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Abstract Applications of the Soil andWater Assessment Tool (SWAT) require a large amount
of input data to perform model simulations. Consequently, uncertainty in input data tends to
influence the accuracy of SWAT hydrologic and water quality outputs. It has been shown that
input uncertainty can be quantified explicitly during model calibration with latent variables. In
this study, latent variables were explored to examine their sensitivity to SWAT outputs and
further the potential impact of input uncertainty to model predictions. Results show that the
increases in the range of latent variables pose a significant influence to streamflow and
ammonia predictions while the impact was less significant in sediment responses. The
performance of SWAT in predicting streamflow and ammonia declined with wider ranges of
latent variables. In addition, the increase in the range of latent variables did not present
noticeable effect on the corresponding predictive uncertainty in sediment predictions. In this
study, the calibration results did not improve significantly with the applications of wider ranges
of latent variables which are different from the findings in previous research work. The use of
latent variables to incorporate input uncertainty may not be the proper alternative choice in
terms of generating better results and should be carefully evaluated in the implementations of
complex watershed simulation models.
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1 Introduction

With significant advances in the data processing technology and also with the development of
various auto-calibration algorithms, technical challenges in calibrating high-dimensional and
computationally intensive model have been well addressed in the recent years (Duan et al.
1992; Tolson and Shoemaker 2007; Vrugt et al. 2009; Yen 2012). One shortcoming of
traditional calibration processes is the assumption that model uncertainty is attributed from
parameter errors (Ajami et al. 2007) and it is unavoidable to conduct uncertainty analysis in
hydrologic modeling research (Balin et al., 2010). Uncertainty in hydrologic model comes
frommany sources such as model structure, parameter, and even frommeasured data (climatic,
flow, and water quality) (Salamon and Feyen, 2009; Balin et al., 2010; Yen et al., 2014d, e).
Incomplete knowledge of the natural processes and inadequate mathematical and statistical
techniques often lead to model structural uncertainty and parameter uncertainty. Random or
systematic errors presenting in forcing data along with poor initial condition also introduce
uncertainty (Salamon and Feyen, 2009). Though often neglected in many modeling studies,
measurement uncertainty should be identified as it is as important as the other sources of error
(Yen et al., 2014d). Failure to considering one or more sources of uncertainty may cause bias in
the result and thus can be attributable to incorrect conclusions in a watershed modeling study
(McMillan et al., 2011).

In a number of studies, measurement errors that are associated with rainfall data have been
suggested an important source of uncertainty in hydrologic and water quality models (Balin
et al., 2010, McMillan et al., 2011). Rainfall is generally measured with a tipping bucket at a
point weather station. Actual rainfall holds great time and spatial variability, which is often
aggregated into an a real average in the calibration process (Balin et al., 2010). The aggrega-
tion generally reduces the spatial representation of the measured rainfall over the entire
catchment. Other causes of the uncertainty in the rainfall data include systematic and random
errors, effects from wind and evaporation losses, and mechanical limitations (McMillan et al.,
2011). The uncertainty in rainfall data is shown to have critical impacts on hydrologic model
predictions as watershed models typically use weather input as the primary driver at runtime.
Challenge is that it is difficult to identify other sources of uncertainty without clear under-
standing of uncertainty in rainfall data (McMillan et al., 2011).

In previous work, input uncertainty is explicitly incorporated into watershed simulation
models by implementing latent variables while conducting model calibration (Kavetski et al.
2002; Ajami et al. 2007). Input data (e.g. precipitation) is multiplied by noise factors that are
randomly generated based on normal distribution with θ mean and σ2 variance. The value of θ
is assigned to be 1 and the σ2 is altered from 10−5 to 10−3 in the first version of latent variable
application (Kavetski et al. 2002). In another application by Ajami et al. (2007), θ is assigned
to be altered between 0.9 and 1.1 while the range for σ2 remains the same as in Kavetski et al.
(2002). The use of latent variables has demonstrated enhancements in the quality of calibration
work with better model predictions against observation data. However, the sensitivity of latent
variables has not been explored or identified comprehensively because only the default latent
variables were implemented previous work. In addition, the ranges of latent variables may
potentially have significant impact on model predictions associated with the corresponding
uncertainty analysis.

