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Abstract Increases in greenhouse gases caused by human activities have raised global
temperature. Global warming affects water resources systems and the hydrologic cycle and
may impact the performance of water resource systems. Water resources managers face
challenges balancing conflicting goals in reservoir operation given the uncertainties introduced
by climatic change. The HadCM3 climate model is used in this paper to estimate temperature
and precipitation for early (2025–2039), middle (2055–2069) and late (2085–2099) periods of
the 21st century under the A2 greenhouse gases emission scenario. The estimated temperature
and precipitation from the climate model are input to a calibrated hydrologic model
(IHACRES) to simulate inflow in a river basin draining to the Karoon-4 reservoir in Iran. A
meta-heuristic multi-objective optimization algorithm (NSGA-II) is used in conjunction to
predicted hydrologic variables to optimize dynamic operation rules in the Karoon-4 reservoir.
The Karoon4 reservoir is operated non-adaptively and adaptively under climatic change. Our
results show that adaptive reservoir management increases the reliability and reduces the
vulnerability associated with hydropower generation in early, middle, and late simulation
periods of the 21st century. These findings establish the importance of factoring in climatic
change and considering adaptive strategies in future reservoir operations.

Keywords Climatic change . Real-time reservoir operation .Multi-objective optimization .

Pareto solutions . Adaptive reservoir operation

Water Resour Manage (2015) 29:1247–1266
DOI 10.1007/s11269-014-0871-0

M. Ahmadi
Department of Irrigation & Reclamation Engineering, Faculty of Agricultural Engineering & Technology,
College of Agriculture & Natural Resources, University of Tehran, Karaj, Tehran, Iran
e-mail: Ahmadi_M@ut.ac.ir

O. B. Haddad (*)
Department of Irrigation & Reclamation Engineering, Faculty of Agricultural Engineering & Technology,
College of Agriculture & Natural Resources, University of Tehran, Karaj, Tehran, Iran
e-mail: haddad@iust.ac.ir

H. A. Loáiciga
Department of Geography, University of California, Santa Barbara, CA 93106, USA
e-mail: Hugo.Loaiciga@ucsb.edu



1 Introduction

The rapid rise in greenhouse gases (GHG) in the atmosphere since the onset of the Industrial
Revolution has led to increases in the global average surface temperature of 0.61 °C from the
base period 1850–1900 through the comparison period 1986–2005 (Intergovernmental Panel
on Climate Change –IPCC, 2014). Rising global temperature affects key hydrologic variables,
such as precipitation and evaporation at regional scales (IPCC 2014), which could have a
variety of impacts on water resources worldwide. Research findings have revealed that
changes in surface temperature and precipitation characteristics (duration, intensity, form,
and timing of precipitation) could affect river flows (Loáiciga et al. 1996; Muzik 2001;
Boyer 2010), and the management of water resources (Yu 2002; Jiang 2007; Majone 2012;
Ashofteh 2013a). Simulated future temperature and precipitation are used in conjunction with
suitable hydrologic models and state-of-the-art optimization models to assess the performance
of water resources systems under changing climatic conditions. Coupled Atmospheric-Ocean
General Circulation Models (AOGCM) are the best tools currently available for predicting
future climatic variables (Wilby and Harris 2006).

Reservoir operation depends on lake precipitation, evaporation, and on river inflows (see
Loáiciga 2002), which are impacted by changing climate. The impact that climatic change
might have on reservoir operation is now well recognized by water resources analysts. This
recognition has encouraged the search for new strategies to adapt to and mitigate possible
adverse consequence of climatic change.

Numerous optimization techniques have been developed and applied in all areas of water
resources systems, and, in particular, in reservoir operation (Bozorg Haddad et al. 2011a;
Fallah-Mehdipour et al. 2011a, 2012a, 2013a), hydrology (Orouji et al. 2013), project
management (Bozorg Haddad et al. 2010a; Fallah-Mehdipour et al. 2012b), cultivation
rules (Bozorg Haddad et al. 2009; Noory et al. 2012; Fallah-Mehdipour et al. 2013b),
pumping scheduling (Bozorg Haddad et al. 2011b), hydraulic structures (Bozorg
Haddad et al. 2010b), water distribution networks (Bozorg Haddad et al. 2008;
Fallah-Mehdipour et al. 2011b; Seifollahi-Aghmiuni et al. 2011, 2013), operation of
aquifer systems (Loáiciga 2004; Bozorg Haddad and Mariño 2011), site selection of
infrastructures (Karimi-Hosseini et al. 2011), and algorithmic developments (Shokri
et al. 2013). Only a handful of these works dealt with the development and applica-
tion of adaptive reservoir operation rules under climatic change.

