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Abstract Impacts of flood management alternatives are mostly assessed by inundation
depth. Other inundation parameters such as velocity and duration are rarely taken into
consideration. In this paper, a multi-criteria decision making (MCDM) based framework is
used to analyze the effects of inundation velocity and duration on evaluation of flood
management alternatives. The framework incorporates a two-dimensional (2D) flood
model, Flood2D-GPU and a spatial MCDM (SMCDM) method, Spatial Compromise
Programming (SCP). Flood2D-GPU is employed to simulate floods and SCP is applied
to rank a set of flood management alternatives. Assessment of flood management options
is conducted with multiple different weight set scenarios. First, alternatives are ranked
without consideration of inundation velocity and duration. Then, the importance of these
parameters increases and the alternatives are ordered in each weight set and a GIS map
showing the best alternative in each grid cell is generated in each case. Best alternative
maps (BAMs) are compared to investigate the impacts of inundation velocity and duration
on selection of best strategy using F fit measure and κ analysis. The framework applica-
bility is illustrated on the Swannanoa River watershed located in the state of North
Carolina, US. Case study results indicate up to 49.7 % change of BAM by taking into
account inundation velocity and duration. The presented approach addresses the change in
selection of flood management strategies resulted by considering other inundation param-
eters rather than inundation depth. This can potentially reduce the uncertainties associated
with the decisions made without consideration of inundation velocity and duration.
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1 Introduction

Floods are the leading reason for life loss among all weather-related disasters (Sun et al.
2014). Loss of life, damages to structures and agricultural fields, and environmental
degradation are some examples of flood consequences. From 1980 to 2008, average of
97 million people affected and 196,000 killed by floods annually (United Nations
International Strategy for Disaster Reduction 2013). In the US, average of $8 billion in
losses and 89 fatalities occur annually due to floods, over the past 25 years (National
Weather Service [NWS] 2013). A survey of literature generally suggests that flood
hazard is a function of several variables and not only one single parameter (Jonkman
et al. 2008, 2013; Dang et al. 2011). Thus, it is not possible to assess flood impacts by
considering only one flood parameter and a comprehensive evaluation needs a method
that can account for multiple flooding characteristics.

Flood management is complex and multifaceted, affected by different factors, involving
various stakeholders, competing alternatives and different tradeoffs (Levy et al. 2007; Schröter
et al. 2014). Under these circumstances, multi-criteria decision making (MCDM) can assist
flood management by providing a systematic framework to deal with such complex problems.
Several MCDM techniques with different capacities can be identified based on the literature.
Hajkowicz and Collins (2007) reviewed 61 unique MCDM methods. There has been a vast
application of various MCDM techniques in different categories of flood management such as
flood risk mapping (Sinha et al. 2008; Meyer et al. 2009; Chen et al. 2011; Zou et al. 2012; Lee
et al. 2013, 2014), flood hazard zoning (Fernandez and Lutz 2011; Kourgialas and Karatzas
2012; Stefanidis and Stathis 2013; Radmehr and Araghinejad 2014), assessment of flood
management strategies (Willette and Sharda 1991; Bana et al. 2004; Levy 2005), integrated
assessment of long-term flood risk management scenarios (Brouwer and van Ek 2004) and
flood risk evaluation (Jun et al. 2013; Lee et al. 2015). Main reasons of applying MCDM for
flood management are the impacts of these alternatives on various disciplines and factors, as
well as the capacity to structure these complex problems into a quantifiable format.

As flood events influence different locations with different intensities and characteristics,
spatial analysis of flood impacts should be taken into account. GIS can be coupled to MCDM
techniques to enable DMs accounting for spatial variability of floods. There is a growing
interest in coupling GIS with MCDM techniques due to the capabilities of GIS in handling
wide range of criteria data from different sources (Chen et al. 2011). Using GIS-aided or spatial
MCDM (SMCDM) enables decision makers (DMs) to account for spatial variability of flood
characteristics, namely, depth, velocity and duration. Application of SMCDM in flood man-
agement first appeared in the study by Tkach and Simonovic (1997), in which Spatial
Compromise Programming (SCP) was used for the prioritization of flood management
options. Considering the needs for spatial dimension of flood management problems, this
study uses SCP to rank a pool of flood management alternatives on a cell-by-cell basis.

