a large basin and long simulation. However, SWAT
underestimated low flows, while TOPMODEL slightly overestimated them in the validation
period. TOPMODEL, similar to SWAT, provided fair assessment of high-flow events. Figure 5,
derived from Figs. 3 and 4, presents the high flow prediction (including flood observation). For
general comparison, Borah et al. (2007) reported that one of the weaknesses of physically-based
models is the prediction of low storm events. Hence, the underestimations of TOPMODEL and
SWAT in the validation period might be related to the dry climate of Roodan with its limited
rainfall and intermittent flows.

Figure 6 shows observed and simulated daily flows for both SWAT and TOPMODEL
during the calibration and validation periods. These two scatter plots clearly show that the
aggregations of flows were between 0 and 500 m3/s and 0–200 m3/s for the calibration and
validation periods, respectively. Figure 6 shows that the dispersion of the SWAT and
TOPMODEL values were in agreement for calibration and validation.

The results of TOPMODEL and SWATwere compared statistically. Table 2 shows that SWAT
performed better than TOPMODEL, with less relative error for calibration (0.61) and validation
(4.19). Also, the SWAT predictions had higher correlations based on MAE and NS than
TOPMODEL for both periods. However, the R2 and r values provided by TOPMODEL, i.e.,
0.69 and 0.84, respectively, were better than those provided by SWAT. Generally, SWAT can
simulate streamflow in a compatible manner. The peaks of the storms were represented ade-
quately by bothmodels. Due to the long record of available data used in calibrating and validating
the models, their outputs were biased, especially for MAE and RE, in comparison with the results
reported by El-Nasr et al. (2005). TOPMODEL obtained good values for both calibration and
validation regarding the quality of R2 and theNS coefficient (Parajuli et al. 2009). SWATobtained

Fig. 3 (a) Daily observed and simulated streamflow by TOPMODEL and SWAT in m3/s for the calibration
period from 1989 to 2001 and (b) Selected period from 1995 to 1996

Streamflow Simulation by Two Semi-Distributed Hydrological Models 3103



very good values for calibration, but SWATand TOPMODEL obtained the good values for NS as
TOPMODEL.

Table 2 compares the statistical values of mean, median, standard deviation, and minimum
and maximum values that were obtained for SWAT, TOPMODEL, and the observed data.
Table 2 indicates that SWAT had closer values of mean, median, and standard deviation of
flows in the calibration period to observed data. Evaluation of the minimum and maximum
values showed that SWAT did not predict the minimum flow perfectly. Singh et al. (2004)
made the same observation about SWAT for the Iroquois River watershed. TOPMODEL
slightly overestimated the minimum flow, but it had a closer value to observed data for
maximum flow in the calibration period. The values obtained via SWAT modelling based on
statistical analysis were slightly closer to the observed data in the validation period. Table 2

Fig. 4 (a) Daily observed and simulated streamflow by TOPMODEL and SWAT in m3/s for the validation
period from 2002 to 2007, (b) Selected period from 2002 and (c) Selected period from 2004 to 2005

Fig. 5 Selected observed peak flows and TOPMODEL and SWAT predictions for the calibration and validation
periods (discharge in m3/s)
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shows that SWATand TOPMODEL had consistent tendencies for minimum flow prediction in
the calibration and validation periods. Generally, differences in the simulation of low flows for
both TOPMODEL and SWAT might be related to insufficient information for representation of
sub-surface flow and subsequent release of water from that water storage, thereby contributing
to the base flow for Roodan.

3.2 Performances of TOPMODEL and SWAT in Predicting Peak Flows

The performances of TOPMODEL and SWATwere examined for predicting peak streamflow.
Peak flows are important in water resource issues, especially for design and analysis purposes;
therefore, 20 maximum peaks of each of the calibration and validation periods were chosen for
analysis within less than 20 % based on the expedience probability. Figure 7(a) shows the

Fig. 6 Observed and simulated streamflow by TOPMODEL and SWAT (a) calibration period and (b) validation
period

Table 2 Observed and simulated flows for all of the modeling periods and values of the statistical indices used
to compare TOPMODEL and SWAT for the calibration and validation periods

Statistical Index Observed TOPMODEL SWAT

Calibration Validation Calibration Validation Calibration Validation

Mean (m3/s) 14.3 5.3 29.1 6.7 14.3 6

Median (m3/s) 2.6 0.5 15.6 3.8 0.6 0.1

Standard deviation 105 50 117.8 26.3 94.6 37.7

Minimum (m3/s) 0.5 0.1 2.4 2.5 0 0

Maximum (m3/s) 4209 1248 4000 552 3315 824

MAE (m3/s) – – 21.5 7.0 11.4 5.6

R2 – – 0.70 0.69 0.75 0.68

NS – – 0.60 0.61 0.75 0.68

r – – 0.84 0.84 0.86 0.83

RE – – 1.62 20.84 0.61 4.19
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peaks that were selected from the calibration period and the absolute relative error (RE %) for
each year. It is apparent that both TOPMODEL and SWAT predictions have fluctuations that
include underprediction and overprediction. Both SWAT and TOPMODEL underestimated
several events (e.g., events 1–6), and they overestimated several other events, such as 12, 13,
14, and 16. Also, there were some events for which the two models did not exhibit the same
trends, e.g., 17, 18, and 20. Clearly, TOPMODEL had better ability than SWAT to simulate the
highest peak, e.g., peak number 11. The average relative error of 20 selected maximum peak
predictions were 36 and 36.5 for TOPMODEL and SWAT, respectively.