Lee et al. (2011) applied a simulation-operation method for finding a tradeoff between flood
control and reservoir recharge objectives under a climatic change scenario in the Colombia
river watershed. Minville (2009) reported on the adaptive management of Canadian water
resources systems under climatic change scenario for hydro-power operation. They investi-
gated the impact of climate change on hydro-power generation, power station performance,
weirs and reservoir reliability using a regional climate model (RCM) with the A2 GHG
emission scenario.

The operation of multi-objective water resources systems is a complex decision making
problem commonly involving many decision variables and multiple objectives. The impact
that climatic change might have on reservoir operating variables would further add to the
complexity of decision making. Water resources analysts are by now routinely con-
sidering climatic change scenarios in planning future multiple reservoir operation
strategies (Lee et al. 2011).

Eum and Simonovic (2010) proposed a new strategy for adapting multi-objective
reservoirs to climatic change using optimized operation rule curves using the
Differential Evolution Optimization (DEO) algorithm. They weighted water supply, flood
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control, and hydropower generation objectives to calculate reservoir operation rule curves
under climatic change. Zhou and Guo (2013) proposed an integrated optimization model
to develop operation rule curves for the Danjiangkou reservoir in China in a base period
and three future periods.

It is now recognized by many professionals in the water resources community that
reservoir operation rules must take into account climatic change. This work presents
an adaptive method to revise reservoir operation rules as an adaption strategy to
climatic change. The method is illustrated with an application to the Karoon-4 reservoir
in Iran.

2 Methodology

2.1 Climate Scenarios

The preferred tool to generate future climate scenarios is the coupled Atmospheric-
Ocean General Circulation Model (AOGCM) (Mithchell 2003; and Wilby and Harris
2006). The path of future GHG emissions is an input to AOGCMs. A set of emission
scenarios titled Special Report on Emission Scenarios (SRES) was released by the
IPCC in 1996 and updated in 2000 (IPCC 2000). Scenarios are allocated to four main
groups: A1, A2, B1 and B2. The A2 scenario of GHG emissions, which is adopted in
this work, envisions a heterogeneous world, continuously increasing global population,
economic development is primarily regionally oriented, with slow per capita economic
growth and technologic change. There are different techniques to generate regional
climate scenarios from AOGCM climatic output computed at larger spatial resolution.
These methods are known as downscaling techniques (Wilby and Harris 2006). The
proportional approach is adopted in this work for spatial downscaling of AOGCM
output. This approach downscales climate change scenarios to the basin using the
information of the AOGCM’s grid box or boxes that contain the basin under study.

The ‘change fields’ temporal downscaling approach is used in this work to generate
monthly climatic scenarios. In this approach, monthly differences (or ratios) are formed
between the averages of the AOGCMs outputs dataset for the future and the corresponding
averages of the models simulated for a base period. The differences [Eq. (1)] are used for
temperature changes and ratios (Eq. 2) are commonly applied to rainfall change (Loáiciga et al.
2000; Hay 2000; Diaz-Nieto and Wilby 2005; Minvill 2008 and Ashofteh 2013b). The
differences and ratio approaches are as follows:

ΔTt ¼ TAOGCM ; f ut;t � TAOGCM ;base;t

� �
ð1Þ

ΔPt ¼ PAOGCM ; f ut;t

PAOGCM ;base;t

 !
ð2Þ

in whichΔTt andΔPt = long-term monthly average temperature and precipitation changes for
month t, respectively; TAOGCM ; f ut;t and PAOGCM ; f ut;t = the simulated long-term average
temperature and precipitation with an AOGCM in future periods for month i, respectively;
TAOGCM ;base;t and PAOGCM ;base;t = the simulated long-term average temperature and precip-
itation by AOGCM in the base period for the month t, respectively.
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The future (monthly) temperature time series (Tt) is calculated by adding the change in
temperature obtained with Eq. (1) to the temperature observed during a baseline period (Tobs,t):

Tt ¼ Tobs;t þΔTt ð3Þ
The future (monthly) time series of precipitation (Pt) is calculated by multiplying the

change of precipitation obtained with Eq. (2) by the precipitation observed during a baseline
period (Pobs,t):

Pt ¼ Pobs;t �ΔPt ð4Þ

2.2 Future Runoff Under Climate Change

Basin runoff must be predicted to evaluate the future impacts of climate change on water
resources. This is accomplished in this work by means of the rainfall-runoff model IHACRES,
which is versatile, computationally efficient, and can be interfacedwith climate-change input data.