The goal of this study is to evaluate the significance of input uncertainty in precipitation
data in modeling hydrologic and water quality processes at the watershed scale. The Soil and
Water Assessment Tool (SWAT) (Arnold et al. 2012) is implemented as the watershed
simulation model on the Arroyo Colorado watershed (ACW), a lowland agricultural watershed
in Texas, USA. The basic concept of the uncertainty in weather data using latent variables
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proposed by Ajami et al. (2007) is implemented as a reference model. Then, the significance of
uncertainty in rainfall data other than parametric uncertainty is investigated. Specifically, the
following objectives are defined: (i) To quantify how much improvement in SWAT calibration
can be achieved by introducing certain ranges of latent variables into observed precipitation
data; and (ii) To explore if the predictive uncertainty can be reduced by including input
uncertainty.

2 Materials and Methods

2.1 The SWAT Model

Soil and Water Assessment Tool (SWAT) (Arnold et al., 2012) is a physically-based, spatially
distributed watershed scale simulation model developed by the USDA-ARS to evaluate the
impact of land management and climate change on water quantity and quality (Gassman et al.,
2007; Arnold et al., 2012). Major components of the model include hydrology, weather,
erosion, soil temperature, crop growth, nutrients, pesticides and agricultural management.
SWAT has the ability to predict changes in hydrology, sediment, nutrient, pesticides, dissolved
oxygen, bacteria and algae loadings from different management conditions in large ungauged
basins. SWAT has been successfully applied to model water quality issues including sedi-
ments, nutrients and pesticides in watersheds (Rocha et al., 2013; Al-Mukhtar et al., 2014;
Tessema et al., 2014; Yen et al., 2014c,d). In addition, modifications of SWAT have been
developed to serve various purposes (Yen et al., 2014a).

2.2 Study Area

As shown in Fig. 1, the Arroyo Colorado watershed (ACW) is located in southern Texas along
the border of USA andMexico. The watershed (1,692 km2) is largely comprised of agricultural
land that is irrigated from the Arroyo Colorado River through a network of canals, ditches and
pipes under a system of irrigation districts during dry seasons to produce desired crop yields. In
addition, the watershed is extensively urbanized along the main stem of the Arroyo Colorado
River, particularly in the western and central parts of the basin including the cities of Mission,
McAllen, Pharr, Donna, Weslaco, Mercedes, Harlingen, and San Benito.

The predominant land use type in ACW is agriculture (54 % in agriculture which includes
99 % crops and 1 % for others), followed by range land (18.5 %) and urban areas (12.5 %).
The major cultivated crops include grain sorghum, cotton, sugar cane, and citrus as well as
some vegetables and fruit. The major soil series within the watershed comprises of Harlingen,
Hidalgo, Mercedes, Raymondville, Rio Grande, and Willacy (USDA-SCS 1972). Soils in the
watershed are mostly clays, fine loams, and clay loams (clay: 20.4 %, fine loam: 13.2 %, clay
loam: 7.4 %, fine silt: 6.3 %, silty clay: 4.0 %, fine clay: 4.0 %) with soil depths ranging
between 1,600 and 2,000 mm. The watershed is characterized by a semi-arid climate with
annual rainfall ranging from about 530 to 680 mm, generally from west to east and average
annual temperature of 22.7 C with mean monthly temperatures ranging from 14.5 °C in
January to 28.9 °C in July.

2.3 Input Data

Input data for the SWAT model of the Arroyo Colorado watershed comprised of a DEM
(Digital elevation model) with 30 meter resolution that was downloaded from the National
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Elevation dataset of the U.S. Geological Survey (USGS) (Gesch et al., 2009) (accessible online
at http://ned.usgs.gov/; last accessed on September 18, 2013), a land use map that was created
from remote sensing data and field surveys to represent land cover conditions for 2004–2007
and soil properties associated with particular soils in the watershed that was acquired from the
SSURGO soil database of USDA-NRCS. In the SWAT model, the watershed was divided into
17 subbasins and the subbasins were further subdivided into 475 Hydrological Response Units
(HRUs) based on landuse, soil and slope combinations.

Daily weather data including precipitation and min/max air temperature collected at three
stations over four years (2000–2003) was used in the model (see Fig. 1). The weather data was
obtained from Texas State Climatologist Office located at Texas A&M University at College
Station (COOPID 419588 near Weslaco, COOPID 415836 near Mercedes, COOPID 413943
near Harlingen). International Boundary and Water Commission provided the stream flow data
for two stations, one near Llano Grande at FM 1015 south of Weslaco and the other near US
77 in South West Harlingen. Moreover, the Arroyo Colorado Basin has 21 permitted point
sources discharges, among which 16 are municipal, three are industrial, and two are shrimp
farms. The discharge permit limits of the municipal plants range from 0.4 to 10 million gallons
per day. The shrimp farms discharge infrequently (Rains and Miranda, 2002).

