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Abstract The channel design problem can be treated as an optimization problem in which
the objective function is minimization of construction cost. In this definition, the optimum
values of section variables, i.e. side slope, bottom width, flow depth and radius, can be
computed by minimizing the total cost subjected to a hydraulic flow constraint formula, i.e.
the Manning’s equation. In a general scope, the total cost comprises lining, earthwork cost
and the additional excavation cost accounting for the depth of earthwork under the ground
surface. In this paper, a novel optimization technique, invariably called the Modified Honey
Bee Mating Optimization (MHBMO) algorithm, was utilized to solved the defined design
problem. By investigation of the affection of different cost values on the optimal results, a
new explicit model for common channel shapes, i.e. triangular, rectangular, trapezoidal and
circular, was proposed utilizing the MHBMO algorithm to directly design the channel cross
sections. The proposed model was compared to the present models in literature using four
design examples. The results demonstrate that, despite of simplicity of the new model, it
achieves more precise values than the present models for all common channel shapes.

Keywords Hydraulic structures · Open channel design · Earthwork · Lining · Minimum
cost · Optimal section · Optimization

1 Introduction

Among all problems which water researchers and hydraulic engineers have been faced,
water conveyance is considered to be one of not only the inevitable but also the expensive
ones. In fact, water conveyance is a mean to meet sort of human society needs such as
irrigation, municipal and flood control ones. Lined channels have been widely used for this
purpose since they can be constructed on different topographies and soil conditions and also
prevent water from wasting. Although any cross section shapes can theoretically be used
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in lined channels design, common shapes such as triangular, rectangular, trapezoidal and
circular are practically in used. Design of such cross sections was and still is an active area
of research area in favor of finding optimal section variables, i.e. side slope, bottom width,
flow depth and radius.

Based on water conveyance project purposes, channel cross section optimization prob-
lems may have different scenarios. In other words, these optimization problems can have
either different objective function or different constraints. The former can be defined as
minimization of flow area or cost of construction for a specified flow rate while the latter
may be confining the average flow velocity or one of the section variable parameters. This
variety of scenarios accompanied by the importance of the issue is probably the reason why
the literature is filled with a majority of researches in this area.

Chow (1959, 1973) and French (1994) have published the most hydraulically efficient
section relations. Their objective function was minimization of the flow area while the Man-
ning’s equation was the constraint. Swamee and Bhatia (1972) developed optimal design
curves for trapezoidal, rounded bottom and rounded corner sections. Guo and Hughes
(1984) presented optimum section variables comprising freeboard for trapezoidal sections.
Loganathan (1991) studied optimality conditions for a parabolic channel section. (Monad-
jemi 1994) showed that the same optimal section variables can be achieved by minimization
of either flow rate or wetted perimeter. Froehlich (1994) recommended simple relations
for optimum section variables of trapezoidal sections in terms of discharge. Moreover, he
presented design graphs for optimal section variables. Swamee (1995) and Swamee et al.
(2000) proposed explicit equations for optimum section variables for minimization of flow
rate and channel construction cost, respectively. In the latter study, the channel cost is a
function of not only the cost of earthwork and lining materials but also an additional cost.
The additional cost originates from different cost of earthwork in different depths. Aksoy
and Altan-Sakarya (2006) suggested two models for computing optimal section variables
following similar procedure. Although more similar researches were conducted utilizing
new optimization techniques (Jain et al. 2004; Bhattacharjya and Satish 2007; Turan and
Yurdusev 2011; Kaveh et al. 2012), the proposed models were not sufficiently precise in
comparison with the benchmark solutions as it will be prescribed latter. Therefore, it seems
that the cross section optimization requires to be revisited with some emerging powerful
meta-heuristic optimization techniques not only in favor of achieving more accurate design
results but also in light of simpler explicit relations.