A review of literature reveals that flood depth is often the primary input for evaluation of
flood impacts. Other flooding characteristics such as velocity and duration are often ignored,
although they are important for an extensive understanding of the flood influences. Both flood
velocity and duration can lead to harmful consequences. High velocity may cause river bank
and bed erosion, and long duration can trigger soil erosion and water pollution. All of these
may lead to economic loss, people affected, environmental degradation and ecological
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imbalance. There have been some efforts to show the effects of these flooding characteristics
on some flood-related projects. Dang et al. (2011) evaluated flood duration, velocity and depth
as the most flood hazard parameters, respectively, for the study area of Red River Delta in
Vietnam. Kreibich et al. (2009) showed significant role of flow velocity on structural damages
of roads for the Saxony State of Germany. However, the influence on building damages and
business interruption were weak to non-existent. Other studies also showed the large uncer-
tainties associated with lone consideration of water depth (Merz et al. 2004) and intimated the
significance of other flood components (Citeau 2003; Forster et al. 2008; Pistrika and Jonkman
2010). Nonetheless, in spite of the need for detailed consideration of velocity and duration of
flooding in tandem with water depth for satisfactory loss estimation (Dutta et al. 2003), these
variables have not received any attention in assessment of flood management strategies.

Wide concentration on floodwater depth may be due to insufficient data about other
potential flooding parameters (Jonkman et al. 2008; Kreibich et al. 2009). Another
reason may be the ease of obtaining these parameters by two-dimensional (2D) flood
models compared to one-dimensional (1D) models but the higher computational time
they need. Previous studies mostly employed 1D models (e.g., HEC-RAS) due to ease of
use and simplicity. However, floodplain mapping by using these models is subjective and
needs post-processing (Kalyanapu et al. 2012). They are not also capable of simulating
the lateral diffusion and the results are not adequately accurate, which is mostly due to
inaccuracies in cross-section discretization (Kalyanapu et al. 2011; Qi and Altinakar
2012). 2D models have solved this drawback by a higher order of topographic repre-
sentation including desirable flood pathways as well as existing and planned structures in
the simulations (Kalyanapu et al. 2011). Nevertheless, the high computational time and
complexity limit application of 2D flood models also. An advanced 2D full dynamic
wave flood model, Flood2D-GPU (Kalyanapu et al. 2011), with an extremely lower
computational time than other 2D models based on Graphics Processing Unit (GPU)
architecture usage, has been developed recently. The present study takes the benefits of
Flood2D-GPU and applies it to attain flood characteristics.

The current study investigates the effects of considering inundation velocity and
duration on selection of flood management strategies through a SMCDM-based frame-
work using a case study of the Swannanoa River watershed in the state of North
Carolina, US. Inundation depth, velocity and duration as well as costs of implementation
are considered as decision criteria to evaluate a set of flood management alternatives. By
applying multiple weights set scenarios, in which the importance of inundation velocity
and duration increases gradually from the first weight set to the last, a best alternative
map (BAM) is produced for each case. These maps are compared to explore the changes
in selection of best flood management alternative by increasing the significance of
inundation velocity and duration. The change addresses a potential uncertainty in flood
management decision making problems by ignoring inundation velocity and duration.
The study provides stakeholders and DMs with a better understanding of the potential
role of these flooding parameters on decision making problems.

2 Methodology

The objective of this study is addressed by employing a SMCDM model integrated with a
flood model. The framework contains two modules: 1) Flood modeling module; and 2) SMCD
M module. In the first module, Flood2D-GPU is applied to simulate floods. In the second
module, SCP is used as the SMCDM tool to evaluate impacts of considering inundation
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velocity and inundation duration on selection of flood management alternatives. The frame-
work is implemented within the widely used ESRI’s ArcGIS™ environment. Figure 1 shows
schematic diagram of the presented framework. The following sections will explain the details
of the above-mentioned modules.

3 Flood Modeling Module

The flood modeling module uses a 2D flood model named Flood2D-GPU. Developed by
Kalyanapu et al. (2011), it is a 2D numerical flood model, which was coded in NVIDIA's
CUDA programming environment. It solves the non-linear hyperbolic shallow water equations
using a first-order accurate upwind difference scheme to generate flood depths and velocities.
These equations are developed from the Navier–Stokes equations by integrating the horizontal
momentum and continuity equations over depth and also referred to as 2D shallow water
equations. The non-conservative form of the partial differential equations are:

∂h
∂t

þ ∂uh
∂x

þ ∂vh
∂y

¼ 0 Continuityequation ð1Þ

∂u
∂t

þ u
∂u
∂x

þ v
∂u
∂y

þ g
∂H
∂x

þ gSfx ¼ 0 Momentumequationinx−direction ð2Þ

Fig. 1 Schematic diagram of the presented framework

2546 E. Ahmadisharaf et al.



∂v
∂t

þ u
∂v
∂x

þ v
∂v
∂y

þ g
∂H
∂y
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where, h is the water depth,H is the water surface elevation, u is the velocity in the x-direction,
v is the velocity in the y-direction, t is the time, g is the acceleration due to gravity, Sfx is the
friction slope in the x-direction, and Sfy is the friction slope in the y-direction. The upwind finite
difference numerical scheme is used to discretize governing Equations (1–3) as it yields non-
oscillatory solutions, through numerical diffusion (Ferziger and Peric 2002). Despite the
limitations of the first-order numerical scheme such as incapability in shock capturing, which
may lead to flow discontinuities, past successful applications of Flood2D-GPU in various
flood simulations such as riverine and dam break flooding, at high spatial results (10–30 m)
indicate that artificial diffusion provided by the upwind scheme dampened the shocks and
instabilities and at lower courant numbers (Kalyanapu et al. 2011, 2012, 2013, 2014). A
staggered grid stencil is used to define the computational domain with the water depth in the
center of the cell, and horizontal and vertical velocities on the cell edges. A courant number of
0.15 is used here to avoid model instability problems. The model has been validated for
accuracy on the historical failure of Taum Sauk Dam and was also found to provide
significantly reduced computational time (by 80–88 times) compared to the same flood model
implemented in a Central Processing Unit (CPU)-based environment (based on the estimations
by Kalyanapu et al. 2011). The model has been successfully applied in various flood
management problems such as flood hazard analysis (Kalyanapu et al. 2012, 2013), flood
damage estimation (Kalyanapu et al. 2014) and impact of land use/land cover (LULC) change
on floods (Yigzaw et al. 2013).

Required datasets for Flood2D-GPU are: 1) Topography: Digital elevation model (DEM)
for terrain representation; and 2) Manning’s n for surface roughness: A single Manning’s value
is used to represent the surface roughness of the entire case study; and 3) Flow hydrograph: A
hydrograph at the source location. The output results include raw ASCII files of flow depth
and velocity in the x and y directions at various elapsed times during the simulation. These raw
results are post-processed using a geospatial toolbox within ArcGIS™ in order to determine
maximum flood depth and velocity. A code within MATLAB® is also implemented to
determined duration of flooding.

The model is first calibrated with a historical flood event by comparing output flow
hydrograph produced by Flood2D-GPU with the observed flow data to calibrate the model.
Manning’s roughness coefficient is selected as calibration parameter to verify the modeling
results. Peak flow and travel time accuracy measures (Schubert and Sanders 2012) are used as
performance metrics to measure the model efficiency. These measures are quantified through
the following equations:

FQ ¼ QSim

QObs
ð4Þ

FT ¼ tPSim
tPobs

ð5Þ

where, FQ is peak flow accuracy measure, QSim is the simulated peak flow, QObs is the
observed peak flow, FT is travel time accuracy measure, tPSim is the simulated time to peak
flow and tPObs is the observed time to peak flow. A FQ or FT value of 1.0 refers to perfect
agreement, values of greater than 1.0 indicates overestimation and values of smaller than 1.0
shows underestimation.
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4 SMCDM Module

The produced flood depth, velocity and duration from the flood modeling module are used as
inputs to the SMCDMmodule. In this technique, best alternative is the one, which is closest to
the ‘utopia’. The ‘utopia’ is the alternative that provides the best value for each criterion. The
closest solutions to the utopia are named compromise solutions and constitute the compromise
set. The distance from the ideal solution for each alternative is measured by the distance
metric, which is determined based on the following equation:

Lj ¼
XN

i¼1

wp
i

fþi − f ij
fþi − f

−
i

����

����
p

 !1
p

ð6Þ

in which, Lj is the distance metric for alternative j, fi
+ is the utopia for criterion i, fi

− is the nadir
for criterion i, fij is the value of criterion i for alternative j, wi is the weight of criterion i, N is
number of criteria and p is distance parameter varies from one to infinity. Parameter p
represents the importance of maximum deviation from the utopia. The selection of p depends
on the type of problem and desired solution (Tecle et al. 1998). In this study, p is selected 2
based on the recommendation by Simonovic (1989), which refers to a simple Euclidean
distance. Taking this value of p, each deviation from the utopia is weighted in proportion to
its magnitude.

