
Regional Frequency Analysis of Droughts in China: A
Multivariate Perspective

Qiang Zhang & Tianyao Qi & Vijay P. Singh &

Yongqin David Chen & Mingzhong Xiao

Received: 25 June 2014 /Accepted: 28 December 2014 /
Published online: 8 January 2015
# Springer Science+Business Media Dordrecht 2015

Abstract Joint probability behavior of droughts is important for China due to the fact that
China is the agricultural country with the largest population in the world and it is particularly
the case in the backdrop of intensifying weather extremes in a warming climate. In this case,
regionalization of droughts is done using Fuzzy C- Means (FCM) clustering technique and
also multivariate L-moment method. Besides, copula is used to estimate regional joint
probability in terms of drought duration and severity. Evaluation of uncertainty in the joint
probability curves is done using the Bootstrap resampling technique. The results indicate that:
(1) five homogenous regions of droughts are subdivided. Regionalization in this study clarified
the changing properties or nature of droughts, i.e., the blurred or ambiguous boundaries of the
drought-impacted regions; (2) droughts in the northwest China are characterized by longer
drought duration and larger drought severity, and the occurrence of the droughts in the
northwest China is subject to be higher due to longer waiting time between drought events.
Adverse is found for changes of droughts in the southeast China. The droughts in the north
China are moderate in terms of drought duration and severity and also waiting time between
drought events when compared to those in the northwest and southeast China; (3) the regional
joint frequency curves are obtained with respect to drought duration and severity using the
bivariate copula functions. Then the joint probabilities of droughts can be calculated using the
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regional probability curves and also results of mean drought duration, drought severity and
waiting time between drought events. Furthermore, droughts in the regions without meteoro-
logical data can also be estimated in terms of joint probability using index-drought method
proposed in this study. This study will provides theoretical and practical grounds for devel-
opment and enhancement of human mitigation to drought hazards in China, and is of great
importance in terms of planning and management of water resources and agricultural activities
in the backdrop of intensifying weather extremes under the influences of warming climate.

Keywords Meteorological droughts . Regional frequency analysis . Multivariate L-moment .

Copula functions . FCMalgorithm . China

1 Introduction

Drought is among the most complex climatic phenomena affecting society and the environ-
ment (Wilhite 1993), and is also perceived as one of the most expensive and least understood
natural disasters (Kao and Govindaraju 2010). The complexity of drought is compounded by
its identification based on its effect or impact on different types of systems, such as agriculture,
water resources, ecology, forestry, economy, and so on (Vicente-Serrano et al. 2012a, b). Also,
it is hard to determine the moment when a drought starts and ends and hence to quantify its
duration, magnitude, and spatial extent (Wilhite and Buchanan-Smith 2005). Therefore, much
effort has been devoted to provide a quantitative evaluation of drought. Occurrences, changing
characteristics and risk evaluation of droughts have been receiving increasing concerns in
recent years (e.g., Bazrafshan, J. et al. 2014; Ganguli and Reddy 2014; Hao and AghaKouchak
2013; Vicente-Serrano et al. 2014; Yusof, F. et al. 2013; Zhang et al. 2012, 2013, 2014). And
also much attention has been paid on the drought mitigation (e.g., Rossi, G. 2009; Rossi, G.
and Cancelliere, A. 2013; Tsakiris, G. et al. 2013).

Actually, environmental droughts generally include (Heim 2002): a) meteorological
drought, b) hydrological drought, and c) agricultural drought. This study focuses on the
meteorological drought which is defined by the lack of precipitation over a region for a period
of time. Besides, there is a multitude of drought indices that have been defined to monitor
drought conditions at a regional or global scale. Every index has its own strengths and
weaknesses and it is hard to conclude that which drought index is the best. Mishra and
Singh (2010) have presented a comprehensive review of the different drought indices sum-
marizing their usefulness and limitations.