In this paper, a powerful meta-heuristic optimization technique invariably called Modi-
fied Honey Bee Mating Optimization (MHBMO) algorithm was utilized to find the optimal
channel cross sections. The objective function considered is the construction cost which it
is a function of three different parameters in its ideal condition as it was mentioned. The
Manning’s equation was selected as the problem constraint. The optimal section variables
of common section shapes in practice, i.e. triangular, rectangular, trapezoidal and circular,
were calculated using the MHBMO algorithm and finally, a new simple explicit model for
calculating cross section parameters was proposed. The results of four sample problems
demonstrate that the proposed model was more accurate in comparison with the existing
models in literature.

2 Optimization Problem Definition

The aim of constructing of the channels is to properly convey desirable amount of water
from one to another location. As a contractor is asked to build one, his/her preferable option
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is to accomplish the project in its least possible expenditure form. Hence, the channel con-
struction is somehow a kind of optimization problem in real-life projects. The minimization
of total cost spending for construction is playing the role of the sole objective function
while the hydraulic requirements of conveying a specific discharge simultaneously have to
be satisfied as problem constraint.

The actual cost of channel construction can be affected by lots of known and sometimes
unpredictable factors in practical situation such as the geographical condition of channel
route, the accessibility of ground surface, the contractors equipment properties, possible
need for constructing sustainable structures, haul distance, etc. If the unpredictable factors
were put aside, others probably may differ from one to another project. In order to comprise
an extensive range of such projects, the most reality-based cost function in literature was
considered (Swamee et al. 2000). According to that cost function, the total cost per unit
length of channel structures consists of earthwork and lining cost. The former originates
from two major sources: (1) the earthwork cost per unit area (βE) and (2) the earthwork
cost per unit area per unit depth below the ground surface (βA), so called the additional
earthwork cost. Since the ground surface was assumed as the top level of the channel section
in literature, the earthwork is solely the excavation cost (Jain et al. 2004; Bhattacharjya
and Satish 2007; Turan and Yurdusev 2011; Kaveh et al. 2012). The additional earthwork
cost was considered to account for the overburden pressures on deeper soil strata and the
supporting costs of deep excavations (Aksoy and Altan-Sakarya 2006) which surely result
different cost of earthwork at different depths. Therefore, the total channel construction cost
per unit length of a lined channel section (C) can be defined as

C = βLP + βEA + βA

∫ yn

0
a dη (1)

In which βL is the unit cost of lining per unit length of lining, P is the wetted perimeter, A

is the excavated cross section area, yn is the water normal depth, a is the flow area at height
η and dη is the unit length of earthwork at height η where η represents the vertical axis of
channel geometry (Fig. 1).

As the total cost of channel construction was clearly identified, the channel cross section
optimization problem can be defined as the minimization of the total cost (Eq. 1) subjected
to the Mannings relation that can be formulized for uniform flow as following:

Q − 1

n
AR

2
3
√

S = 0 (2)

Where Q is the volumetric discharge, n is the Mannings roughness coefficient, R is the
hydraulic radius and S is the channel bottom slope.

In order to generalize the defined problem for any possible values of involved parameter,
the nondimensional variables were considered. This conversion also makes the investigation
of different variable affection on the problem much simpler. By defining a new term invari-
ably called a length scale, λ, all variables of the problem can be converted to nondimensional
terms. The length scale is introduced in Eq. 3.

λ =
(

Qn√
S

) 3
8

(3)

Using the length scale, the new dimensionless variables, which is subscripted by an asterisk
sign, can be presented as below:

C∗ = C

βEλ2
(4)
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Fig. 1 A typical channel cross section

βL∗ = βL

βEλ
(5)

βA∗ = βAλ

βE

(6)

A∗ = A

λ2
(7)

P∗ = P

λ
(8)

b∗ = b

λ
(9)

yn∗ = yn

λ
(10)

r∗ = r

λ
(11)

Where the asterisk sign as a subscript for a parameter shows its nondimensional form. For
instance, C∗ is the nondimensional form of total cost.