Water quality data from limited grab samples were obtained for suspended sediment (SS),
nitrogen (NH4+-N, NO3-N, and TN), and total phosphorus (TP). The grab-samples were
converted to time series load by the LOAD ESTimator (LOADEST) developed by USGS
(Runkel et al. 2004). The time series water quality data with monthly average within 95 %
confidence interval was used as observation data for calibration of the SWAT model. Details of
ACW can be also be found in (Seo et al. 2014).

Fig. 1 Location of the Arroyo Colorado Watershed
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2.4 Incorporation of Input Uncertainty

Input data includes forcing inputs such as precipitation, temperature, and land use types, which
are essential drivers for the simulation processes of watershed models. Studies can be scarcely
found which incorporate input uncertainty explicitly during the watershed model calibration
(Ajami et al., 2007). Two recently proposed approaches, the Bayesian total error analysis
(BATEA) (Kavetski et al., 2002), and the integrated Bayesian uncertainty estimator (IBUNE)
(Ajami et al., 2007) implementing the Bayes theory to evaluate uncertainty conducted by input
data. Take precipitation as an example to illustrated input uncertainty incorporated in calibra-
tion, it can be shown in Equation (1).

Radjusted
i ¼ k � Robserved

i ð1Þ
Where, Ri

adjusted and Ri
observed are the adjusted and the observed precipitation depth; k is the

normally distributed random noise with θ mean and σ2 variance defined as latent variables. In
BATEA, θ is assumed to be 1 and σ2 should be predefined for all precipitation data in each
time step (σ1

2,σ2
2,…,σtime steps

2 ). The total number of σ2 increases by including longer time steps
during simulation which may potentially cause dimensional difficulties in calibration. In
IBUNE, the problem is resolved by assigning θ as a predefined parameter where the same
set of θ and σ2 will be applied throughout the same model evaluation. Therefore, the number of
latent variables decreases to two regardless of the problem of dimensionality.

By default in literature (Ajami et al. 2007), the range of θ is assigned from 0.9 to 1.1 and the
σ2 is altered from 10−5 to 10−3. In this study, ranges of θ and σ2 are extended 10 (θ∈[0.81~
1.21]; σ2∈[9×10−6~1.1×10−3]) and 20 percent (θ∈[0.73~1.33]; σ2∈[8.1×10−6~1.21×10−3])
respectively to explore the sensitivity of using various sets of latent variables.

2.5 Description of Case Scenarios

Input uncertainty may cause a considerable impact to model predictions (Ajami et al., 2007)
and calibration results can be improved by incorporating input uncertainty. However, the
application of latent variables was made for only one set of variables in previous studies and
this practice has been established without a solid scientific justification. Furthermore, it is still
unknown if the enhancement in model performance with the incorporation of input uncertainty
can be quantitatively analyzed. To investigate the impact caused by altering default ranges of
latent variables in precipitation data on model calibration, four scenarios are implemented in a
case study. As summarized in Table 1, Scenario 01 is the case for the basic calibration without
input uncertainty in precipitation data; Scenario 02 includes the default ranges of latent
variables (Ajami et al. 2007); Scenario 03 represents a 10 % increase from the default ranges
of latent variables; Scenario 04 doubles the increase (20 %). By gradually relaxing the range of

Table 1 Case scenarios and the associated abbreviations

Case scenarios Range of latent variable (θ) Range of Latent Variable (σ2)

Scenario 01 - -

Scenario 02 0.9~1.1 10-5~10-3

Scenario 03 0.81~1.21 9×10-6~1.1×10-3

Scenario 04 0.73~1.33 8.1×10-6~1.21×10-3

Scenario 01: No latent variables are applied in Scenario 01
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latent variables, the potential influence caused by various sets of latent variables can be
evidently justified.