One of the first and most highly used drought indices is the Palmer drought severity index
(PDSI; Palmer 1965; McEvoy et al. 2012), which is based on a simplified soil-water balance.
However, this technique lacks the ability to detect drought for a wide range of time scales as
Standardized Precipitation Index (SPI) (Vicente-Serrano et al. 2010). It is commonly accepted
that drought is a multiscalar phenomenon, so the SPI has also been widely used. However, the
main criticism of the SPI is that its calculation is based only on precipitation data. To consider
the influence of potential evapotranspiration simultaneously, the Reconnaissance Drought
Index (RDI) has been proposed by Tsakiris et al. (2007). Afterwards, the Standardized
Precipitation-Evapotranspiration Index (SPEI) has also been introduced by Vicente-Serrano
et al. (2010). Theoretically similar to SPI, SPEI is based on the accumulated difference
between rainfall and potential evapotranspiration (PET) instead of the accumulated rainfall.
The use of SPEI in drought monitoring has two main advantages (Spinoni et al. 2013): it has a
better connection to soil water balance than SPI and it also considers temperature (used to
compute PET), which is important in a changing environment. Hence, SPEI has been widely
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used in drought monitoring practice (e.g., Potop et al. 2014). In this study, SPEI was used for
drought monitoring across China.

Water resources in China are extremely uneven in terms of spatiotemporal distribution, with
northwest China being dry and southeast China wet. This unevenness takes on an added
significance, because China is the third largest country in the world in terms of territorial area
with the largest population and booming economy. Under the influence of climate change,
intensifying human activities and rapidly developing economy also degrade water resources.
Further, China is the largest agricultural country in the world and development of agriculture
heavily depends on the availability of water resources. Therefore, it is important to evaluate the
risk of drought in China and its societal response, particularly for agriculture. However,
drought risks, based on SPEI method from a multivariate perspective using copula functions,
have not been evaluated so far. In particular, climate across China is complicated due to
complex topography properties and various underlying features. Therefore, regionalization of
climate and regional frequency of droughts should be done to evaluate drought risks across
China. Furthermore, to evaluate the validity and reliability of regional frequency analysis
results, uncertainty in the estimation of joint probability curves for each homogeneous sub-
region is also assessed using the bootstrap resampling technique. This study will be important
to evaluate drought response to climate change and planning and management of water
resources and agricultural activities.

The objectives of this study therefore are: (1) to classify the territory of China into
subdivisions with homogenous climate change and drought; (2) to develop joint probability
curves to quantify drought risks; (3) to evaluate the uncertainty of drought analysis; and (4) to
evaluate drought frequency, duration and severity for each climatic subdivision. Results of this
study will provide a background for developing measures for mitigation of drought hazards
and management and planning of water resources and agricultural activities across China.

2 Data

Daily meteorological data, such as precipitation, temperature, relative humidity and so on, for a
period of 1960–2005 from 588 stations were analyzed. The data were obtained from the
National Meteorological Information Center of China Meteorological Administration that
exercises strict quality control of data. The spatial distribution of rain gauge stations is shown
in Fig. 1. The missing data for 1 day or 2 days were filled in by the average values of
neighbouring days. If consecutive days had missing data, the missing values were filled in with
long term averages of the same days (Zhang et al. 2011). Figure 1 shows sparse distribution
of meteorological stations in the southern parts of northwest China and also in the
southern parts of the Tibet Plateau. Thus, drought changes of these regions are not
discussed in this study.

3 Methodology

3.1 Standardized Precipitation Evapotranspiration Index (SPEI)

The SPEI (Vicente-Serrano et al. 2010) is a multi-scalar drought index based on climatic data.
It is used to quantify the onset, duration and magnitude of drought regimes in terms of normal
conditions in a variety of natural and managed systems, such as crops, ecosystems, rivers, and
water resources. Compared to the SPI technique, SPEI includes temperature in drought
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analysis which can represent the true drought conditions of the study region under the
influences of warming climate.