Using the new variables, the optimization problem can be redefined as below:

minimize C∗ = βL∗P∗ + A∗ + βA∗
∫ yn

0 a dη

λ3
(12)

subjected to: 1 − A
5/3∗ P

−2/3∗ = 0 (13)

Like some other real-life case studies in water resources engineering, the optimum chan-
nel design can be handled by utilizing contemporary optimization techniques (Cheng et al.
2005; Muttil and Chau 2006; Wu et al. 2009). The defined optimization problem (Eq. 12
and 13) was solved for common cross section shapes utilizing a novel meta-heuristic opti-
mization technique, i.e. the MHBMO algorithm, which it was shortly described in next
section.
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3 HBMO Algorithm

Honey bees, one of the social groups of insects, produce their own community and live as a
colony. Their community consists of three categories: the queen, the drones and the workers.
In the single objective HBMO algorithm, a drone mates with the queen probabilistically
using the following equation:

prob(Q,D) = e
−Δ(f )
S(t) (14)

Where prob(Q,D) is the probability of a successful mating or in other words, the probabil-
ity of adding the sperm of Drone (D) to the spermatheca of Queen (Q), Δ(f ) is the absolute
difference between the fitness of D (i.e., f (D)) and the fitness of Q (i.e., f (Q)); and S(t)

is the speed of the queen at time t . It is apparent that this function acts as an annealing func-
tion, where the probability of mating is high when the queen is still at the beginning of her
mating flight. Therefore, her speed is high when the fitness of the drone is as good as the
queens (Marinakis et al. 2011). After each transition in space, the queens speed and energy,
E(t), decays according to the following equations:

S(t + 1) = α × S(t) (15)

E(t + 1) = α × E(t) (16)

Where α is a decreasing factor varying from 0 to 1.0. In this study, the queen’s speed
reduction factor was considered equal to 0.981. At the start of a mating flight, drones are
generated randomly and the queen selects a drone in the basis of a probabilistic rule which
is defined in Eq. 14. If the mating procedure is successful (i.e. the drone passes the prob-
abilistic decision rule), the drone’s sperm will be stored in the queen’s spermatheca. Using
the sperm of the drone’s and the queen’s genotypes, a new brood (trial solution) will be gen-
erated. Then, this new brood will be improved by employing some workers (Niknam et al.
2011).

Table 1 Optimum nondimensional section variables for βA = 0 for different common channel section
shapes

Section Variable Method Side slope, m∗ Bottom width, b∗ Normal depth, y∗
n Channel radiu, r∗

Triangular section LM 1.0000 - 1.2968 -

DEA 1.0000 - 1.2968 -

MHBMO 1.0000 - 1.2968 -

Rectangular section LM - 1.8340 0.9170 -

DEA - 1.8336 0.9172 -

MHBMO - 1.8340 0.9170 -

Trapezoidal section LM 0.5770 1.1180 0.9680 -

DEA 0.5770 1.1170 0.9680 -

MHBMO 0.5774 1.1175 0.9678 -

Circular section LM - - 1.0040 1.0040

DEA - - 1.0040 1.0039

MHBMO - - 1.0040 1.0040
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Table 2 The coefficients of proposed model for optimal nondimensional section variables for common
channel section shapes

Cross section Cross section Proposed model coefficients

shapes variables

α1 α2 α3 α4 α5

Triangular section Side slope 0.2885 0.9034 -0.7034 - -

Normal depth 1.0018 1.8568 1.0955 -0.9007 -0.1168

Rectangular section Bottom width 0.2227 0.9861 -0.7636 - -

Normal depth 1.0019 0.9838 1.1369 -0.9151 -0.1630

Trapezoidal section Bottom width 0.1502 1.0611 -0.8094 - -

Side slope 0.0620 0.9219 -0.7096 - -

Normal depth 1.0018 0.7401 1.1482 -0.9071 -0.1589

Circular section channel radius 0.2358 0.9978 -0.7749 - -

Normal depth 1.0091 3.3182 1.3175 -1.0878 -0.0708

4 Modified HBMO Algorithm (MHBMO)

In order to avoid local optima in the original HBMO, a modification was proposed to
improve the brood generation (Niknam et al. 2011). In the proposed modification, three
sperm (SPk1, SPk2, SPk3) are randomly chosen from the queens spermatheca so that
k1 �= k2 �= k3. The two improved new drones will be calculated in the next step utilizing
the following equations (Esmi Jahromi and Afzali 2013; Niazkar and Afzali 2014).