2.3 The IHACRES Model

The IHACRES model was introduced by Jakeman and Hornberger (1993). This model is
based on a non-linear loss module and a linear unit hydrograph module. Precipitation Pt and
temperature Tt are converted to effective precipitation ut using the non-linear loss module in
every time step t. The linear module unit hydrograph then converts effective precipitation to
runoff in every time step. The catchment wetness index st (0<st<1) is used to convert
precipitation to effective rainfall in a catchment. The catchment wetness index is a function
of evaporation and is shown as follows:

st ¼ C � rt þ 1� 1

τw T tð Þ
� �

st−1 ð5Þ

in which Pt=the catchment precipitation in period t, ut=the effective rainfall in period t. If the
soil in the catchment is completely saturated (st=1) all precipitation is converted to effective
rainfall. τw(Tt) = is a parameter that controls the value of the st index when no precipitation
occurs. It is calculated as follows:

τw T tð Þ ¼ τwe
0:062 f R−Ttð Þ ð6Þ

in which R=reference temperature, τw = catchment drying time constant, f=the temperature
modulation factor. The effective rainfall ut is the product of Pt and st:

ut ¼ st � Pt ð7Þ
The linear module allows any configuration of linear storages acting in parallel or in series.

In a two-storage configuration the unit hydrograph is divided into quick (q) and slow (s)
components. The value of runoff in the time step t (qt) is estimated using the following
equation (Jakeman and Hornberger 1993)

qt ¼ α qð Þx qð Þ
t−1 þ β qð Þu qð Þ

t

� �
þ α sð Þx sð Þ

t−1 þ β sð Þu sð Þ
t

� �
ð8Þ

The three parameters C [Eq. (5)], τw , and f [Eq. (6)] and the four parameters α(q) α(s) β (s)

or β (q) (Eq. 8) must be calibrated using observed data for the study basin.
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3 Reservoir Operation Model

3.1 Multi-objective Optimization Model

Multiobjective optimization seeks to achieve the best possible fulfillment of all the objectives
of reservoir operation simultaneously. The objective functions used in this study are the
temporal reliability and vulnerability of hydropower generation, following earlier work by
Ahmadi (2014).

The reliability of hydropower generation is defined as follows:

RT ¼
N
t¼1

T

P t ≥α : PPCð Þ
T

ð9Þ

The vulnerability of hydropower generation is defined as follows:

V ¼

X
t¼1

T

α:PPC−Ptð j Pt < α:PPC; 0
���Pt ≥α:PPC

�

T :α:PPC
ð10Þ

in which RT = temporal reliability of reservoir; α = efficiency threshold of hydropower
generation; Pt=hydropower generation at period t; PPC=existing power plant capacity;
V=vulnerability of the reservoir; and T=total number of operational periods.

Other equations and additional relevant constraints for single reservoir optimization models
are as follows:

Water balance equation in the reservoir:

Stþ1 ¼ St þ Qt−Rt−Spt−Losst ∀t ¼ 1;…; Tð Þ ð11Þ

in which St and St+1=reservoir storage volume at the beginning of the t th and t+1st periods,
respectively; Qt=river inflow volume to reservoir during period t; Rt=volume of water
released from the reservoir during period t; Spt=volume of spilled water from the reservoir
during period t; Losst=volume of evaporation losses from the reservoir during period t.

Loss equation:

Losst ¼ Evt � At þ Atþ1

2

� �
∀t ¼ 1;…; Tð Þ ð12Þ

in which Evt=evaporation depth at period t; At and At+1=water surface at the beginning of t th

and t+1th periods, respectively.
Area-storage function:

At ¼ f Stð Þ ∀t ¼ 1;…; Tð Þ ð13Þ
in which f(…) = area-storage function.

Spill function:

Spt ¼
St þ Qt−Rt−Smax if St þ Qt−Rt > Smax

0 if St þ Qt−Rt ≤Smax

8<
: ∀t ¼ 1;…; Tð Þ ð14Þ

in which Smin and Smax=minimum and maximum storage of the reservoir, respectively.
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Constraint on storage:

Smin≤St ≤Smax ∀t ¼ 1;…; Tð Þ ð15Þ
Constraint on releases:

Rmin≤Rt ≤Rmax ∀t ¼ 1;…; Tð Þ ð16Þ
in which Rmin and Rmax=minimum and maximum allowable reservoir releases, respectively.

Power formula:

Pt ¼ g � E � Rpt
PFt �Mult

�
Ht � Twt

� �
1000

∀t ¼ 1;…; Tð Þ ð17Þ

in which g=gravitational acceleration; E=power plant efficiency; Rpt=output water from
power plant in period t; PFt=plant functional coefficient during period t; Ht = average head
during period t; Twt=reservoir tailwater level during period t that depends on output water
from the power plant.

Average head formula:

Ht ¼ Ht þ Htþ1ð Þ=2 ∀t ¼ 1;…; Tð Þ ð18Þ
in which Ht and Ht+1=head at the beginning of tth and t+1th periods, respectively.

Head vs. storage function:

Ht ¼ g Stð Þ ∀t ¼ 1;…; Tð Þ ð19Þ
in which f(…) = head-storage function.
Definition of spill from the power plant:

Rpst ¼ Rt−Rpt ∀t ¼ 1;…; Tð Þ ð20Þ

in which Rpst=additional water spilled from the power plant after hydropower generated in
period t.

