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Abstract Rainfall and Reference Evapotranspiration (ETo) are the most fundamental and
significant variables in hydrological modelling. However, these variables are generally not
available over ungauged catchments. ETo estimation usually needs measurements of weather
variables such as wind speed, air temperature, solar radiation and dew point. After the
development of reanalysis global datasets such as the National Centre for Environmental
Prediction (NCEP) and high performance modelling framework Weather Research and Fore-
casting (WRF) model, it is now possible to estimate the rainfall and ETo for any coordinates.
In this study, the WRF modelling system was employed to downscale the global NCEP
reanalysis datasets over the Brue catchment, England, U.K. After downscaling, two statistical
bias correction schemes were used, the first was based on sophisticated computing algorithms
i.e., Relevance Vector Machine (RVM), while the second was based on the more simple
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Generalized Linear Model (GLM). The statistical performance indices for bias correction such
as %Bias, index of agreement (d), Root Mean Square Error (RMSE), and Correlation (r)
indicated that the RVMmodel, on the whole, displayed a more accomplished bias correction of
the variability of rainfall and ETo in comparison to the GLM. The study provides important
information on the performance of WRF derived hydro-meteorological variables using NCEP
global reanalysis datasets and statistical bias correction schemes which can be used in
numerous hydro-meteorological applications.

Keywords Hydro-meteorological variables .Weather research and forecastingmodel .WRF
downscaling . RVM,GLM,Bias correction

1 Introduction

Numerical weather prediction (NWP) is a technique used to forecast weather variables by
solving numerical and physical models (Ritter and Geleyn 1992). Over the last few decades, a
numbers of studies have examined the development of NWP modeling and their subsequent
application (Gutman and Ignatov 1998; Ishak et al. 2014; Lorenc 1986). One such model is the
Mesoscale model Version 5 (MM5) (Grell et al. 1994), which was developed by the National
Center for Atmospheric Research (NCAR) in the United States. After its successful applica-
tion, an advanced version of the model i.e., the Weather Research Forecast (WRF) model was
released to the research community (Skamarock et al. 2005). After its release, and due to the
high versatility of the WRF model, a number of studies have utilized this advanced model in
research related to wide range of atmospheric phenomena, producing meteorological variables,
hydrological modeling, weather research, climate monitoring and change, flood forecasting
and water resource management amongst others (Borge et al. 2008; Chen et al. 2011; Ishak
et al. 2013; Islam et al. 2013; Price et al. 2012; Srivastava et al. 2013b, 2014a). Aside from its
use as a stand-alone NWP model, the WRF model can also be used with global reanalysis
datasets, such as those available from the National Centre for Environmental Prediction
(NCEP) and the European Center for Medium range Weather Forecasting (ECMWF). Notably,
these global datasets have coarse horizontal resolutions and need downscaling to provide
information at finer resolution using models like WRF/MM5 (Caldwell et al. 2009; Heikkilä
et al. 2011; Lo et al. 2008). This downscaling is required to provide high resolution meteo-
rological datasets such as wind speed, air temperature, solar radiation, dew point and rainfall
suitable for regional or local uses (Srivastava et al. 2013d, 2014b).

The hydrological processes of any basins are influenced by hydro-meteorological variables,
thus changes in such variables have implications on water resources (Liolios et al. 2014;
Srivastava et al. 2013c). The major weather input variables influencing the estimation of
Reference Evapotranspiration (ETo) includes wind speed, air temperature, dew point and solar
radiation (Allen et al. 1998). The mesoscale model downscaled weather variables could
potentially be used for ETo estimation, especially in ungauged catchments (Srivastava
2013). Similarly, rainfall is also one of the fundamental variables of the Earth's hydrological
cycle (Bringi et al. 2011; Islam et al. 2012b). It is an important parameter required for climate
and hydrological forecasting and hence its accurate measurements are crucial for the hydro-
logical community (Ishak et al. 2014; Islam et al. 2012a; Petropoulos et al. 2013).