Ximproved1 = SPk1 + rand × (SPk2 − SPk3) (17)

Ximproved1 = [x1
im1 x2

im1 . . . xn
im1] (18)

XBrood1 = [x1
Br1 x2

Br1 . . . xn
Br1] (19)

x
j

Br1 =
{

x
j

im1 if γ1 ≤ γ2

x
j
SPk1

otherwise
j = 1, . . . , n (20)

Ximproved2 = XQueen + rand × (SPk2 − SPk3) (21)

Ximproved2 = [x1
im2 x2

im2 . . . xn
im2] (22)

XBrood2 = [x1
Br2 x2

Br2 . . . xn
Br2] (23)

x
j

Br2 =
{

x
j

im2 if γ3 ≤ γ2

x
j
best otherwise

j = 1, . . . , n (24)

In the above equations, Ximproved1 and Ximproved2 are first and second improved new

drones; x
j

Br1 and x
j

Br2 are first and second generated brood; γ1, γ2 and γ3 are random
numbers in the range of 0 to 1. The best individual between XBrood1, XBrood2 and that con-
cluded in the original HBMO is considered as a new brood (Esmi Jahromi and Afzali 2013;
Niazkar and Afzali 2014).

The MHBMO algorithm parameters were set as: Number of initial population, Nipop =
1000; number of broods, NBrood = 1500; number of drones, NDrone = 1500; spermatheca
size, NSperm = 1500 and number of worker, NWorker = 10. These values were calculated
by trial and error method and they are in the range of values which have been used by
previous researches. Additionally, the sensitivity analysis, which was conducted in previous
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studies, was shown that these values guarantee both good accuracy and rate of convergence
in this optimization algorithm (Niazkar and Afzali 2014).

5 Application and Results

5.1 The β∗
A = 0 condition

The defined cross section optimization problem was solved for common cross section
shapes utilizing the MHBMO algorithm. According to Eq. 1, the β∗

A = 0 condition is
to assume equal earthwork cost for excavation at different depths which is a simplified
assumption for real channel constructions. The optimal section variables for β∗

A = 0 con-
dition was computed for all common channel cross section shapes (Table 1). The optimum
section variables for β∗

A = 0 condition were also computed by Langrange Multipliers (LM)
(Aksoy and Altan-Sakarya 2006) and Differential Evolution Algorithm (DEA) (Turan and
Yurdusev 2011) in previous studies which those values were compared with the MHBMO

Fig. 2 Variation of optimum triangular nondimensional variables: (a) side slope, (b) normal depth and (c)
total construction cost with βA (βL = 0)
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algorithm results in Table 1. As it is shown in Table 1, the obtained optimum values using
the MHBMO algorithm were similar to those which were reported by previous researches
in literature. Therefore, all these optimization techniques reached to a unique solution for
optimal channel design under the circumstance of no additional earthwork cost.

In order to trace the effect of β∗
A and β∗

L values on the optimal channel section design, the
variation of the optimum values of section variables for different values of β∗

A and β∗
L were

investigated. The nondimensional side slope and normal water depth values of triangular
section were calculated for two scenarios; in the first scenario, the β∗

L parameter was freeze
equal to 1.0 and the optimal values of m∗, y∗ and the corresponding total cost were com-
puted for different values of β∗

A (Fig. 2). The second scenario was exactly vice versa except
that the β∗

A was fixed equal to 0.5. The results of second scenario were depicted in Fig. 3.
The obtained values for the first and second scenarios were compared to those reported in
previous studies (Figs. 2 and 3). According to Fig. 2c, the optimal section variable values
calculated by the MHBMO algorithm results to lower construction costs for the first sce-
nario whereas quite similar cost values were obtained for the second scenario for all of the
applied techniques (Fig. 3c). In the second scenario, different combinations of slope and

Fig. 3 Variation of optimum triangular nondimensional variables: (a) side slope, (b) normal depth and (c)
total construction cost with βL (βA = 0.5)
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depth lead to the same optimal solution. In fact, the MHBMO algorithm obtains the optimal
combination with larger slopes and lower depth than the LM and DEA algorithms in that
scenario while all combinations lead to nearly similar construction cost. The obtained results
demonstrates that the obtained section variable values were better to those which are present
in literature especially for the first scenario. This clearly shows that the MHBMO algorithm
can be utilized as an effective tool for channel cross section optimization problems.