2.6 Model Calibration

The SWAT model for the Arroyo Colorado watershed was calibrated from 2002 to
2003. Streamflow was calibrated at a daily time step while water quality data
(sediment and ammonium) was calibrated at monthly time step using the auto-
calibration algorithm, Dynamically Dimensioned Search (DDS) (Tolson and
Shoemaker, 2007). DDS is a stochastic search method that applies Bayes theorem.
It has been shown that DDS outperformed many other optimization techniques such as
Shuffle Complex Evolution (SCE-UA) (Duan et al., 1992), DiffeRential Evolution
Adaptive Metropolis (DREAM) (Vrugt et al., 2009), Metropolis-Hastings algorithm
(MHA) (Metropolis et al., 1953), Gibbs sampling algorithm (GSA) (Geman and
Geman, 1984), Uniform covering by probabilistic rejection (UCPR) (Klepper and
Hendrix, 1994), in terms of computational efficiency and the ability in finding
relatively better objective function values (since it is not mathematically possible to
find the global optimal solution for highly nonlinear problems such as calibration of
complex watershed simulation models) (Yen et al. 2014b). Therefore, DDS is adopted
as the parameter estimation algorithm in the Integrated Parameter Estimation and
Uncertainty Analysis Tool (IPEAT) (Yen et al., 2014d) to conduct model calibration
in this study. The framework of model calibration and uncertainty analysis incorpo-
rating input uncertainty in this study is shown in Fig. 2. The model was not validated
for a different time period as this study focused on evaluating the different ranges of
latent variables and their relative performance instead of trying to match the model
output rigorously to the observed flow and water quality from ACW. Furthermore, the
availability of observed data in the ACW was too short to be split into two periods
for calibration and validation.

The outlet of the ACW is close to the Gulf of Mexico and therefore, any flow
measured near the outlet would be impacted by the diurnal fluctuations of tidal waves.
To avoid this tidal effect, the SWAT model for ACW was calibrated using the
observed data from the gauge station located near Llano Grande at FM 1.015 south
of Weslaco. For calibrating the ACW SWAT model, daily streamflow data was
available from 2002 to 2003 whereas water quality data for sediment and ammonium
nitrogen only included several grab samples. The USGS Load Estimator (LOADEST)
program (Runkel et al., 2004) was used to generate monthly data from the grasp
samples to calibrate sediment and ammonium. LOADEST used the MLE (Maximum
Likelihood Estimation) method to create the monthly water quality data. 31 parame-
ters for related processes were selected in all case scenarios for calibrating flow and
water quality. The parameters and their recommended ranges are listed in Appendix.

Nash-Sutcliffe co-efficient (NSE) is the only objective function included in this
study. It is one of the most commonly used statistical measures (ASCE 1993; Servat
and Dezetter 1991) to estimate model performance and ranges from -∞ to one. The
statistic normalizes the residual of error between observed and simulated against the
mean observation. In Equation (3), yi

Obs is the observed response at time step i; yi
Sim

is the simulated response at time step i; yi
Mean is the mean of observed response at

time step i; and N is the total number of time steps. While, NSE equals to one
indicates a perfect match between observation and simulation, a negative or small
value of NSE indicates a poor performance. Therefore, in the auto-calibration process,
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the ideal global optimal solution for the objective function (OF) is defined in such a way that
the OF tends to be minimized to zero to get a perfect match (i.e., NSE=1).

NSE ¼ 1−
∑i¼1

N yi
Obs−yiSim

� �2

∑i¼1
N yiObs−yiMeanð Þ2

ð2Þ

OF ¼ ∑v¼1
V 1−NSEvð Þ ð3Þ

Start

Model Inputs

Altered Precipitation Data

Scenario 01 - Latent Variables Applied

Scenario 02 - Default Latent Variables

Scenario 03 - Increased Latent Variables (±10%)

Scenario 04 - Increased Latent Variables (±20%)

Watershed Simulation Model

Soil and Water Assessment Tool (SWAT)

Parameter Estimation Technique

Integrated Parameter Estimation and Uncertainty Analysis Tool (IPAET)

Model Performance                     Uncertainty Analysis

- 95% Confidence Interval by    

Upper and Lower bounds

- Spread of Uncertainty Band

- Calculation of Inclusion Rate

Termination Criteria

Yes

No

- Performance of Convergence

- Adjustment of Precipitation

- Flow & Nutrient Processes

- Statistics

Fig. 2 Framework of model calibration and uncertainty analysis incorporating input uncertainty
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As shown in Equation (3), the objective function is calculated as the sum of 1-NSE
for the output variables, where OF is the final objective function value; NSEv is the
NSE value for output variable v; and V is the total number of output variables. In this
case study, the output variables were the variables that were calibrated (e.g.
streamflow, sediment, and ammonia).