Piani et al. in (2010a) showed that mesoscale model derived ETo and precipitation can be
used with hydrological models after statistical bias correction to provide a more realistic
datasets for hydro-meteorological applications (Piani et al. 2010b). Bias correction can be
done in a number of ways, amongst which, computational intelligence techniques are the most

2268 P.K. Srivastava et al.



popular among users (Islam et al. 2014). Bias correction using simple algorithms like the
Generalized Linear Models (GLM) are easily applicable and least computationally demanding
(Schoof and Pryor 2001; Trigo and Palutikof 2001; Weichert and Bürger 1998). Another
technique is Relevance Vector Machines (RVMs), which are powerful mathematical tools used
for non-linear analysis and have been applied successfully for hydro-meteorological studies
(Abrahart and See 2007; Hong et al. 2004). Other potential tools which can be used for bias
correction is Support Vector Machines (SVMs); however, SVMs has some drawbacks such as
rapid increase of basis functions with the size of training data set and an absence of
probabilistic interpretation (Srivastava et al. 2013a). To overcome these problems, a sparse
Bayesian probabilistic learning framework based Relevance Vector machine (RVM) has been
developed by Tipping (2001). Hence, instead of SVMs, RVM is used in this study.

In this study, theWRFmodel has been applied and tested over the Brue catchment, England,
UK. for deriving ETo and rainfall using the global NCEP reanalysis datasets. However, before
using modeled data for any application, a brief analysis of products are required for its
efficiency in comparison to the observed datasets. Furthermore, before obtaining practical
outputs from such models, statistical bias correction is needed. In purview of the above
mentioned problems, the main aim of this research focuses on the following objectives: (1)
Simulation of hydro-meteorological variables using the state of the art WRF mesoscale model
and global NCEP reanalysis datasets, (2) Estimation of the seasonality pattern in the WRF
estimated ETo and rainfall datasets, and (3) Assessment of the performance of GLM and RVM
for bias correction using the data derived from the WRF model and the ground based station
datasets.

This paper has the following structure. In Section 2, we detail the study area, data sets, WRF
modeling systems, bias correction algorithms such as RVMs and GLM, equation for ETo and
performance statistics. Section 3 presents the results of the performance of the approaches utilized
and subsequently discusses these results. Section 4 gives final remarks and conclusions of this work.

2 Materials and Methodology

2.1 Study Area

The Brue catchment is located in the south-west of England, with central coordinates of 51.11°
N and 2.47° W. The geographical location of the study area is shown in Fig. 1. The
meteorological datasets are provided by the British Atmospheric Data Centre (BADC), UK,
including wind, net radiation, surface temperature and dew point for the period from June 2010
to November 2011. The data provided by BADC is used for evaluating the hourly downscaled
meteorological data from the WRF model. The global NCEP (National Centers for Environ-
mental Prediction) reanalysis data used in this study with WRF can be downloaded from their
respective websites (http://rda.ucar.edu/). The main purposes of reanalysis data such as NCEP/
NCAR are to deliver compatible, high-resolution and high quality historical global atmospher-
ic datasets for use by the weather research community. The resolutions of these data are 1°×1°
in space and 6 h in time. Hourly datasets from the first 12 months June 2010 to May 2011 were
used for training, and the remaining 6 months (June 2011-Nov2011) for validation purposes.

2.2 Weather Research and Forecasting (WRF) Model

The model employed for this study is the WRF model (version 3.1.1). The WRF model has a
rapidly growing user community and has been used for numerous hydro-meteorological and
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operational weather forecasting studies amongst others (Borge et al. 2008; Chen et al. 2011;
Draxl et al. 2010; Heikkila et al. 2011). The WRF model is centered over the Brue catchment
with three nested domains (D1, D2 and D3) of horizontal grid spacing of 81, 27 and 9 km, out
of which the finest resolution innermost domain (D3) is used in this study (Fig. 1). A two-way
nesting scheme is used which allows information from the child domain to be fed back to the
parent domain. Imposed boundary conditions are updated every 6 h using the National Centers
for Environmental Prediction (NCEP) Final Analysis (1°×1° FNL) data set. The WRF model
is used to downscale the NCEP data to produce wind, solar radiation, surface temperature, dew
point temperature and rainfall. After downscaling, the ETo was estimated using the Penmen
and Monteith equation discussed in section 2.5.