For considering more general conditions, a new design model for section variables will
be proposed in the next section. The proposed model along with the MHBMO algorithm
was compared with other present models in literature using four design problems.

5.2 Proposed Model

Due to effectiveness of the MHBMO algorithm in the lined channel design, which was
proved in previous section, simple explicit equations were proposed to easily compute
nondimensional section variables for channel section designs. The advantage of these rela-
tions is that the optimum values of section variables can be explicitly calculated for any
values of nondimensional cost terms, i.e. β∗

A and β∗
L. The new proposed relations were

shown in Eq. 25 to 28.

m∗ = Zm0 + α1(β
∗
A)α2(β∗

L)α3 (25)

b∗ = Zb0 + α1(β
∗
A)α2(β∗

L)α3 (26)

y∗
n = Zy0[α1 + α2(β

∗
A)α3(β∗

L)α4 ]α5 (27)

r∗ = Zr0 + α1(β
∗
A)α2(β∗

L)α3 (28)

The first terms, i.e. Zm0, Zb0, Zy0 and Zr0, are the optimum section variables for β∗
A = 0

condition which for all common cross section shapes were given in Table 1. The αi (for
i = 1, 2, 3, 4, 5) coefficients were evaluated for numerous set of computational problems
for all common cross section shapes which were optimized using the MHBMO algorithm.
The upper and lower bounds for β∗

A/β∗
L for these problems were considered equal to 2 and 0,

respectively, similar to a previous study (Aksoy and Altan-Sakarya 2006). The αi coefficient
values for common cross section shapes (i.e. triangular, rectangular, trapezoidal and circular
sections) were calculated using the MHBMO algorithm and presented in Table 2. Therefore,
these explicit equations can be utilized for channel cross section design problems only if the
value of β∗

A/β∗
L is located between 0 and 2.

Table 3 The triangular optimum results of different models for the design example

Proposed models Optimum section variables Nondimensional total

construction cost

Side slope Normal depth

Swamee et al. (2000) 1.0569 7.8721 9.3377

Aksoy and Altan-Sakarya (2006) - first model 1.0628 7.8763 9.3778

Aksoy and Altan-Sakarya (2006) - second model 1.0585 8.3290 10.0715

The proposed model in this study 1.1647 7.5143 9.3680

Numerical computation 1.1673 7.5141 9.3819
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Table 4 The rectangular optimum results of different models for the design example

Proposed models Optimum section variables Nondimensional total

construction cost

Bottom width Normal depth

Swamee et al. (2000) 12.1106 5.4015 9.3547

Aksoy and Altan-Sakarya (2006) - first model 12.1794 5.4073 9.3959

Aksoy and Altan-Sakarya (2006) - second model 12.1302 5.4289 9.3964

The proposed model in this study 12.2208 5.3782 9.3825

Numerical computation 12.2259 5.3802 9.3874

5.3 Design Examples

In order to compare the proposed model with other models in literature, a typical problem
(Swamee et al. 2000) was solved using all models. This design example was presented and
solved solely for trapezoidal cross section in the literature (Swamee et al. 2000; Aksoy and
Altan-Sakarya 2006). In order to provide a comprehensive comparison between all proposed
models for all common channel shapes, the given data of this example was utilized not only
for trapezoidal section but also for constructing triangular, rectangular, and circular cross
sections. Hence, four design examples were solved to better compare the recommended
models. The given data of this example includes: Q = 125m3/s, n = 0.0015, S = 0.0002,
βE/βA = 7.0m and βL/βE = 12m. The procedure of problem solving of this example was
presented in the following steps:

1. Computing the length scale (λ) using Eq. 3.
2. Calculating the nondimensional unit cost of additional earthwork (β∗

A) using Eq. 6.
3. Calculating the nondimensional unit cost of lining (β∗

L) using Eq. 5.
4. Checking that the value of the β∗

A/β∗
L is located between 0 and 2.