3 Results and Discussion

3.1 Comprehensive Comparisons

Latent variables make a direct impact to the convergence speed because of the high
sensitivity of weather input to simulation output, which is well represented by the
progressive improvements in the convergence speed with respect to the number of
iteration during the DDS optimization process in all scenarios as shown in Fig. 3. The

Fig. 3 Overall performance of objective function values versus model iterations in four scenarios
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convergence patterns appear to be similar to each other between scenarios especially
after 4,000 iterations where no significant improvement is achieved in all cases. The
best objective function values achieved in Scenario 01, 02, and 03 do not exhibit a
significant difference. However, Scenario 04 (the case with largest ranges of latent
variables) resulted in a relatively poor performance. The performance statistics of the
optimized results are summarized in Table 2. Among the four scenarios evaluated in
this study, the best result in streamflow is achieved with Scenario 02 in which the
range of latent variables (mean and standard deviation of the poison distribution) are
defined as 0.9–1.1 for the mean and 10−5-10−3 for the standard deviation. The same
scenario achieved the best result in predicting ammonia nitrogen as well, partly due to
the fact that ammonia load is highly influenced by streamflow (i.e., dissolved in
water). However, Scenario 2 also resulted in the worst performance statistic on the
sediment prediction. With input uncertainty incorporated, the performance of SWAT in
predicting streamflow and ammonia evidently became deteriorated as the ranges of
latent variables increased. In contrast, the best results for sediment predictions were
improved as the ranges of latent variables increased. Statistical results of Scenario 01
were close to that of Scenario 03 with a 10 % increase in the range of latent
variables. In general, two out of three scenarios (Scenario 03 and 04) with input
uncertainty incorporated produced worse results than the baseline scenario with no
latent variables considered (Scenario 01). The result implies that the inclusion of input
uncertainty does not always improve model performance. In other words, predictive
uncertainty in a complex watershed model may not always be positively contributed
by the consideration of the uncertainty in weather input, perhaps due to other
significant sources of error that are not considered in the current study. Note that
the result found in the current study does not agree with earlier study by Ajami et al.
(2007) which reports that the inclusion of input uncertainty (precipitation) enhances
the quality of calibration. It is difficult to make a direct comparison between the
current study and the previous work (Ajami et al., 2007) as these modeling practices
are differently configured. However, the fact that only one set of latent variables was
applied and the hydrologic model implemented was a simple rainfall-runoff model in
drawing conclusions in Ajami et al. (2007) as opposed to the current more compre-
hensive study in which the complex watershed scale SWAT model is used and various
ranges of latent variables are evaluated. A number of uncertainty sources may involve
and thus influence model predictions (Yen et al., 2014d). The inclusion of input
uncertainty (precipitation) alone may not the most significant source of error and
the corresponding performance of model predictions may not improve with consider-
ation of the uncertainty depending on the characteristics of the watershed, quality of
data, and modeler’s knowledge in the watershed hydrology.

Table 2 Error statistics of output variables corresponding to the best results of four scenarios

Scenarios Streamflow Sediment Ammonia

NSE PBIAS (%) NSE PBIAS (%) NSE PBIAS (%)

Scenario 01 0.54 −10.31 0.78 5.52 0.61 2.60

Scenario 02 0.69 −9.94 0.66 14.42 0.65 3.57

Scenario 03 0.60 25.31 0.79 10.22 0.59 4.01

Scenario 04 0.39 39.06 0.80 11.91 0.39 −0.24
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3.2 Evaluation of Adjusted Precipitation Data and the Corresponding Latent Variables

The convergences of latent variables, θ and σ2, are shown in Fig. 4 (a) and (b), respectively.
The converged values of θ (θConverged

Scenario 01=0.86, θConverged
Scenario 02=0.78, θConverged

Scenario 03=0.77) decreased

while σ2 values (σ2Converged
Scenario 01=6.4×10−4, σ2Converged

Scenario 02=8.6×10−4, σ2Converged
Scenario 03=1.1×10−3)

increased with wider ranges of upper and lower bounds. Consequently, the average annual
precipitation of the original and the adjusted data decreased as the range of latent
variables increase from zero to 20 % (Fig. 5). The percent decreases in the adjusted
precipitation for Scenario 02, 03, and 04 were 14.5 %, 21.6 %, and 25.6 %,
respectively. It is evident that the increases in the range of latent variable resulted
in the decline of precipitation data. The reduced precipitations presented contrasting
results in terms of performance statistics on flow, sediment, and ammonia loads. As
noted earlier, the objective function was formulated such that the NSE values for
flow, sediment, and ammonia were equally weighted (Equation 3). As the selection of
latent variables in each scenario was directly related to the result of the optimization,
the deteriorating results in streamflow and ammonia output was compensated by