The main physical options included the WRF Dudhia shortwave radiation (Dudhia 1989)
and Rapid Radiative Transfer Model (RRTM) long wave radiation (Mlawer et al. 1997) with

Fig. 1 WRF domains employed in this study with catchment location

2270 P.K. Srivastava et al.



Lin microphysical parameterization; the Betts-Miller-Janjic Cumulus parameterisation schemes;
and the Yonsei University (YSU) planetary boundary layer (PBL) scheme (Hu et al. 2010). The
Betts-Miller-Janjic Cumulus parameterization scheme was used because it is well tested for
regional application and precipitation forecasting (Vaidya and Singh, 2000). Gilliland and Rowe
(2007) found that it considers a sophisticated cloud mixing scheme in order to determine
entrainment/detrainment which is found to be more suitable for non-tropical convection. The
Arakawa C-grid was used for the horizontal grid distribution. The 3rd-order Runge–Kutta was
used for time integration as it is stable without any damping (Zhong 1996), while the 6th-order
centered differencing scheme was used as the spatial differencing scheme. The reason behind
using this differencing schemewas its high numerical stability. The brief analysis by Chu and Fan
(1997) indicated that the 6th-order scheme has error reductions by factors of 5 compared to the
fourth-order difference scheme, and by factors of 50 compared to the second-order difference
scheme. The Thermal diffusion scheme was used for the surface layer parameterization. The top
and bottom boundary condition chosen for the study were Gravity wave absorbing (diffusion or
Rayleigh damping) and Physical or free-slip respectively. The Lambert conformal conic projec-
tion was used as the model horizontal coordinates. The vertical coordinate η is defined as:

η ¼ pr−ptð Þ
prs−ptð Þ ð1Þ

where, pr is pressure at the model surface being calculated; prs is the pressure at the surface and pt
is the pressure at the top of the model.

2.3 Relevance Vector Machine

Tipping (2001) proposed the relevance vector machine (RVM) in a Bayesian context.
It is based on a probabilistic theory operated by a set of hyperparameters associated
with weights iteratively estimated from the data. RVM typically utilizes fewer kernel
functions and the training vectors associated with nonzero weights are called rele-
vance vectors. The RVM model variable can be characterized for forecast y at a given
x by the Eqs. (2) and (3):

y ¼ f xð Þ þ εn where εneN 0;σ2
εn

� �
ð2Þ

p y w;σ2εn
��� �

¼ 2πσ2
εn

� �−l.2
exp −

1

2σ2
εn

y−Φwk k2
( )

ð3Þ

where, weights, w=(w0,w1,......,wl)
T, σ2

εn
is noise variance, εn are independent samples from

some noise process and Φ xið Þ ¼ 1;K xi; x1ð Þ;K xi; x2ð Þ; ::::;K xi; xlð Þ½ �T in which K (xi, xl)
represents kernel function.

Tipping (2001) recommended the addition of a complex penalty to the likelihood or error
function to avoid the over fitting problem of w and σ2

εn
. The higher-level hyperparameters are

used to constrain an explicit zero-mean Gaussian prior probability distribution over w (Ghosh
and Mujumdar 2008):

p w αjð Þ ¼ ∏
l

i¼0
N wi 0;α

−1
i

��� � ð4Þ
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where α is a hyperparameter vector. The posterior overall unknowns could be computed
following the Bayesian rule:

p w;α; σ2εn yj
� �

¼
p y wj ;α;σ2

εn

� �
⋅p w;α;σ2

εn

� �
Z

p y wj ;α;σ2
εn

� �
p w;α;σ2

εn

� �
dwdαdσ2

εn

ð5Þ

Computation of p w;α;σ2
εn
yj

� �
in Eq. (5) can be decomposed as:

p w;α;σ2
εn
yj

� �
¼ p w yj ;α;σ2

εn

� �
p α;σ2

εn
yj

� �
ð6Þ

While the posterior distribution of the weight can be given by

p w yj ;α;σ2
εn

� �
¼

p y wj ;σ2
εn

� �
⋅p w αjð Þ

p y αj ;σ2
εn

� � ¼ 2πð Þ−l
.