Power plant capacity constraint:

Pmin≤Pt ≤PPC ∀t ¼ 1;…; Tð Þ ð21Þ
In which Pmin=minimum hydropower generation of plant.

3.2 Dynamic Real-Time Reservoir Operation Rules

Reservoir operation rules can be either long term or real time. In long-term operation, a
reservoir is operated with a historical long-term series of inflow In real-time operation the
released water from a reservoir in each period is a function of variables such as reservoir
storage volume at the beginning of the current period or the end of previous period, the
reservoir inflow during the current period, and downstream requirements during the current
period. In fact, in real-time operation the operator consider combinations of inflow volume,
reservoir volume, and released water volume to make the final operational decision for the
current period. The volume of released water can be a linear or non linear function of storage
volume, inflow volume, or both of these variables.

The volumes of river inflows over different time periods are unknown in real-time
operation: t their volumes are estimated using inflow forecasting models. The application of
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inflow forecasting models may be beset by large errors. As an alternative, real-time operation
rules may be such that the volume of released water in each period is a function of the volume
of reservoir storage at the beginning of the current period and on the volume of inflow of the
previous period, which are known values (Ahmadi 2014). Inflow forecasting model is not
needed for the real-time operation rules in this instance. Using this method, real-time operation
rules are expressed by Eq. (22). In this case, a separate inflow forecasting model is not needed
for the real-time operation rules.

Rt ¼ j St;Qt−1ð Þ ∀t ¼ 1;…; Tð Þ ð22Þ

in which j(…) denotes the function relating the water release in period t to storage in period t
and inflow in period t-1.

The amount of water released in period t is expressed by Eq. (23) (see Ahmadi 2014): x1, x2
and x3, for each month and a total of 36 variables during operation.

Rt ¼ x1:St þ x2Qt−1 þ x3 ∀t ¼ 1;…; Tð Þ ð23Þ
in which x1t, x2t and x3t are storage, river inflow, and free coefficients, respectively, in the
operation rule (23). These coefficients differ from month to month but are fixed for each given
month of the year, so that their total number equals 36 (3 × 12). The coefficients x1, x2 and x3
are treated as decision variables in reservoir optimization in this work. These coefficients
introduce flexibility in setting up operation rules leading to improved real-time dynamic
operation rules.

3.3 Multi-objective Optimization Algorithm

Multiobjective reservoir operation rules can be optimized using meta-heuristic algorithms
(Zhou and Guo 2013). The non-dominated sorting genetic algorithm II (NSGA-II) (Deb
2002) was chosen as the multi-objective optimization problem solver in this work. In the
NSGA-II algorithm each population consists of genes that are the decision variables of the
optimization model. The choice of a new population in each phase of this algorithm is based
on the concepts of dominance, elitism, and population ranking. The algorithm chooses non
dominant solutions in each phase and moves to the next phase. The algorithm assures an
appropriate distribution of solutions using the concept of Crowding Distance (Deb 2002).

Output of all multi-objective optimization methods is a set of optimal solutions that are
called Pareto optimal solutions (Pareto frontier). The Pareto frontier consist a set of non-
dominated solutions which are near the optimal solutions for any combination of objectives
with an appropriate diversity. All of these optimal solutions are potentially the final choice and
the decisionmaker should choose one of them as a final solution. There are several methods that
can be employed to select a final solution among the Pareto set. Young’s (1993) theory can be
used to resolve conflicts among objectives in optimal reservoir operation (Shokri et al. 2014).

3.4 Approach to Reservoir Operation

This paper investigates the impact of climate change on real time, multiobjective, reservoir
operation. Temperature and precipitation data were extracted from the HadCM3 climate model
(Pope et al. 2000) predicted under the A2 emission scenario for the base period (1986–2000)
and for the early (2025–2039), middle (2055–2069), and late (2085–2099) periods. The
climate model’s predictions were used to generate river inflows to the Karoon-4 reservoir
with the IHACRES rainfall simulation model.
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Dynamic multi-objective real-time operation rules are herein described by Eq. (23).
The temporal reliability [Eq. (1)] and the vulnerability [Eq. (2)] of hydropower
generation are the two objective functions of this study. The multi-objective optimi-
zation of real-time operation is performed using the NSGA-II. Due to the random
nature of the solutions obtained with the NSGA-II the optimization model was run six
times, and final Pareto solutions were chosen from the non-dominated solutions of all
the runs. The NSGA-II parameters include crossover rate, mutation rate, population
size, and number of generations. These parameters are chosen using sensitivity
analysis. The optimum value of each parameter is determined by changing one
parameter within its allowable range while the other parameters are kept constant.
The crossover rate, mutation rate, population size, and number of generations were
estimated to be equal to 0.1, 8, 100, and 30000, respectively. Maximum reliability and
minimum vulnerability were also obtained with the software LINGO by performing
single-objective optimization of each objective function and compared with the
multiobjective Pareto solutions. Figure 1 shows a flowchart of the solution method-
ology employed in this work.