In the SPEI analysis, the potential evapotranspiration (PET) was calculated based on the
FAO-56 Penman-Monteith equation (Allen et al. 1998). With a value for PET, the difference
between monthly precipitation (P) and monthly PET for the month i is calculated as: Di=Pi -
PETi, providing a simple measure of the water surplus or deficit for the analyzed month. The
calculated Di values are aggregated at different time scales following:

Dk
n ¼

X k−1

i¼0
Pn−i−PETn−ið Þ ð1Þ

where k is the time scales, and n is the time unit.
As suggested by Vicente-Serrano et al. (2010), these three-parameter log-logistic distribu-

tion has been selected to model the D series.
Then, with the cumulative distribution function F(x) of the log-logistic distribution, SPEI

was obtained as the standardized value of F(x), and details of the calculation can be referred to
Vicente-Serrano et al. (2010). The average value of the SPEI is 0, and the standard
deviation is 1. SPEI is a standardized variable and can thus be compared with other
SPEI values over space and time. An SPEI of 0 indicates a value corresponding to
50 % of the cumulative probability of D based on the log-logistic distribution. Com-
paring performances of SPEI, PDSI and SPI, Vicente-Serrano et al. (2010) found good
relations between SPEI and PDSI at time scales of 10–18 months. In this study, a time
scale of 12 months was used for SPEI-based drought/wetness.

Fig. 1 Locations of 588 precipitation stations considered in this study. Green dots denote stations with drought
series length of less than 20 years; red dots denote the stations with non-homogeneous drought series; and blue
dots denote the stations analyzed in this study
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3.2 Drought Attributes

The drought characteristics were identified by the theory of runs (Yevjevich,1967) (Fig. 2).
The drought duration is the period when SPEI is continuously below the truncation level and
drought severity is the cumulative deficit below the truncation level for the duration of the
drought event. Then, three important properties, drought duration, drought severity and
drought intensity, were analyzed for each drought event. As the wet and dry conditions are
divided by the value of 0 for SPEI, the truncation level was set to be 0 in this study.

3.3 Fuzzy C- Means (FCM) Clustering

FCM was proposed by Ruspini (1969) and was further improved by Dunn (1974). Further-
more, Bezdek (1980) established the convergence of a class of clustering procedures, also
known as the fuzzy ISODATA algorithm. Let X={x1, x2, …, xn} ⊂ ℜs be a finite data set in
feature spaceℜs, the FCM algorithm partitions the matrix X into c clusters by minimizing the
objective function (Rao and Srinivas 2006):

J U ;V Xjð Þ ¼
Xc

k¼1

XN
i¼1

uikð ÞmD2
ikA ð2Þ

whereU is the membership of each feature vector in each fuzzy cluster, V=(v1,v2,…,vc),vi∈Rn

is the cluster center, DikA
2 =(xk−vi)TA(xk−vi) is the distance from kth feature vector xk to the

centroid of ith cluster vi, and the parameter m∈[1, ∞] refers to the weight exponent for each
fuzzy membership. Besides, uik denotes the membership degree that the ith group data belongs
to the kth cluster. uik should satisfy the following equations:

uik∈ 0; 1½ �; 1≤ i≤N ; 1≤k≤c ð3Þ
X c

k¼1
uik ¼ 1; 1≤ i≤N ð4Þ

0 <
X N

i¼1
uik < N ; 1≤k≤c ð5Þ

Fig. 2 Definitions of drought duration, drought severity and drought intensity by the run theory
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In this study, c and m in Eq. (2) were obtained by extended Xie-Beni Index (VXB,m) (Xie
and Beni 1991):

VXB;m X : U ;Vð Þ ¼
X c

k¼1

X N

i¼1
uikð Þm

������vk−xi
������2

Nminl;l≠k
������vk−vl

������2 ð6Þ

The validity of VXB,m has been verified by Rao and Srinivas (2006). The smaller VXB,m
implies better regionalization. Besides, the regionalization was done based on membership
matrix by the FCM algorithm using a certain threshold value. The selection of the threshold
value was based on Srinivas et al. (2008), i.e.,

Ti ¼ max
1

c
;
1

2
max1≤ k ≤ c uikð Þ½ �

� �
ð7Þ

3.4 Multivariate L-moments

Multivariate L-moments were developed by Serfling and Xiao (2007). Let X(j) be a random
variable with distribution Fj, for j=1,2. By analogy with a covariance representation of L-
moments of order k≥1, multivariate L-moments are matrices Λk with L-comoment elements
defined by:

λk i j½ � ¼ Cov X ið Þ;P*
k−1 F j X

j
� �� �� �

; i; j ¼ 1; 2 and k ¼ 2; 3;… ð8Þ

where Pk* is the so-called shifted Legendre polynomial. Note that elements λk[ij] and λk[ji] are
not necessarily equal. Particularly, the first L-comoment elements are:

λ2 12½ � ¼ 2Cov X 1ð Þ; F2 X 2ð Þ
� �� �

ð9Þ

λ3 12½ � ¼ 6Cov X 1ð Þ; F2 X 2ð Þ
� �

−1=2
� �2

	 

ð10Þ

λ4 12½ � ¼ Cov X 1ð Þ; 20 F2 X 2ð Þ
� �

−1=2
� �3

−3 F2 X 2ð Þ
� �

−1=2
� �

þ 1
� �	 


ð11Þ

which are, respectively, the L-covariance, L-coskewness, and L-cokurtosis. The L-comoment
coefficients are given by:

τ k 12½ � ¼
λk 12½ �
λ1
2

; k≥3andτ2 12½ � ¼
λ2 12½ �
λ1
1

ð12Þ

where λk
(j)=λk[jj] is the classical kth L-moment of variable X(j), j=1, 2, as defined by Hosking

(1990). A hierarchy of intuitively appealing analogues of the classical covariance and central
comoments was thus provided by L-comoments. Their interpretation and comparison are
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facilitated by their definition in terms of the classical covariance operator. The matrix of
the L-comoment coefficients is written as (Chebana and Ouarda 2007):

Λ*
k ¼ τ k i j½ �

� �
i; j¼1;2

¼ τk 11½ �
τk 21½ �

	
τ k 12½ �
τ k 22½ �



ð13Þ

Particularly, for k=2 the L-covariance matrix is given by:

Λ*
2 ¼

τ2 11½ �
τ2 21½ �

	
τ2 12½ �
τ2 22½ �



ð14Þ

According to Chebana and Ouarda (2007), the L-comoments are similar in structure to the
univariate L-moments and capture their attractive properties. The multivariate L-moments
defined previously are based on a theoretical population distribution; however their finite
sample versions are useful to define statistical tests and also to estimate multivariate distribu-
tion parameters, as presented by Serfling and Xiao (2007). Computation was conducted based
on the R software package ‘lmomco’ by Asquith (2011), who proposed an implementation of
these finite sample L-comoments.

3.5 Copula Functions

Copulas model the dependence structure between random variables (Nelsen 2006). More
particularly, the copula method is being used in describing the statistical behavior of hydro-
meteorological extremes (e.g., Zhang and Singh 2007; Zhang et al. 2012 and 2013). Sklar
(1959) advocated that the most general marginal-free description of the dependence structure
of multivariate distributions is through its copula. Let F and G denote the marginal distribution
functions of random variables x and y, and let H be a joint distribution function with F and G.
Then, there exists a copula C such that for all real x and y

H x; yð Þ ¼ C F xð Þ;G yð Þð Þ ð15Þ

There are many copula families and Archimedean and extreme value copulas represent
classes of particular interest in hydrology. A bivariate Archimedean copula is characterized by
a generator ϕ(⋅), which is a convex decreasing function satisfying ϕ(1)=0, where:

C u; vð Þ ¼ ϕ−1 ϕ uð Þ þ ϕ vð Þð Þ; 0 < u; v < 1 ð16Þ

An extreme value copula is defined as

C u; vð Þ ¼ exp loguþ logvð ÞA logu

loguþ logv

	 
� �
; 0 < u; v < 1 ð17Þ

where A is a convex function defined on [0, 1] with max(t,1-t)≤A(t)≤1. A simple and popular
copula is the Gumbel-Hougaard copula:

Cm x; yð Þ ¼ exp − −logxð Þm þ −logyð Þm½ �1=m
n o

ð18Þ

where m≥1, 0≤x,y≤1. The Gumbel-Hougaard copula is the only one that can simultaneously
satisfy the conditions of the extreme-value copula and the Archimedean copulas.
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The correlations between two variables can be used to estimate the parameter, , of single
station-based copula function. Furthermore, the estimation of parameter, , of copula functions
for regional droughts within a subdivision depends on the regional mean Kendall correlation,
τR, between drought duration and drought severity. Based on the regional mean L-moment
ratio proposed by Hosking (1990) and Hosking and Wallis (1997), the regional mean Kendall
correlation, τR, between drought duration and drought severity for a certain region can be
defined as the weighted mean Kendall correlation coefficient for each station with the length of
drought series as the weights, i.e.,

τR ¼
X Nc

i¼1
niτ iX Nc

i¼1
ni

ð19Þ

where Nc is the total number of the stations within a certain sub-region c; ni is the total number
of the drought events at the station i; and τi is the Kendall correlation between drought duration
and drought severity at station i.