2
Σj j−1

.
2

� exp −
1

2
w−μð ÞTΣ−1 w−μð Þ

� �
ð7Þ

where the posterior covariance and mean are respectively:

Σ ¼ σ−2
εn
ΦTΦþ A

� �−1
ð8Þ

μ ¼ σ−2
εn
ΣΦTy ð9Þ

where, A=diag(α0,.....,αl).
Therefore, the machine learning becomes a search for the hyperparameter posterior most

probable, i.e., the maximization of p α;σ2
εn
yj

� �
∞p y αj ;σ2εn

� �
p αð Þp σ2

εn

� �
with respect to α

and σ2εn . For uniform hyperpriors, it is required to maximize the term p y αj ;σ2
εn

� �
, which is

computable and given by:

p y αj ;σ2
εn

� �
¼
Z p y wj ;σ2

εn

� �
p w αjð Þdw ¼ 2πð Þ−l

.
2
σ2
εn
I þ ΦA−1ΦT

�� ��1.2

�exp −
1

2
yð ÞT σ2

εn
I þ ΦA−1ΦT

� �−1
yð Þ

� � ð10Þ

At convergence of the hyperparameter estimation procedure, predictions can be made based
on the posterior distribution over the weights, conditioned on the maximized most probable
values of α and σ2

εn , αMP and σMP
2 respectively. The predictive distribution for a given y* can

be computed using:

p y* yj ;αMP;σ
2
MP

� � ¼ Z p y* wj ;σ2MP

� �
p w y;αMP;σ

2
MP

��� �
dw ð11Þ

Since both terms in the integrand are Gaussian, this can be readily computed, giving:

p y* yj ;αMP;σ
2
MP

� � ¼ N y* t*j ;σ2*
� � ð12Þ

where t∗=μ
TΦ(x∗) and σ∗

2=σMP
2 +Φ(x∗)

TΣΦ(x∗).
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The RVM predictions are probabilistic and it doesn’t make unnecessarily liberal use
of basis functions like SVMs. Use of a fully probabilistic framework is a useful
approach in RVMs with a priori over the model weights governed by a set of
hyperparameters.

2.4 Generalized Linear Model (GLM)

Generally, in linear regression, the relationships between two variables are obtained by
fitting a linear equation to observed data (Srivastava et al. 2014d). One variable is
considered to be an explanatory variable (xi), and the other is considered to be a
dependent variable (yi) (Johnson and Wichern 2002). By considering the familiar linear
regression model:

yi ¼ xibþ ei; ð13Þ
where i=1, . . ., n,; yi is a dependent variable; xi is a vector of k independent predictors; b is a
vector of unknown parameters; and the ei is stochastic disturbances. The Generalized Linear
Model (GLM) is a flexible generalization of ordinary linear regression that allows for response
variables that have error distribution models other than a normal distribution. The GLM model
is characterized by stochastic component, systematic component and link between the random
and systematic components (McCullagh and Nelder 1989). The GLM generalizes linear
regression by allowing the linear model to be related to the response variable via a link function
and by allowing the magnitude of the variance of each measurement to be a function of its
predicted value.

2.5 ETo Estimation Using FAO56 Penman and Monteith (PM) Method

The ETo from WRF downscaled and measured meteorological variables was calculated using
the Penman and Monteith (PM) method (Monteith 1965; Penman 1956). A comprehensive
overview of the PM method is provided in the FAO56 report (Allen et al. 1998). The FAO
Penman-Monteith method is recommended as the sole ETo method for determining reference
evapotranspiration. The ETo (in mm/hr) according to the PM equation is as follows:

ETo ¼
0:408Δ Rn−Gð Þ þ γ

37

T þ 273
U2 es−eað Þ

Δþ γ 1þ rc
ra

	 
 ð14Þ

where Δ=slope of the saturated vapour pressure curve (kPa/°C); Rn=net radiation at
the crop surface (MJ/m2/hr); G=soil heat flux density (MJ/m2/hr); γ=psychrometric
constant (kPa/°C); T=mean air temperature at 2 m height (°C); es=saturation vapour
pressure (kPa); ea=actual vapour pressure (kPa); es−ea =saturation vapour pressure
deficit (kPa); U2=wind speed at 2 m height (m/s); ra (aerodynamic resistance)=208/
U2 s m−1; and rc (canopy resistance)=70 s m−1.