3.5 Case Study

The Karoon-bala basin, Iran, has an area of about 14,550 km2 and mean elevation of
2,300 m. It is located in southwestern Iran (see Fig. 2). The 240 km-long Karoon
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Fig. 1 Flowchart of the reservoir operation methodology
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river lies in this basin. The Karoon river has the largest discharge among all rivers in
Iran. The concrete, double curvature, arch-type Karoon-4 dam has a height of 230 m.
It is the tallest dam in Iran, and is located at the outlet of the Karoon basin. The
objectives of the Karoon-4 dam and hydroelectric power plant are water supply (7.3×
109 m3per year), flood control, and annual hydropower production (2,107 GWhr per
year). The mean annual river discharge and rainfall at the Karoon-4 reservoir are 540×
106 m3 and 620 mm, respectively. The years 1986–2000 were selected as the base period
in this study. Monthly rainfall (from 13 stations), temperature (from 2 stations), and
monthly river discharge (from hydrometer gauging station at Karoon-4 reservoir) are
available for the base period.

Iran

Fig. 2 Location of the study basin and stations
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4 Results and Discussion

4.1 Investigation of Climate Model Performance in the Base Period (1986–2000)

15-year average monthly precipitation and temperature downscaled from HadCM3
model predictions are compared to the 15-year average monthly observed precipitation
and temperature in Fig. 3 for the base period at the Karoon-4 reservoir. Climate
predictions for temperature and precipitations at the Karoon-4 reservoir were calcu-
lated with Eqs. (3) and (4), respectively. As shown in the Fig. 3, the HadCM3 model
predicted average temperature that are lower than observed temperature in most
months, while it yielded an estimated average precipitation greater than observed
precipitation in several months. The correlation coefficient (r), root mean square error
(RMSE), and mean absolute error (MAE)) of precipitation and temperature predictions
are listed in Table 1. The results show that the HadCM3 model produced acceptable
climate predictions for the purpose of this study.

Fig. 3 15-year average monthly a temperature, b precipitation of observed data and HadCM3 predictions for the
base period (1986–2000)
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4.2 Prediction of Climate Variables in Future Periods

Figure 4 shows the long-term average monthly temperature and precipitation predictions for
the early (2025–2030), middle (2055–2069), and late (2085–2099) periods. The base period
predictions are displayed for comparison purposes in Fig. 4, also.

Figure 4a shows that future periods exhibit higher temperature than the base period. The
early, middle and late periods exhibit basin temperatures that are 1.35, 1.45, and 2.20 °C higher
than the base period temperature, respectively. Figure 4b shows that the amount of

Table 1 Performance criteria of the HadCM3 model for temperature and rainfall observed data

Precipitation Temperature

Performance criteria r (%) RMSE (mm) MAE (mm) r (%) RMSE (°c) MAE (°c)

HadCM3 89 4.69 −2.29 99 1.14 1.92

Fig. 4 15-year, long-term, average monthly temperature a and precipitation b in the Karoon basin for the base
period and future periods
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precipitation decreases by 18 % in the early period, 0.4 % in the middle period, and 30 % in the
late period relative to the base period. An increase in precipitation is observed only in the
Winter and Spring seasons of the middle period. The precipitation decreases relative to the
base period in the other periods.

4.3 Prediction of Basin Runoff in Future Periods

The IHACRES hydrologic model was calibrated using observed monthly average temperature
and precipitation data for the basin, and Karoon-4 monthly runoff data during 1986–2000.
Figure 5 shows partial calibration and verification results. The calibrated IHACRES model
was simulated with inputs of predicted monthly precipitation and runoff to simulate predicted
runoff at the Karoon-4 reservoir. Results are shown in Fig. 6.

Figure 6 indicates a decrease in river inflow to the Karoon4 reservoir in the future periods
relative to the base period. The middle period has smaller decrease than the early period, and
the late period has the largest decrease in inflow relative to the base period. The middle period
exhibits decreases in river inflow that are smaller than those in the early period.

4.4 Real-Time Reservoir Operation in the Base Period

The Karoon-4 reservoir was operated by extracting dynamic real-time operation rules for the
base period. These rules were optimized using a two-objective problem that maximizes
reliability and minimizes vulnerability of hydroelectric power generation. Results of the two-
objective optimization algorithm are shown in the form of Pareto solutions in Fig. 7. The
single-objective optimal values of each objective function were calculated using the LINGO
software, and are shown in Fig. 7, also. SI

base and SIII
base in Fig. 7 denote the maximum reliability

and minimum vulnerability obtained with LINGO from single-objective optimization of each
objective function.

It is seen in Fig. 7 that the Pareto solutions exhibit a good spread in the solutions set, and are
near single-objective solutions (absolute optimal solution of each objective function). This
indicates appropriate performance of the multi-objective optimization algorithm.