3.6 Index-Drought Method

The assumption behind the index-drought method is that the drought series within the
subdivisions follow the identical frequency distribution with the same parameters except for
the scale parameter (Dalrymple 1960; Hosking and Wallis 1997). Assume X is a random
variable, F is a kind of distribution and percentile function, x(F), the percentile function of a
drought series at station i being located in a subdivision can be written as

xi Fð Þ ¼ μiq Fð Þ ð20Þ

where i=1, 2,…, N; μi is the scale parameter of station i and can be denoted as the mean of a
random variable; q(F) is the regional frequency curve, being recognized as dimensionless
variable. It should be noted here that more than one variable is necessary to describe the
changing properties of drought regimes, and then the above-mentioned univariate analysis
should be extended to multivariate conditions. Assume that X and Y are random variables that
follow the marginal distribution, FX and FY and related percentile functions x(FX) and y(FY),
and the copula functions are used to describe the joint distribution, FXY, of random variables X
and Y, then the percentile functions of station i can be written as:

xi FXð Þ ¼ μi;X qX FXð Þ
yi FYð Þ ¼ μi;Y qY FYð Þ

Fi
XY x; yð Þ ¼ C Fi

X xð Þ; Fi
Y yð Þ� �

8<
: ð21Þ

where C is the link function of Copula, qX and qY are the marginal regional frequency curves,
respectively, for random variables X and Y.

4 Results and Discussions

4.1 Regionalization Analysis

Figure 3a illustrates the computation procedure of regionalization, including: (1) initial
clustering based on FCM; (2) modification of initial clustering based on multivariate non-
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homogeneity test; (3) multivariate homogeneity test to verify whether the classified subdivi-
sions are climatically homogeneous; and (4) final clustering.

The exact steps for initial clustering are shown in Fig. 3b. Considering the independence of
homogeneity test, Hosking and Wallis (1997) suggested that the variables for regional
frequency analysis can be taken as input variables for clustering analysis. In this study, the
meteorological variables that are related to drought events such as drought duration and
drought severity were taken as input variables in the FCM analysis. Besides, the long term
monthly mean precipitation, potential evapotranspiration and temperature were also selected as
the input variables and the dimensions are 3×12=36.

In this study, the principle component analysis was used to reduce the dimension due to the
correlations amongst meteorological variables (Satyanarayana and Srinivas 2011) and results
are shown in Table 1. The principle components with the accumulative variance of larger than
85–95 % were taken as the major meteorological features. The leading nPC principle compo-
nents, nPC=(3, 4, 5, 6), and also longitude, latitude and altitude were grouped into four
scenarios. For each scenario, the number of clustering, c, and weight index, m, should be
decided. Let c=2, 3,…, 20, and m=1.1, 1.2, …, 2.5. The FCM was done on the 19×25=475
conditions and VXB,mwas used to evaluate the regionalization results. Then the optimal number
of subdivisions, c, was 9, 5, 5, 5, and the optimal weight index, m, was 2.4, 2.5, 2.5, 2.5 for
each scenario respectively. Furthermore, the 2-dimension homogeneity test results (H2) was
used to decide the optimal value of nPC, results (not shown in the paper) indicated that the
optimal value of nPC is 4, and the clustering is shown in Fig. 4a.