2.6 Statistical Parameters

In this study we compared the WRF downscaled and bias corrected values of meteorological
variables with the data provided by BADC. Although there are many statistics available, six of
them are used in this study: root mean square error (RMSE), Index of Agreement (d) (Willmott
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et al. 1985), Standard Deviation (SD), MAE, %Bias and Correlation (r). Root Mean Square
Error (RMSE) is represented through Eq. (15),

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i−1

yi−xi½ �2
 !vuut ð15Þ

Mean Absolute Error (MAE) (Eq.16),

MAE ¼ 1

n

Xn
j¼1

y i jð Þ−x j
��� ��� ð16Þ

Correlation (r) (Eq.17),

r ¼
n
X

xy−
X

x
� � X

y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
X

x2
� �

−
X

x
� �2r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
X

y2
� �

−
X

y
� �2r ð17Þ

Percent bias (%Bias) measures the deviation of the simulated values from the observed ones.
The optimal value of %Bias is 0.0, with low-magnitude values indicating satisfactory model
simulation (Eq. 18).

%Bias ¼ 100*
X

yi−xið Þ
.X

xið Þ
h i

ð18Þ

The index of agreement (d) was proposed by (Legates and McCabe 1999; Willmott et al.
1985) to overcome the insensitivity of NSE to differences in the observed and predicted means
and variances. The index of agreement represents the ratio of the mean square error and the
potential error (Willmott et al. 1985) and is defined as Eq. (19):

d ¼ 1−

Xn
i¼1

xi−yið Þ2

Xn
i¼1

yi− x −j þ xi− x −jj Þ2��� ð19Þ

where n is the number of observations; xi is the ground based measurements and yi is the
estimated measurements; x is the mean of ground based measurements.

3 Results and Discussion

3.1 Evaluation of Meteorological Variables Estimated from WRF

Downscaling is very important for obtaining high resolution hydro-meteorological datasets. It
is a technique that provides the estimates of local weather variables at sub-grid scales from the
coarser global reanalysis datasets such as NCEP to a finer resolution. In this work, the WRF
downscaled estimated hydro-meteorological parameters were used for all the subsequent
analysis, with domain 3 as an area of interest (Fig. 1). To evaluate the data derived from the
WRF downscaled weather variables and the in-situ measurements, three statistical metrics,
namely the MAE, RMSE and r were derived. The relative time series for all the variables
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downscaled using the WRF modelling system are presented in Fig. 2, while the performance
statistics of the weather variables are provided in Table 1. The modelled surface temperature
was generally greater than the measured. The downscaled temperature exhibited a good
correlation with the observed and simulated temperature (r=0.74). From the error statistics,
surface temperature was found to have the third lowest error in the group and very smallMAE
(i.e., the model overestimates in comparison with the measured value). TheMAE (3.84 °C) and
RMSE (4.95 °C) showed a reasonable value for the global data. Solar radiation was the most
difficult variable to downscale with significant overestimation. However, in this study, WRF
downscaled solar radiation indicated a good correlation of 0.80, MAE (66.96 Watt/m2) and
RMSE (133.10 Watt/m2) with the observed datasets. According to Allen et al. (1998), net solar

Fig. 2 (a-d) Time series plots of the meteorological variables under consideration

WRF Dynamical Downscaling and Bias Correction Schemes 2275



radiation is the balance of incoming solar radiation and outgoing terrestrial radiation, which
varies with seasons, which could be a possible reason for the high error. The wind speeds from

Fig. 2 (continued)

Table 1 Performance Statistics of the data estimated using WRF downscaling in comparison to the ground
observations

Variable MAE RMSE Correlation

Temperature (°C) 3.84 4.95 0.74

Wind (m/sec) 6.75 8.37 0.57

Net radiation (Watt/m2) 66.96 133.1 0.80

Dew point (°C) 2.16 2.85 0.88
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the model and observation datasets revealed comparable patterns, however the downscaled
wind speed values were significantly greater than the observed (MAE=6.75 m/sec; RMSE=
8.37 m/sec) with correlation of 0.57. Errors of the same kind in overestimated wind speed were
also reported by Hanna and Yang (2001). The reason for this large discrepancy is possibly due
to the sensitivity of wind to local environmental conditions. Along with temperature, dew point
is considered as an important weather element which affects the reference ETo of a region
(Mahmood and Hubbard 2005). Dew point in the series had the highest correlation of 0.88,
lowest RMSE of 2.85 °C andMAE of 2.16 °C as compared to the observed datasets.