Each of the solutions on the Pareto curve or frontier represents an optimal operation rule
which include reservoir release volume, reservoir storage volume, generated hydropower, and
volume of spilled water from the reservoir. These variables make up an optimized operation
policy. All Pareto optimal solutions are considered equally good. Each of the Pareto solutions

Fig. 5 Observed and simulated runoff for a calibration period (r=84%, RMSE=2.01×106 m3 and MAE=1.92×
106 m3), and b verification (r=73 %, RMSE=5.32×106 m3 and MAE=2.16×106 m3) period
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can be regarded as an optimal solution and the final choice could be made by the reservoir
operator. In this paper, the final optimal decision variables are chosen using Young’s conflict
resolution method (Young 1993). SII

base in Fig. 7 denotes the final choice of Pareto solutions,
which are selected using Young theory.

Table 2 shows the values of the objective functions and optimized coefficients of storage
volume (x1), inflow volume (x2) and constant values (x3) in Eq. (23).

4.5 Real-Time Operation Under Climatic Change Condition in Future Periods

The Karoon4 reservoir can be operated according to two approaches under climate change: (1)
non-adaptive operation, and (2) adaptive operation. In the non-adaptive operation approach the
developed operational rules in the base period are used for operating the reservoir in future
periods, and climate change impacts on reservoir operation are investigated. In the adaptive

Fig. 6 Average Long-term average monthly runoff observed in the base period and modeled in future periods

Fig. 7 Pareto optimal solutions of real-time operation in the base period (1986–2000)
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operation approach dynamic real-time operation rules are modified in future periods for
adapting to climate change.

4.6 Non-adaptive Operation Approach

Using the predicted inflow for future periods to the reservoir and the operational rules
calculated for the base period, real-time operation in the early (2025–2030), middle (2055–
2069), and late (2085–2099) periods was simulated for the optimal solutions SI

base, SII
base and

SIII
base shown in Table 2. Table 3 displays the reliability and vulnerability of hydroelectric power
generation obtained from reservoir simulation in the future periods using non-adaptive
operation.

It is seen in Table 3 that using operational rules developed in the base period in future
periods leads to a decrease in reliability and an increase in vulnerability of hydroelectric
power generation. The reliability decreases between 45 and 55 % and the vulnerability
increases between 22 and 31 % in the early period, the reliability decreases between 27 and
33 % and the vulnerability increases between 16 and 20 % in the middle period, and the
reliability decreases between 59 and 64 %, and the vulnerability increases between 45 and
51 % in the late period.

Table 2 Optimal solutions for real-time dynamic operation rules in the base period (1986–2000)

SI
base SII

base SIII
base

Reliability (%) 81.11 77.22

Vulnerability (%) 9.54 4.27 2.80

x1 x2 x3 x1 x2 x3 x1 x2 x3

Jan 0.1989 0.2008 61.7720 0.2198 0.0029 281.8914 0.2127 0.0016 288.7750

Feb 0.1443 0.0061 325.4311 0.1210 0.0350 335.9921 0.0467 0.1390 319.9667

Mar 0.0699 0.0360 328.3409 0.0944 0.0699 295.4731 0.0893 0.0052 376.7884

Apr 0.2201 0.0373 206.4848 0.0308 0.0349 314.7803 0.0271 0.0002 328.8053

May 0.3223 0.0464 56.2425 0.1425 0.0656 205.9424 0.3621 0.0194 50.2153

Jun 0.0120 0.0000 306.0391 0.2938 0.0410 85.5548 0.0953 0.0480 224.3974

Jul 0.0463 0.0795 274.8175 0.2165 0.1376 107.7698 0.2556 0.1407 55.1750

Aug 0.1373 0.1739 198.5104 0.2368 0.1177 107.6385 0.0448 0.2943 167.8485

Sep 0.4560 0.0085 96.0059 0.3647 0.0497 72.9243 0.2012 0.0784 154.9512

Oct 0.0142 0.0971 370.1594 0.0038 0.4283 127.6349 0.0747 0.2941 229.6880

Nov 0.0825 0.0534 78.7758 0.0933 0.3727 216.8537 0.3637 0.2470 96.4769

Dec 0.4740 0.0155 59.6035 0.0941 0.1142 260.8091 0.0450 0.1046 308.1980

Table 3 Non-adaptive real-time operation in the future periods

SI
early SII

early SIII
early SI

middle SII
middle SIII

middle SI
late SII

late SIII
late

Reliability (%) 34.44 18.89 22.22 47.78 40.56 44.44 15.56 6.00 7.78

Vulnerability (%) 40.81 20.87 34.86 28.67 18.16 21.30 58.79 48.11 50.11
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4.7 Adaptive-Operation Approach

Operating rules must be modified in the future for best adaptation to climatic change.
Simulated volumes of inflow in future periods were input to the optimization model and
dynamic optimal rules of reservoir operation were calculated as multi-objective and single-
objective for the early, middle and late periods.