Figure 7(b) indicates peak flows and attributed relative errors (RE %) for each event in the
validation period. the figure shows that both TOPMODEL and SWAT were unable to predict
the observed values, especially at the peaks (1, 3, 7–9, 19, 20). The 20 maximum peaks that
were investigated in validation had average relative errors of 64 and 70 % for TOPMODEL
and SWAT, respectively. Based on the value of mean relative errors for the calibration and
validation periods, TOPMODEL performed slightly better than SWAT for peak flows.
TOPMODEL succeeded in capturing peak timing and magnitude of the hydrograph, and it
did a reasonable job of simulating the variability of the observed values.

3.3 TOPMODEL and SWAT Performances in Predicting Runoff Volume

The annual volume of runoff for each year (i.e., the summation of the runoff for every day in
the year) was assessed. Figure 8 compares the annual volumes of runoff for the calibration and
validation periods. The results showed that TOPMODEL in the calibration period
underestimated the annual runoff volume for three years and overestimated it for 10 years.
In contrast, SWAT overestimated it for six years and underestimated it for seven years. The

Fig. 7 Selected maximum peaks of observed, TOPMODEL and SWAT predictions (a) calibration period and (b)
validation period (discharge in m3/s)

3106 A.H.A. Suliman et al.



reason that TOPMODEL provided obvious overestimations could have been due to the
contribution of low flows. Moreover, the underestimation of low flows by SWAT also could
be the reason that this model provided lower values for annual runoff for each year in
calibration.

For the validation period, Fig. 8 shows a five-year overestimation and a one-year underes-
timation by TOPMODEL, whereas the SWAT model underestimated the values for two years
and overestimated them for four years. The reason SWAT overestimated the values for 2002,
2003, 2006, and 2007 resulted from its overprediction of several events (Fig. 4).

For the calibration period, both models had the same trend of underestimation for three
years, i.e., 1989–1991. Figure 8 shows that annual runoff volume usually was overpredicted in
six years. In contrast, the SWAT and TOPMODEL models similarly underestimated the events
in 2004. However, they had the same overestimation trends for four years, i.e., 2002, 2003,
2005, and 2006.

In this research, it was found that TOPMOEL required fewer parameters than the SWAT
model for implementation. Moreover, TI was presented the semi-distributed feature in
TOPMODEL and derived from DEM. However, SWATwas semi-distributed as well, but this
resulted from using HRU that was created based on DEM, land-use, and the soil map.
Obviously, the simplifications in the TOPMODEL and SWATmodels concerning hydrological
processes and the laws of physics can lead to discrepancies between observed and simulated
flows, peak flow comparisons, and annual runoff volumes. These processes include surface
runoff, evapotranspiration, percolation, lateral subsurface flow, tile flow, groundwater flow,
channel flow routing.

4 Conclusions

Comparisons of hydrological models always have been challenging, but they are beneficial in
determining the availability of water, which is essential information for spatial planning and

Fig. 8 Observed and predicted annual runoff volume (m3) for each year
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management. Catchment modelling is more favourable with application of semi-distributed
models by a contribution of arid climate and large-scale plain. Consequently, in this study, only
two semi-distributed models, i.e., TOPMODEL and SWAT, were compared for their ability to
predict flows. The data used in the models included daily observations of streamflow over a
19-year period; the first 13 years were used for calibration, and the remaining six years were
used for validation. The data required for both models were collected, and the study included
investigations of the performance of the two models. The main conclusions that resulted from
this study are listed below:

– Both the TOPMODEL and SWAT models provided reasonable simulations of streamflow.
However, some discrepancies were evident in the predictions of both high and low
observed and simulated streamflows.

– The results showed that TOPMODEL predicted the highest flow better than SWAT in
calibration, while SWAT had the better performance for the highest flow in the validation
period.

– SWAT’s predictions were more compatible with the trend of observed data for high flows,
including floods. TOPMODEL predicted peak flows with slightly larger discrepancies,
including underestimating and overestimating observed values in the calibration period. In
validation, both models presented the underestimation trend in comparison to observed
data.

– The quality of TOPMODEL’s performance, based on R2 and NS, was good over the
modeling period. In addition, SWAT had very good performance in calibration and good
quality for validation.

– The SWAT and TOPMODEL models provided different behaviors in predicting the
minimum flow. SWAT underpredicted these flows, while TOPMODEL slightly
overestimated them. In general, in the validation period, the statistical values are slightly
better for SWAT when compared to observed flows.

– TOPMODEL mostly overestimated the annual runoff volume in calibration, but SWAT
provided a more balanced estimation of annual runoff volume. In the validation period,
both models generally did a slightly better job of estimating the annual runoff volume.
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