3.2 Seasonal Analysis of WRF ET and Rainfall Products with Observed Datasets

This approach represents a more direct comparison between the hydro-meteorological vari-
ables with the observed station based datasets and rain gauge information. The time series
obtained for ETo and rainfall are shown in Fig. 3. The pattern in ETo derived from WRF

Fig. 3 Seasonal variations in observed and WRF estimated ETo and rainfall
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variables indicated a closer relationship with the observed station based datasets. The ETo
content was higher in mid-April and August, corresponding to the dry season during the time
period under study. Generally, ETo and rainfall showed marked fluctuations over the entire
period with rapid and sharp responses. The comparison between ETo and rainfall exhibited a
high variability with season, and followed a strong seasonal cycle. The increase in ETo can be
attributed to the increasing temperature, with high evaporative demands through the April-
May and August-September periods leading to a progressive drying of the soil. The rainfall
pattern showed that the period between March to May was slightly drier than other months,
while November-December was generally the wettest period. Generally air temperature was
low over winter, and soils were near to the field capacity until mid-April, where it subsequently
increased for the remaining months. Increasing air temperature after mid- April or May can
lead to a substantial ETo development. Interestingly, the solar radiation values were also high
during the period from April to mid- August, revealing the strong influence exerted by solar
radiation conditions on both surface and subsurface response. It was observed that during the
dry conditions, ETo and rainfall displayed nearly similar trends.

3.3 Bias Correction Schemes and Parameterization

3.3.1 Parameterization of GLM and RVM

The GLM model used in this study was comprised of the WRF parameters as explanatory
variables and the observed dataset as a dependent variable. The binomial regression family has
been used with probit as a link function and binomial as a variance. The RVM technique needs
to be optimised for its parameters for a satisfactory result. A preliminary analysis of parameters
was performed before using it for bias correction following the method given by Srivastava
et al. in (2013a). The model selection of RVM was based on subsuming hyperparameter
adaptation and feature selection with respect to different model selection criteria. For the RVM
model, the Gaussian radial based kernel function was used because of its popularity, high
performance and general approximation ability. The sigest module supported by R language
was used in this study which performs an automatic hyperparameter estimation to calculate an
optimum sigma value for the Gaussian radial based function. According to Caputo et al.
(2002), the “sigest” package is promising for estimating the range of values for the sigma
parameter which could be used for obtaining good results. According to Caputo et al. (2002)
any value between 0.1 and 0.9 quantile of \|x -x’\|^2 produce a good results. More detail about
“sigest” is given over RCran web (http://cran.r-project.org/web/packages/kernlab/kernlab.pdf).
The σ used for the analysis was 0.02. The RVM model produces 21 relevance vectors for best
performance during the training and 9 vectors during the validation. Herein, the RVM involved
very few relevant vectors for the regression to help minimise the possibility of overtraining and
hence reduce the computational time. The R2 for the rainfall during the training and validation
were obtained as 0.35 and 0.30 respectively, while for the ETo, a higher training (0.77) and
validation (0.72) were obtained.

3.3.2 Evaluation of the Bias Correction Schemes

The Taylor diagram (Taylor 2001) was employed herein to show the bias corrected datasets as
compared to those obtained from the observed stations (Fig. 4). The perfect fit between model
results and data was evaluated by using the circle mark in the x-axis, also called the reference
point. In the case of a satisfactory agreement, simulated points will be closer to the reference
point, indicating a better run of the model (Srivastava et al. 2014c). The result of the different
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runs of the simulated model was determined by the values of the correlation (r), Centered Root
Mean Square Difference (RMSD) and of the Standard Deviation (SD) of the modeled data
shown on the two axis of the model, whereas correlation was represented by the quarter circle.
In general, when the SD of the simulated data is higher than that of the observed values, an
overestimation can be predicted and vice versa. The SD analysis showed that rainfall and ETo
from WRF showed a higher overestimation than the measured datasets. Furthermore, a very
small r, high SD and RMSD were observed in-between the WRF and observed rainfall. On the
other hand, in case of ETo, a better performance can be seen in Taylor plot. The analysis
indicated a marginally higher RMSD, SD and lower r in case of GLM than RVM, imposing
that probabilistic bias correction with RVM substantially improves the model's performance
for both ETo and rainfall.