Figure 8 shows the Pareto solutions resulting from multi-objective, adaptive, optimization
of reservoir operation in the future periods.

The values of the objective functions and decision variables calculated with the optimiza-
tion model are presented for the early period (SI

' early, SII
' early and SIII

' early), middle period (SI
'middle,

SII
'middle and SIII

'middle) and late period (SI
' late, SII

' late and SIII
' late) in Tables 4 to 6, respectively.

A comparison of the adaptive operational results for the future periods shown in Tables 4, 5
and 6 with those presented in Table 2 for the base period establishes that the reliability
decreases approximately between 38 and 49 % and the vulnerability increases approximately
between 21 and 25 %, in the early period relative to those of the base period. Due to the trend
of inflow changes in future periods stated earlier in this paper, the reliability and vulnerability
in the middle period exhibit smaller changes than in other future periods relative to those of the
base period. Specifically, in the middle period the reliability decreases approximately between
31 and 40 % and the vulnerability increases approximately between 9 and 13 % relative to
those of the base period. Results for the late period show a decrease between 52 and 62 % for
the reliability and an increase between 42 and 45 % for the vulnerability relative to those of the
base period.

Adaptive operation results can be compared to those calculated with non-adaptive opera-
tion. The non-adaptive operating results (Table 3) and the adaptive results for the future
periods (Tables 4, 5 and 6) establish that applying the adaptive operational rules in future
periods improves the reliability and vulnerability of hydroelectric power generation, so that the
adaptive reliabilities SII

' early and SII
'middle improve 11 and 4 %, respectively, and their vulnera-

bility improves 7 and 5 %, respectively, relative to non-adaptive SII
early and SII

middle. Hence,
changing the reservoir operation rules under climate change in future periods means improved
operation, making modification of these rules by applying multi-objective optimization an
effective strategy for climatic-change adaptation.

Figure 9 displays the 15-year average monthly values of reservoir release volume, reservoir
storage volume, generated hydropower, and the volume of spilled water from the reservoir
obtained from the Pareto solutions for the base, early, middle and late periods.

4.8 Concluding Remarks

The HadCM3 model under the A2 scenario was used to predict temperature and precip-
itation in the Karoon river basin of Iran. The temperature and precipitation predictions
were downscaled by the proportional method. Predicted average temperature and precip-
itation in three future periods -early (2025–2039), middle (2055–2069), and late (2085–
2099) were input to the hydrologic model IHACRES to simulate river inflow to the
Karoon-4 reservoir. Dynamic real-time operation rules were calculated with the NSGA-
II. Lastly, the reservoir was operated under climate change in using non-adaptive and
adaptive operations.

The climatic predictions for the future periods indicate that the basin temperature in the
early, middle, and late periods decreases about 1.35, 1.45 and 2.20°c relative to the base
period, respectively. Precipitation predictions indicate that it would decrease about 18 , 0.4 and
30 % in the early, middle, and late periods, respectively, relative to the base period. Runoff
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Fig. 8 Pareto optimal solutions of real-time operation in a early (2025–2030), b middle (2055–2060), and c late
( 2085–2099) periods
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simulation predictions indicate that the inflow to the Karoon4 reservoir would decline in the
future periods compared to the base period.

The results for non-adaptive operation show that the reliability of hydropower generation
from Pareto solutions in the early, middle, and late periods would be reduced 50, 30 and 63 %,
respectively, relatively to those of the base period. The vulnerability of hydropower generation

Table 4 Optimal adaptive solutions for real-time dynamic operation rules in the early period (2025–2039)

SI
' early SII

' early SIII
' early

Reliability (%) 43.30 33.33 21.44

Vulnerability (%) 33.44 27.92 25.78

x1 x2 x3 x1 x2 x3 x1 x2 x3

Jan 0.2321 −0.0403 169.4214 0.3086 0.0562 167.7198 0.9409 0.0712 50.5869

Feb 0.0926 −0.0396 305.0996 0.1250 −0.0463 303.3760 0.3955 0.0153 210.4714

Mar 0.4809 −0.1306 59.0741 0.5640 −0.1048 59.5572 −0.1314 0.6107 106.7474

Apr 0.1319 0.2413 86.4134 0.1356 0.2447 86.5448 0.3499 −0.1029 210.8435

May 0.1729 0.0404 182.4676 0.1818 0.0417 182.3326 0.2348 −0.0247 174.9682

Jun 0.1065 0.1183 222.2596 0.0745 0.1180 218.4090 0.1200 −0.0139 236.8797

Jul 0.2550 0.0559 182.0610 0.2388 −0.0412 178.5641 0.5695 −0.8216 184.7130

Aug 0.0305 −0.1527 67.8333 0.2557 −0.0664 68.5082 0.5252 −0.7109 151.2719

Sep 0.3552 −0.9881 96.7164 0.6506 −0.8469 95.9358 0.3775 −0.0480 50.0000

Oct 0.1093 −0.5022 53.0703 0.2559 −0.4874 52.6138 0.5122 −0.1983 50.0001

Nov 0.2134 0.9036 55.8794 0.2212 0.3075 54.1997 0.6859 −0.1466 50.0217

Dec −0.0842 −0.0101 50.6954 0.0500 0.4753 53.6205 0.4318 0.4476 98.1140

Table 5 Optimal adaptive solutions for real-time dynamic operation rules in the middle period (2055–2069)