4.2 Homogeneity Test

The initial clustering needs to be tested for homogeneity (Fig. 5a). It can be seen from Fig. 5a
that each clustering involves some stations that are not exactly categorized into that subdivi-
sion, i.e., Di≥3. The number of stations with 5≥Di≥3 in the clusters 1–5 is 21, 10, 21, 17 and
15, respectively, and that of stations with Di>5 is 4, 3, 7, 8, 6, respectively. In this sense, about
20 % of the stations for each cluster are not homogeneous. To decide the non-homogeneity of

Fig. 3 Technical framework showing a: analysis of workflow of this study; b: workflow to obtain initial
regionalization; c: workflow for modification by homogeneity test; and d: workflow for regional frequency analysis
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stations for each cluster, a novel processing method is proposed in this study, as shown in
Fig. 1c. In the FCM-based analysis, the meteorological conditions are fully considered.
Therefore, membership degrees were taken into account in the processing of non-
homogeneity of the stations for each cluster (Fig. 5b), which is in line with the processing
method of Rao and Srinivas (2006) and Sadri and Burn (2011). The adjustment of stations for
homogeneity based on the method is shown in Fig. 1c, and there are no non-homogenous
stations and the spatial patterns of stations can be found in Fig. 4b.

4.3 Consistency Test

Results of the consistency test for the adjusted clustering are shown in Table 2. The H2

values for each cluster are all negative. In this sense, the adjusted clusters are statistically
consistent. Besides, the univariate consistency test is done for the drought duration and
drought severity in each cluster. Results also indicate the consistency of each cluster in
terms of marginal distributions. Therefore, the consistent drought-based clustering is
attained and this paves the way for the bivariate regional drought frequency analysis as
introduced in what follows.

4.4 Final Regionalization

For clarification of regionalization, stations for each cluster were outlined and the final
regionalization is shown in Fig. 4c that shows that some regions can be classified into two
neighboring subdivisions simultaneously, which implies ambiguous boundary of drought
regimes. And this points out the difficulty in research on drought hazards. Besides,
superimposed regions also suggest uncertainty in regionalization analysis. However,
practical planning for mitigation of droughts underlines the exact estimation of quartiles for
the superimposed regions between two subdivisions. Rao and Srinivas (2006) suggested that
the quartiles of the superimposed regions between two or more subdivisions should be
estimated by the weighted mean of the quartiles of these subdivisions, and the weight is
membership degree of these subdivisions.

4.5 Regional Frequency Analysis

Hosking and Wallis (1997) and Martins and Stedinger (2002) underlined importance of
regional frequency analysis for extreme hydrological regimes. The workflow of regional
frequency analysis is outlined in Fig. 3. The bootstrap resampling technique was used to
quantify the uncertainty of joint probability analysis results. It should be noted here that
stationarity and independence are the two assumptions to be considered in regional frequency
analysis. The Mann-Kendall trend test (Mann 1945; Kendall 1995) and persistence test were
used to test stationarity and independence (Yang et al. 2010), and no significant trends or
persistence were identified at the 5 % significance level (Results are not shown here). These
results justified the validity of the regional frequency analysis.

Table 1 Information on principle component analysis for precipitation data

PC1 PC2 PC3 PC4 PC5 PC6

Standard deviation 4.50 2.49 2.06 1.48 0.96 0.83

Cumulative Proportion 56.29 % 73.48 % 85.25 % 91.30 % 93.88 % 95.81 %
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Fig. 4 Results of regionalization.
a shows initial regionalization
based on the FCM algorithm;
b shows regionalization modified
by the test results of non-
homogeneity; c illustrates the
optimized regionalization
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The first step to analyze regional frequency was to decide the marginal distribution function
for each sub-region. The procedure for bivariate regional frequency analysis is illustrated in
Fig. 1d and major computations include deduction of marginal distribution and joint distribu-
tion. For the robustness of analysis, parameters of the marginal distribution were analyzed
using the sample L-moment technique (Hosking and Wallis 1997). In this case, the marginal
distribution functions are from the following candidate functions, such as General Extreme
Value (GEV), General Logistic Distribution (GLO), General Pareto Distribution (GPA),
General Normal Distribution (GNO), Log-Normal Distribution (LN3), Pearson-III Distribution
(PE3) and Weibull Distribution (WEI) and two-parameter distribution such as Exponential
Distribution (EXP) and Gamma Distribution (GAM). For the goodness-of-fit test for 3-
parameter distribution, Hosking and Wallis (1997) recommended the Z test whose results are
shown in Table 2. Table 2 indicates that PE3 only passed the test for drought duration in sub-
region 1. Besides, researchers (Zelenhastic and Salvai 1987; Mathier et al. 1992; Shiau et al.
2007) indicated that the marginal distribution should be exponential distribution if the drought
duration is the continuous random variable, and should be the gamma distribution if the
drought severity is the continuous random variable. Due to the unique statistical properties of
drought events, the goodness-of-fit test was done specifically for the exponential and gamma
distributions.