A MATLAB® code is implemented to apply SCP and to rank the alternatives spatially.
Raster files presenting the value of criteria for alternatives are converted to ASCII format to
make them compatible for MATLAB® program. Equation 6 is used to determine the distance
metric (L) in each grid cell. Thus, a spatial map of L is produced for each alternative.
Performing a cell-based comparison of the generated maps, the minimum value of L is
determined and the associated alternative is selected as best in each grid cell. The output is
an ASCII file showing the spatial variability of best alternative.

4.1 Comparison Metrics

To interpret the results in a spatial context, the six rasters (BAMs within inundation extent) are
compared using two metrics, namely, F fit measure (Horritt and Bates 2001a) and κ statistic
(Cohen 1960). These two metrics have been previously used in validation studies of flood
inundation models (e.g., Yu and Lane 2006). In this study, they are employed for relative
comparison of different BAMs. The two measures can be computed by the following
expressions:

F ¼ nn i∩ jð Þ
nWet

ð7Þ

K ¼ P0−PC
1−PC

ð8Þ

where, F is F fit measure, nn(i∩j) is the number of grid cells that alternative n is best in both
weight set i and j, nWet is total number of wet cells, κ is coefficient of agreement, P0 is the
proportion of wet cells that are in agreement in two different weight sets, and Pc is the
proportion of wet cells that are expected to be in agreement by chance.
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When F or κ takes the value of 1.0, it refers to a perfect agreement between two BAMs. F
fit measure represents the difference between two BAMs by determining the number of grid
cells that same alternative has been selected by both BAMs. Thus, it represents the overall
agreement of two BAMs. An F value of zero indicates that there is no agreement between the
two BAMs. The κ statistic indicates the overall spatial variation of each alternative in BAM.
Comparing two BAMs, κ statistic determines the number of grid cells that the maps are in
agreement about a specific alternative whether it is best or not. A κ value of zero occurs when
observed agreement is equal to chance agreement.

4.2 Case Study

The presented framework is demonstrated on the case study of Swannanoa River watershed
located in the state of North Carolina, US. The watershed, which is a part of the larger French
Broad River Basin, is located in the west North Carolina Mountains from Asheville to
Montreat, the state of North Carolina. Figure 2 shows the study area along with the US states
and counties. This area is selected due to its proximity to the south eastern coast of the US that
exposes it to the potential path of flood-causing hurricanes and tropical storms. Communities
in the Swannanoa River watershed have been severely affected through flooding by
Hurricanes Francis and Ivan in 2004 including Montreat, Black Mountain, Swannanoa, and
Asheville. For this study, the 33.3 km Swannanoa River reach is selected which is bounded by
an area of 173.1 km2, upstream of the confluence of the Swannanoa River and French Broad
River, including the towns of Black Mountain, Swannanoa and city of Asheville.

5 Results and Discussion

In this section, the presented approach is illustrated on the Swannanoa River watershed.
Required data for this framework are terrain and flow hydrographs, which are listed in
Table 1. A 23 m spatial resolution DEM for the area is generated from the National Map

Fig. 2 Location of the Swannanoa River watershed along with the US states and counties (Image source:
ArcGISTM)
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website (http://nationalmap.gov/). This spatial resolution is selected based on Ahmadisharaf
et al. (2013) suggestions for Flood2D-GPU application in the study area. The peak flow for the
river is estimated by US Geological Survey (USGS) flood frequency regression functions and
a generic hydrograph shape using HEC-HMS and the 100-year, 24-h SCS type II design
rainfall with a depth of 155.7 mm selected from the National Oceanographic and Atmospheric
Administration, Atlas 14 Precipitation–Frequency Atlas of the United States was used to create
the corresponding hydrograph (Bonnin et al. 2004).

As previously presented in Fig. 1, the presented framework includes the following steps:

– Flood simulation of the alternatives: The calibrated model is run to generate rasters of
flooding parameters, including depth, velocity and duration for each alternative. These
results are used as inputs to the next module.