For a diagnostic performance evaluation of the model, four performance statistics- RMSE,
%Bias, d and r, were estimated during the calibration (cal) and validation (val) to compare the
observed with the WRF simulated non-bias and bias corrected datasets (Table 2). Looking at
the distribution of the %Bias and (Fig. 5), the ETo was generally well simulated using the WRF
model. The performance of RVM for ETo bias correction during the calibration/validation

Fig. 4 Taylor performance plots for the bias and non-bias corrected rainfall and ETo
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exhibited much higher r (cal=0.76; val=0.69) and d (cal=0.85; val=0.79) in comparison to the
observed/WRF simulated data r (cal=0.75; val=0.68) and d (cal=0.76; val=0.72). The RMSE
value for the RVM method during calibration and validation was 0.09 and 0.10 mm/hr respec-
tively, while%Bias statistics were −1.1 and 3.9 respectively. This statistics indicate that the value
of the %Bias was much higher in WRF simulated data when compared to the GLM and RVM.

Fig. 5 (a-b) GLM and RVM calibration and validation cumulative time series plots for the rainfall

Table 2 Performance statistics for WRF, GLM, and RVM for ETo and Rainfall

ETo Rainfall

Pairs %Bias RMSE d r Pairs %Bias RMSE d r

Obs/WRF calibration 83.0 0.10 0.76 0.75 Obs/WRF calibration 4.5 0.55 0.41 0.25

Obs/WRF validation 82.0 0.11 0.72 0.68 Obs/WRF validation −4.9 0.70 0.29 0.15

Obs/RVM calibration −1.1 0.09 0.85 0.76 Obs/RVM calibration −3.3 0.37 0.42 0.38

Obs/RVM validation 3.9 0.10 0.79 0.69 Obs/RVM validation 2.6 0.44 0.20 0.20

Obs/GLM calibration – 0.10 0.84 0.75 Obs/GLM calibration – 0.39 0.22 0.25

Obs/GLM validation 3.3 0.10 0.80 0.68 Obs/GLM validation 22.30 0.45 0.16 0.15
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The RVM bias corrections of the ETo datasets showed an improved performance over GLM and
WRF simulated data. Notably, the RVMbias correction of the rainfall exhibited similar values for
r and d (r =0.20 and d =0.20) with lowest %Bias (2.6) and RMSE (0.44 mm/hr) during the
validation. The RMSE values reported from the GLM bias correction for rainfall were 0.39 and
0.45 mm/hr during the calibration and validation respectively, while much higher values were
obtained from the observed andWRF simulated rainfall. The RMSE and%Bias values compared
to the Observed/WRF results indicated that the GLM did not perform very well for the bias
correction in the case of rainfall. During the validation of rainfall, the GLM performance was
poorer than that recorded by the RVM, indicating that RVM marginally outperformed the GLM
in bias correction. Similar observations were also revealed by rainfall cumulative plots during
calibration and validation (Fig. 5).

The overall analysis of GLM and RVM for Rainfall and ETo showed that the statistical bias
correction of RVM was better than GLM during the both calibration and validation. This
showed that the probabilistic bias correction scheme of RVM is more effective than point
based bias correction of GLM. Hence, the probabilistic bias correction method could be a
better choice than point-based bias correction of the data if employed with WRF downscaled
hydro-meteorological variables using NCEP global reanalysis datasets.

4 Conclusions

This study provided for the first time a comprehensive model evaluation for new users who wish
to apply the WRF model for hydrological modelling using the NCEP datasets. Moreover, it also
provides a brief comparison of the performance of the RVM and GLM for bias correction in such
models. The WRF numerical weather model was used because of its ability to downscale global
reanalysis data to finer resolutions in space and time. TheWRF bias correction process was found
to generally improve the data quality in comparison with the original reanalysis datasets. In
overall, GLM and RVM based bias correction improved the estimation of ETo and rainfall over
the catchment. However, it was also observed that RVM outperformed GLM in bias correction in
terms of all four statistical metrics (%Bias, RMSE, d and r).

It was found that both the GLM and RVM indicated a good applicability in bias correction
and are hence accurate methods to reduce the amount of error associated with WRF down-
scaled data. Results from this study will potentially help in the retrieval of more accurate
information from global downscaled data and will also help increase the efficiency of such
data applicability in hydrological modelling. This work also provides hydrologists with
valuable information on downscaled weather variables from global datasets and its applica-
bility. However, further exploration of this potentially valuable data source by the hydro-
meteorological community is recommended. The pattern obtained by precipitation with
observed measurements indicates possibilities for further improvement with implication of
data fusion techniques; therefore it will be attempted in future studies.
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