5. Calculating the optimum section variables using the related explicit equations (Eqs. 25,
26, 27 and 28).

This procedure of problem solving were conducted for this example using all proposed
models. The optimum section values can be obtained according to the specification of the
project. In the previous studies, the LM and DEA algorithms were utilized to find explicit

Table 5 The trapezoidal optimum results of different models for the design example

Proposed models Optimum section variables Nondimensional total

construction cost

Side Bottom Normal

slope width depth

Swamee et al. (2000) 0.6020 7.4610 5.7830 8.6142

Aksoy and Altan-Sakarya (2006) - first model 0.6070 7.5010 5.7700 8.6311

Aksoy and Altan-Sakarya (2006) - second model 0.6050 7.4640 5.7950 8.6410

The proposed model in this study 0.6125 7.4769 5.7603 8.6210

Numerical computation 0.6130 7.4730 5.7630 8.6241
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Table 6 The circular optimum results of different models for the design example

Proposed models Optimum section variables Nondimensional total

construction cost

Channel radius Normal depth

Swamee et al. (2000) 6.5879 6.1027 7.3955

Aksoy and Altan-Sakarya (2006) - first model 6.6044 6.1191 7.4149

Aksoy and Altan-Sakarya (2006) - second model 6.5809 6.1310 7.4314

The proposed model in this study 7.0699 5.8952 7.0871

Numerical computation 6.9725 5.9388 7.1538

relation in order to find non-dimensional section variable directly only from the cost units.
Although these kind of explicit formula simplify the design process in the first place, their
accuracy are in major of interest since they are supposed to be used in practical projects.
Keeping that in mind, those equations should be modified not only to improve their result
accuracy but also to save the concept of simplicity of this method. In the present study, a new
powerful optimization algorithm, so called MHBMO, was utilized to proposed new simple
relations in favor of improving both accuracy and simplicity of channel design with explicit
equations. The obtained results for all common channel shapes were compared with the
numerical computation which was the problem benchmark (Tables 3, 4, 5 and 6). Accord-
ing to all these tables, the model which was proposed in this study is much more close to the
benchmark solution than all other models for all common channel section shapes. There-
fore, the proposed model can be confidently altered the present models in literature and
subsequently utilized in optimal lined open channel design problems.

6 Conclusion

The design of the channel cross sections, as a mean of water conveyance, have been arisen a
need to investigate on computing the best hydraulically efficient sections. By emerging new
powerful optimization techniques, the optimal channel design was revisited using the Mod-
ified Honey Bee Mating Optimization (MHBMO) algorithm. Since the total construction
cost of channels play an essential role in the related designs, it was selected as the objective
function of this paper. The Manning’s equation was chosen as the problem constraint. The
total cost consists of lining, earthwork cost and additional earthwork cost which originates
from different excavation cost at different depths. At first, the optimal section variables of
common channel shapes, i.e. triangular, rectangular, trapezoidal and circular, were com-
puted under the circumstances of no additional earthwork cost. The obtained results for this
condition were similar to the previous studies in literature. In order to consider the additional
earthwork cost in the channel design, a new explicit model was proposed to directly compute
the optimum section variables of common channel shapes. The new model was compared
to the present explicit models in literature using four design examples. The computational
results indicate that the proposed model achieve the closest values to the benchmark solu-
tion. Moreover, it can be concluded that the recommended model along with the obtained
coefficients, which were computed using the MHBMO algorithm, can be confidently uti-
lized in channel design problems. According to the simplicity and accuracy of the proposed
model, the lined channel design using explicit relation probably can be of interest not only
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practical projects but also for future studies while more realistic cost function, more channel
sections and alternative algorithms may be considered.
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