– Cell-based selection of the best alternative: The alternatives are evaluated based on the
four decision attributes and the related weights using SCP. Using the MATLAB® code for
SCP, which was discussed earlier, the alternatives are ranked spatially. Importance of
velocity and duration of flooding is first considered as zero and then five other non-zero
values are assigned to them to investigate the effects of these two parameters on BAM. By
doing so, sensitivity of BAM to the criteria weights is assessed. The change in the BAM is
finally explored to address the potential uncertainty in the decision making by
disregarding flood velocity and duration.

5.1 Flood Modeling Module

Flood2D-GPU is first run for the base-case model for a 5-day flow hydrograph in 1994 August
(14 to 19) with 15-min time scale. The input hydrograph is produced using an existing
calibrated runoff model developed within GoldSim® Simulation Software (Lillywhite and
Kalyanapu 2011). A Manning’s roughness value of 0.11 (McCuen 1998) is used to represent
the vegetation and light turf along the floodplain, consistent to the roughness values used in
hydraulic model development by the North Carolina Floodplain Mapping Program (NCFMP)
(North Carolina Floodplain Management Program NCFMP 2011). Simulated flow hydrograph
is calibrated with observed flow data of Biltmore Station in the river downstream. Peak flow
magnitude of 165.7 cms has been recorded on August 17 at 1:45 PM (85.8 hr after simulation
start time). Comparison between the preliminary flood modeling results (Manning’s value of
0.11) and the observed data showed that the model performs fairly well in terms of peak flow
(FQ of 1.06) but not the time to peak (FT of 1.20). The model efficiency is thus tested with a
broader range of 0.01-0.15. From this range, seven Manning’s values (0.010, 0.030, 0.035,
0.040, 0.045, 0.050 and 0.15) are chosen and their efficiencies are computed. Each simulation
with Flood2D-GPU with 376,832 computational grid cells takes about 30 min on a computer
with an Intel Xeon DP Six Core X5690 CPU with 3.46 GHz Processor, an 8 GB Random
Access Memory (RAM), NVIDIA Quadro FX5800 graphics card and Ubuntu Linux
Operating System (64-bit). Fig. 3 presents the flow hydrographs in the river downstream

Table 1 Required data, sources and resolution

Data Unit Source Resolution

Terrain m nationalmap.gov 23 m

Flow Hydrograph cms USGS 15 min
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using the aforementioned Manning’s values. Values of FQ and FT along with the flow
hydrograph attributes, including peak flow and time to peak are presented in Table 2 and
Fig. 4 for different Manning’s values. The best FQ is found both at n=0.05 and in the range of
n=0.11 - 0.15. However, n=0.05 is more efficient in terms of FT. Because of this, n=0.05 is
chosen for optimal efficiency. It is to be noted that selecting this Manning’s value results in a
better performance in terms of FQ than FT. It gives a peak error of 1.4 cms (FQ=1.01), but the
performance in terms of FT is not desirable (FQ=1.13). This is because of two main reasons: 1)
Input data: The Swannanoa River is an ungauged watershed and there is only one flow gaging
station on the river downstream. Thus, it is impossible to directly use recorded flow data from
an upstream gaging station in the flood model. However, there are four rain gauge stations in
the watershed. In order to produce the upstream flow hydrograph on the main river, a
calibrated rainfall-runoff model was applied, which is subject to uncertainty. 2) Model
limitations: Flood2D-GPU cannot incorporate lateral inflows from the subwatersheds. Thus,
the overland flow from tributaries converging to the main river between upstream source point
and the downstream gauge is neglected, which affects the hydrograph timing (e.g., tP). It
should be noted that both peak flows and time to peak are overpredicted by 0.8 % and 12.8 %,
respectively, by using the selected Manning’s value of 0.05.

Three hypothetical flood management alternatives are analyzed here, which are three
diversion channels along with the base-case model. Location of these mitigation options are
visualized in Fig. 5. For each option, the DEM is adjusted by burning the grid cells with the

Fig. 3 Observed and simulated hydrographs in the river downstream for some selected Manning’s values

Table 2 Comparison of simulated
flow parameters and observed
values

Manning’s n Qp

(cms)
FQ tp

(hr)
FT

0.010 70.2 0.42 90.0 1.05

0.030 137.6 0.83 93.3 1.09

0.035 140.6 0.85 98.3 1.15

0.040 149.8 0.90 95.3 1.12

0.045 157.9 0.95 94.8 1.10

0.050 167.0 1.01 96.8 1.13

0.110 175.7 1.06 102.8 1.20

0.150 84.1 0.51 103.0 1.20
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Fig. 4 Peak flow and travel time accuracy measures