It should be noted here that the Z test was not recommended for the goodness-of-fit test for
2-parameter distributions, and the goodness-of-fit test was used only for station-based fre-
quency analysis and regional frequency analysis. In this case, the K-S test was used for
goodness-of-fit test and results are shown in Table 2. It can be identified from Table 2 that
the exponential and gamma distributions passed the K-S test at the 95 % confidence level for
drought duration and drought severity series. Thus, the exponential and gamma Distributions
were accepted as marginal distribution functions for regional frequency analysis of drought
duration and severity, and parameters for each sub-division are listed in Table 3. For joint
regional frequency curves, two problems have to be addressed, i.e., the selection of copula
functions and the estimation of copula parameters. The estimation of copula parameters can be
based on Eq. (19). The selection of the copula functions was based on the Cramer-von Mises

Fig. 5 Test results of non-homogeneity. a shows the initial results of non-homogeneity; b denotes the modified
non-homogeneity test results. The numbers marked in the pies show the number of stations corresponding to Di

of each regionalization. The bold blue numbers denote the range that cannot pass the test
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Fig. 6 Fitting performances of copula functions. FD and FS denote cumulative distribution function of the
drought duration and severity, respectively. Solid curves denote the theoretical curves of copula functions;
scatters in the figure denote observed data; a denotes the Gumbel copula; b the Frank copula and c the Clayton
copula. The numbers along with a, b and c denote the corresponding cluster, e.g., a1 denotes the Gumbel copula
fitting for cluster 1
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functional Sn defined in Eq. (2) of Genest and Rémillard (2009). It can be observed from
Table 2 that the goodness-of-fit of the Clayton copula functions was not acceptable for drought
series of any sub-division. However, the goodness-of-fit of the Gumbel and Frank copulas was
acceptable with p values ranging between 0.20 and 0.28 for the Gumbel copula and 0.27–0.33
for the Frank copula. A graphical selection of the copula function is illustrated in Fig. 6. It can
be seen from Fig. 6a1-a5 that the differences between color of data points and that of the
theoretical copula curves are not apparent, showing an acceptable goodness-of-fit performance
of the Gumbel copula for describing the drought probability behavior within sub-divisions.
Distinctly different color grades between data points and theoretical copula curves, as shown in
Figs. 6b1-b5, c1 and 7c5, indicate unacceptable goodness-of-fit performances of the Frank and
Calyton copulas. In this case, the Gumbel copula was the selected copula function for
description of the joint probability behavior of drought regimes within each sub-division,
and the parameters of the Gumbel copula are displayed in Table 3. Based on the above-
mentioned analysis, the joint probability curves of drought duration versus drought severity for
each sub-division are illustrated in Fig. 7. Based on observed meteorological data during the
period of 1960–2005, the mean drought duration, mean drought severity and mean waiting
time between drought regimes are also analyzed in terms of spatial patterns (Fig. 8).

It can be observed from Fig. 8 that drought regimes in northwest China are dominated by
longer drought duration, larger drought severity, and the waiting time between drought events
is relatively longer, about 2 years. However, southeast China is dominated by shorter drought
duration, smaller drought severity and shorter waiting time between drought events. Therefore,
northwest China is characterized by heavy drought events with lower occurrence frequency
and the reverse is in southeast China. However, the occurrence properties of droughts in
northeast China are similar to those in northwest China. The drought duration, drought severity

Fig. 7 Joint probability curves for clusters 1–5 denoted by a-e, respectively. qD and qS denote the marginal
probability curves for drought duration and drought severity. The thick black and thin gray dashed lines denote
the lower and upper limits of the 95 % confidence level
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Fig. 8 Spatial distributions of
a: drought duration, b: drought
severity and c: mean waiting
time between drought events
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and waiting time between drought events in north China are moderate when compared to those
in northwest and southeast China, showing transitional properties. The importance of this
study lies in the fact that if the mean values of drought duration and drought severity (Fig. 8a
and b) are known in advance, the joint probability of a drought event can be obtained based on
regional joint probability curves, as shown in Fig. 8 for each sub-division. This result provides
important information for planning and management of water resources and agricultural
activities within each sub-division and even some places or regions of a certain subdivision
or cluster that are without data.