(B)

(A)

Fig. 4 Convergence processes of latent variables (Scenario 02, 03, and 04 are the cases with inclusion of latent
variables during calibration): (a) Convergence of latent variable θ; (b) Convergence of latent variable σ2
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improving results in sediment. After testing various sets of latent variables, the NSE
for sediment (=0.8) was improved by 0.02 in Scenario 04 with the 25.6 % decrease in
rainfall. This could be the only optimum solution if the sediment NSE presented a
significant decrease relative to the streamflow and ammonia performance in other
attempts. Therefore, the result on the latent variables does not necessarily indicate that
the observed precipitation is overestimated.

3.3 Evaluation of Model Performance and Uncertainty Analysis

Predictive uncertainty may be qualitatively evaluated with inclusion rate and spread as
summarized in Table 3. Inclusion rate is the percentage of observed data points located within
the 95 % confidence interval of the predicted outputs. Spread is the average width of the
corresponding uncertainty band along the predicted time series output. The units of spread for
streamflow, sediment, and ammonia are cms (cubic meter per second), ton/ha (tons per
hectare), and kg/ha (kilogram per hectare) respectively. From Table 3, predictive uncertainty
of streamflow and ammonia is affected by the increasing ranges of latent variables in terms of

Table 3 Inclusion rate of observed streamflow, sediment, and ammonia within the 95 % confidence interval and
the corresponding spread for the simulation period (2002–2003)

Scenario Inclusion Rate (%) Spread

Streamflow Sediment Ammonia Streamflow Sediment Ammonia

Scenario 01 49.59 62.50 91.67 1.815 0.044 0.147

Scenario 02 46.99 70.83 79.17 2.664 0.054 0.182

Scenario 03 30.27 75.00 83.33 1.175 0.045 0.141

Scenario 04 13.56 70.83 91.67 1.000 0.047 0.152

Inclusion rate (%): Percentage of observed data points located within the 95 % confidence interval

Spread: Average width of the corresponding uncertainty band along the predicted time series. The units for
streamflow, sediment, and ammonia are cms (cubic meter per second), ton/ha (tons per hectare), and kg/ha
(kilogram per hectare) respectively

Fig. 5 Annual precipitation in four scenarios of three gauge stations (precipitation data of Scenario 01 was not
adjusted; precipitation data of Scenario 02, 03, and 04 are the adjusted precipitation)
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variations of inclusion rate and spread. However, no substantial changes can be found for
sediment predictions.

As depicted in Fig. 6 (a)~(d), the width of uncertainty band narrowed down as
wider ranges of input uncertainty were incorporated. Similarly, the estimated inclusion

(A)

(B)

(C)

(D)

Streamflow

Fig. 6 Time series of streamflow processes corresponding to four case scenarios (a) Scenario 01; (b)
Scenario 02; (c) Scenario 03; (d) Scenario 04. Time series of sediment processes corresponding to
four case scenarios (e) Scenario 01; (f) Scenario 02; (g) Scenario 03; (h) Scenario 04. Time series of
ammonia processes corresponding to four case scenarios (i) Scenario 01; (j) Scenario 02; (k) Scenario
03; (l) Scenario 04
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rate decreased while the ranges of latent variables increased. However, input uncer-
tainty applied on precipitation did not advocate the same influence in sediment and
ammonia predictions. For sediment and ammonia, both inclusion rate and spread were
not apparently affected by the inclusion of input uncertainty in precipitation as shown
in Fig. 6 (e)~(h) and (i)~(l). The incorporation of input uncertainty in precipitation
apparently brought about an impact on streamflow predictions but comparatively less
in sediment and ammonia.