Fig. 5 Location of the flood management alternatives
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depth of the diversion channels in ArcGISTM and 100-yr flood is simulated using Flood2D-
GPU. Three model outputs, inundation depth, velocity and duration, are produced by
Flood2D-GPU for each alternative. Costs of implementation for each alternative are also
estimated by aggregating the costs of excavation, temporary seeding with straw and right-of-
way (ROW) acquisition. The unit prices for these items are taken from the Urban Drainage and
Flood Control District UDFCD (2010). As the prices belong to year 2009, a cumulative
inflation rate of 10.3 % (rate for the 2009–2014 period from US Inflation Calculator (2014)) is
applied to convert the rates to the present time. To generate a raster map for this criterion, the
total costs of implementation are uniformly distributed on the grid cells where the diversion
channel is located.

The maps of flood depth, velocity and duration of the four alternatives are compared to
determine their impacts on flood parameters. In each grid cell, the minimum value of each
flood parameter refers to the least possible inundation. Table 3 presents the percentage of grid
cells that have the least possible inundation status by implementing an alternative. The results
are presented for the wet cells (i.e., grid cells with flood depth of greater than 5 cm) and the
grid cells within the streams are also excluded from the analysis to avoid biased results (Horritt
and Bates 2001b). The three diversion channels perform closely in terms of reducing inunda-
tion depth. Although, diversion channels 2 and 4 overall provide slightly more improvement in
terms of inundation depth compared to the diversion channel 3. However, their efficiency in
terms of reducing inundation duration and velocity is very different. Diversion channel 3
reduces flood duration in only 12.4 % of the grid cells, which is much less than the other two
diversion channels. Diversion channel 2 is more effective in inundation velocity reduction
whereas diversion channel 4 is more effective in terms of inundation duration. Diversion
channel 3, which is less effective in terms of inundation duration attenuation, is more effective
in inundation velocity reduction compared to diversion channel 4, which has the best efficien-
cy in inundation duration improvement. It is to be noted that Table 3 refers to the overall
number of grid cells and does not account for spatial variability.

5.2 SMCDM Module

The alternatives are ranked based on six different criteria sets presented in Table 4. In the first
criteria set, importance of inundation velocity and duration is set to zero. In other words, only
two attributes, inundation depth and costs of implementation, are considered in the first
attribute set. In the next criteria sets, five non-zero values are assigned to the weights of the
inundation velocity and duration, and therefore five different four-criterion sets are imple-
mented. Applying SCP, a BAM is produced for each weight set scenario, which are repre-
sented in Fig. 6a to f. In these maps, each grid cell indicates the best flood management
alternative at that location.

Table 3 Percentage of the grid
cells with least possible inundation
by implementing an alternative

Inundation Parameter Inundation
Depth

Inundation
Velocity

Inundation
DurationAlternative

Base-Case 8.0 16.9 23.8

Diversion Channel 2 31.4 31.5 30.0

Diversion Channel 3 29.1 27.0 12.4

Diversion Channel 4 31.5 24.6 33.9
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Similar to the comparison of the inundation parameters, comparison of the BAMs is also
carried out within the inundation extent, and dry cells are excluded from the analysis. This is
because of the fact that large portion of the case study is not flooded and therefore
implementing the alternatives does not affect these locations. Thus, the results of such
comparison introduce bias (Horritt 2000) and to avoid this type of biased findings, unflooded

Table 4 Criteria weight sets for different scenarios

Criterion Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

Costs of Implementation 0.5 0.4 0.3 0.25 0.2 0.1

Inundation Depth 0.5 0.4 0.3 0.25 0.2 0.1

Inundation Velocity 0.0 0.1 0.2 0.25 0.3 0.4

Inundation Duration 0.0 0.1 0.2 0.25 0.3 0.4

Fig. 6 Best alternative map (BAM) for weight set: a) 1; b) 2; c) 3; d) 4; e) 5; and f) 6
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area is disregarded and the comparison is conducted within the inundation extent. Furthermore,
the analysis is only performed on the floodplain and the grid cells within the streams are
excluded from the analysis as they do not pose any risk. Figure 7 is a histogram plot that shows
the percentage of wet cells that each alternative performs as best. It is noted that increasing the
weight of inundation velocity and duration from zero (weight set 1) to 0.4 (weight set 6), leads
to maximum change of 3.3 %, 1.7 %, 8.3 % and 7.8 %, respectively, in the BAM in terms of
alternatives 1 to 4, respectively. By ignoring inundation velocity and duration, alternative 4 is
best in 31.2 % of the wet cells within the floodplains. However, by taking these two flooding
parameters into account and increasing their weight to 0.4, this number increases to 37.4 %.
On the other hand, alternative 2, which possess 29.2 % of the wet cells in the weight set 1
scenario, will be the best alternative in the 21.0 % of the cells by increasing the importance of
inundation velocity and duration from weight set 1 to 6.