SI
'middle SII

'middle SIII
'middle

Reliability (%) 57.42 48.33 33.89

Vulnerability (%) 21.71 16.16 14.18

x1 x2 x3 x1 x2 x3 x1 x2 x3

Jan −0.0681 0.0571 389.2269 −0.0999 0.1054 397.5340 0.2302 0.2217 210.8179

Feb −0.0009 0.1741 314.2500 0.0852 0.1777 258.1885 0.0658 0.3427 167.1439

Mar 0.0095 0.2488 192.6147 0.0242 0.2489 197.4758 0.3942 −0.0775 224.0703

Apr 0.1729 0.1103 127.9600 0.1768 0.1095 132.0720 0.0801 0.0991 220.5018

May 0.0926 0.0814 219.5046 0.0979 0.1048 201.9144 0.2295 0.0524 137.8725

Jun 0.3492 −0.0002 54.5916 0.3414 0.0012 63.2849 0.2124 0.1214 96.9162

Jul 0.1747 0.2620 54.0330 0.1748 0.2628 54.0983 0.0718 0.1275 207.0172

Aug 0.0168 0.4688 50.3190 0.0486 0.4583 53.8534 0.2134 0.1793 81.2587

Sep 0.2458 0.2752 85.7174 0.2408 0.2149 90.0688 0.1850 0.2827 55.9790

Oct 0.3286 0.1635 144.3358 0.3487 0.1596 88.5286 0.2336 0.2768 58.6728

Nov −0.0114 −0.0869 51.1022 0.1374 −0.0552 51.1649 0.4074 0.1962 50.8885

Dec 0.0747 −0.2571 50.1591 0.2518 0.5550 73.3639 0.4697 −0.0074 169.8663
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from Pareto solutions in the early, middle, and later periods would be increased 28, 18 and
48 %, respectively, relative to the base period. The results from the adaptive operation
approach show that the reliability of selected Pareto solution improves 11, 4 and 11 %,
respectively and their vulnerability improves 7, 5 and 4 %, respectively relative to non-

Table 6 Optimal adaptive solutions for real-time dynamic operation rules in the late period (2085–2099)

SI
' late SII

' late SIII
' late

Reliability (%) 27.21 18.33 8.89

Vulnerability (%) 53.81 46.87 44.71

x1 x2 x3 x1 x2 x3 x1 x2 x3

Jan −0.0102 0.0990 53.9236 0.4894 0.0728 93.4803 0.5071 0.0127 50.7414

Feb −0.1734 0.0043 156.9793 0.8964 −0.7570 196.6361 0.1728 0.3774 50.4865

Mar 0.4423 −0.0541 50.1461 0.8270 −0.6390 113.5196 0.2874 0.1763 73.5183

Apr 0.0657 0.0078 329.2780 0.3393 −0.3062 318.7641 0.3113 0.0303 70.2691

May 0.1656 0.1686 212.7870 0.5709 −0.6104 211.7707 0.0365 0.5121 54.8727

Jun 0.9060 −0.9615 125.1592 0.1194 0.3683 69.2396 0.1054 0.4150 50.6916

Jul 0.5390 −0.3363 75.3237 0.6369 −0.8571 109.5064 0.0005 0.5917 50.4918

Aug 0.2743 −0.8262 65.9907 0.4936 −0.9653 64.8780 0.1362 0.0949 56.4197

Sep 0.1870 −0.9382 50.2202 0.2499 −0.5956 60.5284 0.0247 0.3859 68.0321

Oct 0.4640 0.0778 50.0097 0.1884 −0.8695 53.5649 0.0510 0.0134 50.7020

Nov 0.0002 −0.4031 50.0335 0.2027 −0.9474 52.3050 0.3203 0.1950 53.1799

Dec −0.0654 −0.0340 50.7278 0.4872 −0.8011 70.4931 0.0987 0.0043 50.2751

Rmax
Smax

PPC

Fig. 9 Average long-term volume variations of: a released water; b generated power; c storage volume; and d
spilled water from Pareto solutions for the base, early, middle and late
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adaptive operation approach. As a result, it was shown that applying dynamic multi-objective
real-time reservoir operation rules would be an effective adaption approach to climate change.
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