4.6 Confidence Intervals for Regional Joint Probability Curves

The above estimation of regional joint probability curves is the point estimation. However,
evaluation of uncertainty is critical for the validity of results. In this study, the bootstrap
resampling technique (Burn 2003) was used to estimate the confidence intervals of the joint
probability curves. In the bootstrap resampling analysis, the resample was done for Nre=999
times and then 999 samples were obtained. The regional frequency analysis was done following
the procedure shown in Fig. 3d. Thus, 999 regional joint probability curves were obtained, and
then the 2.5 % and the 97.5 % percentiles of these 999 regional joint probability curves were
extracted and taken as the upper and lower limits. The upper and the lower limits are shown as
black and gray dashed lines, respectively, in Fig. 7. It can be seen from the figure that the
confidence interval is widening when the joint cumulative probability is increasing, implying
increasing uncertainty for increased return periods of drought events. This kind of uncertainty in
the estimation of return periods of drought events will influence planning and management of
drought-impacted water resources and agricultural activities (e.g., Hailegeorgis et al. 2013).
Fortunately, Fig. 7 indicates that the uncertainty in the estimation of joint probability is not
evident. The black and gray dashed lines almost overlay each other when the joint cumulative
probability ranges between 0.5 and 0.95. The confidence interval is larger when the joint
cumulative probability is larger than 0.98. In this sense, the estimation of regional joint
probability is not sensitive to spatial resampling. The estimation of return periods for extreme
drought events is robust and stable with acceptable uncertainty, which also implies an advantage
of regional frequency analysis in the estimation of return periods of weather extremes.

5 Conclusions

In this study, regionalization is done with respect to droughts using FCM algorithm and multivar-
iate L-moment technique. Copula and Bootstrap resampling technique are used to estimate the
regional joint probability of drought duration and severity and further to evaluate the uncertainty of
joint probability curves. Important conclusions drawn from this study are as follows:

(1) Five homogenous regions are demarcated, based on statistical properties of droughts
across China. However, regionalization of this study considers the changing properties
of droughts, i.e., the boundaries of drought-impacted regions are usually blurred and
ambiguous. The FCM-based regionalization produces overlaid parts between two or three
sub-divisions, showing uncertainty of regionalization and also ambiguous boundaries of
drought-impacted regions. Therefore, regionalization of this study is relatively objective.

(2) Droughts in northwest China are characterized by longer duration and larger severity.
However, the occurrence of droughts in northwest China is subject to lower frequency or
longer waiting time between drought events. Droughts in southeast China, however, are
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dominated by shorter duration and smaller severity. The occurrence of droughts in
southeast China is subject to higher frequency or shorter waiting time between drought
events. Droughts in north China are moderate in terms of duration and severity and also
waiting time between drought events when compared to those in northwest and southeast
China. This result is significant for management and planning of water resources and
agricultural activities in different regions of China.

(3) With the help of bivariate copula functions, regional joint frequency curves are obtained
for drought duration and severity. Parameters of frequency curves for each cluster are
also obtained. Mean drought duration, mean drought severity and mean waiting time
between drought events are also obtained. The joint probabilities of droughts can be
extracted from regional probability curves and results of mean drought duration, mean
severity and mean waiting time between drought events. Furthermore, droughts in the
regions without meteorological data can also be estimated in terms of joint probability
using the index-drought method proposed in this study. In this way, this study provides a
theoretical basis for evaluation of droughts even in regions having no meteorological
data. Besides, uncertainty in the estimation of joint probability curves for each cluster is
also assessed using the bootstrap resampling technique, showing the validity and reli-
ability of regional frequency analysis results.

(4) This study provides a basis for development and enhancement of mitigation measures for
drought hazards in China. It also provides a theoretical reference for similar studies in
other regions of the world, and is important for planning and management of water
resources and agricultural activities in the backdrop of intensifying weather extremes
under the influence of climate warming.
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