These results are also analyzed along with the flood modeling results presented earlier in
Table 3. In the first weight set, percentage of the best cells for each of the three diversion
channels is very close, which is due to the fact that the efficiency of the three diversion

Fig. 6 (continued)
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channels is similar in inundation depth reduction. By adding inundation duration and velocity
into the decision criteria set, the difference increases. As shown in the flood modeling results,
performance of the alternatives is more different in terms of inundation velocity and duration.
This is the main reason for the variation in the BAMs. It is to be mentioned that the results
presented through Table 3, indicate the overall percentage of the grid cells for each alternative
in BAMs. In other words, they do not account for spatial variability of these grid cells. For
example, if an alternative is best in 100 grid cells in a weight set and is best in 100 different
cells in another weight set, it might seem that both the alternatives have same performance.
However, these grid cells may not be located at the same place within the inundation extent. To
overcome this limitation in the representation of the results, the difference in the BAMs are
spatially explored in the next parts of the discussion.

5.3 Comparison Metrics

Two metrics are used to compare the results of decision making by considering inundation
velocity and duration.

To compute the first agreement metrics, F fit measure, BAM for the weight set 1 is spatially
compared with BAMs for the five other weight sets. Total of five cell-based comparisons are
performed in ArcGIS™ and an output raster is generated in each case. Each grid cell in this
map is assigned with a value of zero if has same alternative as best and 1.0 if has a different
alternative. The number of grid cells with the same best alternative (i.e., value of zero) presents
the change in the BAM and refers to nn(i∩j) parameter in Equation 7. The values of F fit
measure are summarized in Fig. 8. Y-axis values on the plot refer to the relative difference
between weight set 1 (scenario of ignoring inundation velocity and duration) with other five
weight sets (weight set 2 to 6). Based on the figure, comparing the scenario of eliminating
inundation velocity and duration from the decision criteria set (weight set 1) to the others,
value of F decreases from 83.3 % in weight set 2, to 50.3 % in weight set 6. This indicates
17.7 % to 49.7 % change in the BAM by increasing the importance of inundation velocity and
duration from 0.1 to 0.4. This remarkable change in the BAM implies a potential uncertainty in
decision making by disregarding inundation velocity and duration.

The κ measure is determined based on Equation 8 and then a relative accuracy matrix is
built. For each of the four alternatives, BAM for weight set 1 is compared with each of the five
other weight sets. Each comparison includes the determination of the following four quantities
for each alternative (i.e., total of 16 quantifications): 1) number of cells that both two maps

Fig. 7 Histogram plot of best alternative in different weight sets
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accept an alternative as best; 2) number of cells that first map selects an alternative as best and
the other one does not; 3) number of cells that second map selects an alternative as best and the
other one does not; and 4) number of cells that both two maps reject an alternative as best.
Following Equation 8, κ values are generated in each case and summarized in Fig. 9. The κ
values on the plot indicate the relative difference between weight set 1 with other five weight
set scenarios (weight set 2 to 6). Based on the figure, comparing the scenario of eliminating
inundation velocity and duration from criteria set (weight set 1) to others, a decreasing trend
can be observed in κ values for all the four alternatives. This variation is much smaller for
base-case model compared to the three diversion channels. This means that the performance of
the base-case model does not vary a lot with changing the importance of decision attributes in
different weight sets. In fact, for all the three diversion channels, BAM changes drastically by
consideration of inundation velocity and duration. For the base-case model, κ varies from
92.0 % (in weight set 2) to 74 % (in weight set 6), which means by taking into account
inundation velocity and duration, greater change in the BAM in terms of the base-case option
is observed. For diversion channel 4, however, this variation is much greater, in which the κ
value decreases from 70.4 % (in weight set 2) to 30.1 % (in weight set 6). This is the greatest
change among the other two diversion channels. For diversion channels 2 and 3, κ value
decreases from 76.6 % and 82.7 (in weight set 2) to 31.8 % and 45.7 (in weight set 6),
respectively. This remarkable decrease in the κ value for all of the three diversion channels

Fig. 8 F fit measure values of BAMs in weight set of 2 to 5 compared to weight set 1

Fig. 9 κ values of the four alternatives in weight sets 2 to 6 compared to weight set 1
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highlights the significance of inundation velocity and duration in evaluation of flood manage-
ment alternatives.