4 Conclusion

In this study, input uncertainty in precipitation data was explicitly incorporated during calibration
processes. Results indicate that the influence of latent variables was demonstrated to be mostly
reflected in streamflow prediction but yet not as much in sediment or ammonia results. In
general, statistics errors improved with only the default ranges of latent variables (0.9–1.1)
compared to the baseline (Scenario 01) where no input uncertainty was applied. However, the
performance in streamflow and ammonia predictions declined as the ranges of latent variables

(A)

(C)

(B)

(D)

Ammonia

Fig. 6 (continued)
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increased. In addition, significant impact was found only in the streamflow responses in the
uncertainty analysis. The increase in the range of latent variables did not show noticeable effect
on the corresponding predictive uncertainty in sediment and ammonia predictions.

The results are somewhat different from the findings in previous research (Ajami et al., 2007).
Since the previous work was conducted with a simple rainfall-runoff model instead of a
comprehensive watershed simulation model with complex interactions among numerous
physical and empirical equations such as SWAT, there could have been less fuzzy factors to
consider in the uncertainty analysis. However, as demonstrated in this study, the calibration results
were not significantly improvedwith the application of latent variables. Calibration results did not
improve as the default ranges of latent variables suggested by Ajami et al. (2007) were increased
(Scenarios 03 and 04). In general, the incorporation of latent variables in precipitation data may
not make noticeable improvement in a sophisticated watershed simulation model. In addition,
consideration of more sources of input uncertainty (e.g. daily temperature, solar radiation) may
improve the overall quality of uncertainty analysis and calibration of watershed models.
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(A) (B)

(C) (D)

Sediment

Fig. 6 (continued)
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Appendix

Table 4 Calibration parameters for all case scenarios

Parameters Input file Units Range Description

ADJ_PKR .bsn - 0.5–2 Peak rate adjustment factor for sediment routing
in the subbasin (tributary channels)

CMN .bsn - 0.001–0.003 Rate factor for humus mineralization of active
organic nitrogen

EPCO .bsn - 0–1 Plant uptake compensation factor

NPERCO .bsn - 0–1 Nitrogen percolation coefficient

PRF .bsn - 0–2 Peak rate adjustment factor for sediment routing
in the main channel

SPCON .bsn - 0.0001–0.01 Linear parameter for calculating the maximum amount
of sediment that can be re-entrained during channel
sediment routing

SPEXP .bsn - 1–1.5 Exponent parameter for calculating sediment re-entrained
in channel sediment routing

SURLAG .bsn Day 1–24 Surface runoff lag time

SOL_NO3 .chm mg/kg 0–100 Initial NO3 concentration in the soil layer

ALPHA_BF .gw 1/Day 0–1 Baseflow alpha factor

GW_DELAY .gw Day 0–500 Groundwater delay

GW_REVAP .gw - 0.02–0.2 Groundwater "revap" coefficient

GWQMN .gw mm H2O 0–5,000 Threshold depth of water in the shallow aquifer required
for return flow to occur

ESCO .hru - 0–1 Soil evaporation compensation factor

SLSUBBSN .hru M 10–150 Average slope length

CN_F .mgt % ±10 Initial SCS CN II value

USLE_P .mgt - 0–1 USLE equation support practice factor

CH_COV2 .rte - −0.001–1 Channel cover factor

CH_K2 .rte mm/hr −0.01–500 Effective hydraulic conductivity in main channel
alluvium

CH_N2 .rte - −0.01–0.3 Manning’s “n” value for the main channel

SOL_AWC .sol % ±10 Available water capacity of the soil layer

SOL_K .sol % ±10 Saturated hydraulic conductivity

USLE_K .sol % ±10 USLE equation soil erodibility (K) factor

CH_K1 .sub mm/hr 0–300 Effective hydraulic conductivity in tributary channel
alluvium

CH_N1 .sub - 0.01–30 Manning’s “n” value for the tributary channels

BC1 .swq 1/day 0.1–1 Rate constant for biological oxidation of NH4 to NO2
in the reach at 20 °C

BC2 .swq 1/day 0.2–2 Rate constant for biological oxidation of NO2 to NO3
in the reach at 20 °C

BC3 .swq 1/day 0.2–0.4 Rate constant for hydrolysis of organic N to NH4 in
the reach at 20 °C

RS3 .swq mg/m2-day 0–1 Benthic source rate for NH4-N in the reach at 20 °C

RS4 .swq 1/day 0.001–0.1 Rate coefficient for organic N settling in the reach at 20 °C

USLE_C crop.dat % ±10 Min value of USLE C factor applicable to the land cover/plant

Parameter values for CN_F, SOL_AWC, SOL_K, USLE_K, and USLE_C are the changes of fraction from
default values
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