The notable large change in the BAM highlights the significance of inundation velocity and
duration in selection of flood management alternatives. Therefore, the investigation reveals the
effects of these parameters on decision making process in current study. Disregarding them can
cause a considerable change in selection of suitable flood management alternative. The
analysis addresses a remarkable variation in the location of best management alternative and
implies a potential uncertainty in the decision making process.

Case study results show a significant change in selection of a suitable flood management
option. Although, the presented framework can be employed in other case studies due to its
versatility, the results presented are case study specific. To provide general recommendations,
additional studies need to be carried out to verify and/or corroborate the current findings.

Another limitation of the current study is that it only takes into account diversion channels
as flood management alternative and does not consider other management approaches. A
question rises that are these inundation parameters effective on selection of other flood control
measures? An interesting study will be the classification of the effects of these parameters on
various flood management measures. This can assist flood planners and DMs to select the
most important decision parameters for different flood management measures.

Finally, the criteria weights in MCDM problems are usually determined based on
stakeholders’ opinions. Nonetheless, the weights were assigned arbitrarily by authors’
judgments here. This was due to the study objectives for determination of importance of
inundation velocity and duration. The approach aimed to address the change in the
selection of flood management alternatives by taking into consideration inundation veloc-
ity and duration. For doing so, it was required to have more than a weight criteria set.
Therefore, weights of these two criteria changed gradually in different weight sets and the
variation in the BAM was tracked. Considering the results which indicated a remarkable
alteration in the final solution, a study can be conducted together with stakeholders to
validate the current findings.

6 Summary and Conclusions

Selection of flood management alternatives is often conducted based on inundation depth and
other inundation parameters are rarely taken into consideration. A MCDM-based approach
was applied in this study to investigate the impacts of inundation velocity and duration on
selection of flood management alternatives. Flood2D-GPU was employed for flood modeling
and SCP was applied for spatial selection of flood management alternatives. The investigation
was carried out on the Swannanoa River watershed in the state of North Carolina, US.
Inundation depth, velocity and duration as well as costs of implementation are taken into
account as decision criteria. Four hypothetical alternatives, including three diversion channels
along with the base-case model were considered as the competing alternatives. These were
spatially ranked in six different weight set scenarios by using SCP and a BAM was generated
in each scenario. The six weight sets were designed in a way that importance of inundation
velocity and duration increases from zero to 0.4. The six weight sets were compared using F fit
measure and κ statistic to investigate the impact of inundation velocity and duration on BAM.
Case study results indicate up to 49.7 % change in the BAM by taking into consideration
inundation velocity and duration. This high variation implies a potential uncertainty associated
with the decisions made by ignoring inundation velocity and duration. The following limita-
tions are however, existed in the current study, which are suggested for the future research:
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Firstly, although the results indicate large variation in the selection of best alternative by
consideration of inundation velocity and duration, a general recommendation cannot be given.
Similar studies should be performed in other areas to verify the current study results. In
particular, due to insufficient observed flow data in the study area and flood model limitation in
incorporating the lateral flows, the calibration was not performed desirably. Although, peak
flow was predicted well, time to peak was not estimated favorably, which can affect both
inundation velocity and duration magnitudes. Hence, the criteria values are thus subject to
uncertainty, which may affect the final BAM and the study conclusions.

Secondly, only diversion channels were taken into consideration as flood management
alternatives at present study. To supplement the conclusions, other management approaches
such as floodwalls and detention basins should be considered. By doing so, a more general
comment about the significance of these parameters on selection of flood management
measures can be recommended.

Thirdly, due to the important role of criteria weights in MCDM, weighting is done based on
stakeholders and experts’ opinions (Munda 2006). Nevertheless, this was out of the scope of
this paper and the weights were determined based on the authors’ preferences here in order to
show the general procedure. Consequently, the results of this study cannot be considered as the
definitive and final siting map. Weighting should be undertaken along with the specialists to
incorporate their preferences and to validate the results of this study and to address the related
uncertainties. This can be performed by using some interviews, questionnaires and workshops.
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