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Abstract Hydrologic modelling is pre-requisite to water resources management. Unfortunately,
hydrologic modelling in data scare basin has always been difficult. The current study, explored the
use of “data limited” model Soil Water Assessment Tool (SWAT) in modelling lower Aswa basin
located in northern Uganda. The study adopted different techniques in generating and estimating
various missing model parameters and input especially solar radiation, saturated soil hydraulic
conductivity, available soil water content, Universal Soil Lost Equation erodibility factor and moist
soil albedo. Soil Water Assessment Tool model was then manually calibrated using monthly
historical streamflow records. The calibration was successful with coefficient of determination
(R2) value of 0.618 and the Nash and Sutcliffe efficiency value of 0.47. Validation of the calibrated
model using independent dataset shows even better model performance with Nash and Sutcliffe
efficiency value of 0.64 and coefficient of determination (R2) value of 0.56. Successful calibration of
hydrologicmodel SoilWater Assessment Tool under the data scarcity still proves the potential of the
application of themodel even in data limited basin, butmore especially bywater resourcesmanagers
who needs understanding of existing condition and modelling possible future.
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1 Introduction

Water resources management requires modeling of various hydrological processes like infil-
tration, runoff generation, groundwater recharge, evapotranspiration, and non-hydrological
processes like vegetation and crop growth, nitrate and phosphorous dynamics, erosion, sewage
system dynamics, water regulations, among others. All these processes combined constitute a
complex systems, which require complex models that demand significant amount of input
field data and hydrologic observation. There are currently several different hydrologic models
with different complexities available to simulate hydrologic processes at watersheds, including
physical models, conceptual models and empirical model.

The Système Hydrologique Européen (SHE) (Abbott et al. 1986a and b) is one of a widely
used physically based fully distributed watershed models that has several advantages such as
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providing location specific outputs. The SHEmodel divide thewatershed into cells, this capability
allows the model to accommodate significant spatial detail. However, the distributed and physical
based nature of SHE model requires that in each application study, vast amount of data and
parameters describing the physical characteristics of the watershed are available. The data
availability will in any case determines the degree of reliability of the model results. Hamilton
(2007), discusses the lack of data to operate hydrologic models and the problems this has created
with respect to making decisions frommodel outputs. Semi-distributed hydrologic model such as
the Soil and Water Assessment Tool (SWAT) (Arnold et al. 1998) and Hydrologic Engineering
Center, Hydrologic Modeling System (HEC-HMS) (US-Army Corps of Engineers 2000) have
also been widely used at different level of complexity in modelling both hydrologic and non-
hydrologic processes regarding water management. The Hydrologic Engineering Center’s Hy-
drologic Modelling System (HEC-HMS) for example has been used to simulate precipitation-
runoff processes and reservoir operations (Fleming and Neary 2004). The model is capable of
integrating features and environment that includes a database, data-entry utilities, computation
engine, and results reporting tools (US-Army Corps of Engineers, 2000).

SWAT model is a spatially semi-distributed conceptual hydrological model, which can
operate on both daily time-step, monthly or even annually for long term simulation. The model
basically require three sets of data; Digital Elevation Model (DEM) necessary for elevation and
definition of watershed geomorphology; soil; and land use data. Weather data can be generated
by the model during simulation using inbuilt weather generator or provided as input. For
validation and calibration purposes, the watershed must be gauged. SWATmodel has also been
widely used to predict the impact of management on water, sediment, and agricultural
chemical yields (Gassman et al. 2007).

In practice however, it is often difficult to determine the capabilities, operational charac-
teristics, and limitations of any hydrologic model just from the documentation, without actual
application. In other words, there is no “best” model or no “easy-to-use” model which require
low data input and which provide accurate results under all scenarios. Site-specific, tailor-made
approaches are therefore needed to supplement model inabilities.

The current study assess the capabilities and limitations of SWAT model in modelling
watershed that has limited field and hydrologic data for possible use in water resources
management. Different techniques were adopted in generating and estimating various missing
model parameters and hydrologic observation including solar radiation, saturated soil hydrau-
lic conductivity, available soil water content, Universal Soil Lost Equation erodibility factor
and moist soil albedo.

2 Study Area and Data Management

2.1 Study Area

The study was conducted in Aswa basin located in northern Uganda (Fig. 1). Altitude in the basin
ranges between 870 and 1908 m above sea level and slope is gentle with most part (>97 %) having
slope less than 20 %. Water resources development and management program in the basin are
centered on groundwater, which provides potable water to domestics and livestock. Increased
demand forwater is expected to be high especially in the agricultural sector, to boost food production
and in the rapidly growing urban centers. However, uncertainty remain high in the basin concerning
the water resources availability and reliability. Limited attempt has been made to study the
hydrologic processes in this basin due to inadequate field data and hydrologic observations required
for hydrologic model setup and simulations.
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2.2 Data Management

SWAT model requires three key sets of data: land use, soil and elevation data in addition to
climatic and stream flow data, which is optional. Land use map was derived from 1986
LANDSAT scene using the spectrally based supervised image classification. six land cover
classes were identified and reclassified to match SWAT land cover and crop growth database
that is; agricultural (generic), forest (mixed), range land (brush, grass, and semi-arid), wetland
(mixed), urban (low density) and water.

The Soil and Terrain Database for north-eastern Africa (SEA), in a CD-ROM at a scale of
1:1,000,000 according to FAO, was used to derive the soil units and some soil properties.

HydroSHED DEM which is derived from Shuttle Radar Topography Mission SRTM at 3
arc-second (approximately 90 m) resolution was downloaded from the SRTM website (http://
srtm.csi.cgiar.org/). The DEM was used to delineate the watershed and to derive spatial sub-
basin data such as slope gradient, slope length and stream network characteristics.

Daily river flow data were available for two gauges (ASWA86201 and ASWA86202) for
the observation period between 1960 and 1978. The streamflow observation were portioned
into calibration data (1970 to 1974) and validation data (1975 to 1978).

2.2.1 Estimation of Missing Solar Radiation

Solar radiation data covering the simulation periods (1970 to 1978) were missing and yet it is an
important parameter in estimation of evapotranspiration according to Penman-Monteith method.

Fig. 1 The sub-basin delineation of Aswa basin showing weather station & streamflow stations
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The missing records of solar radiation were estimated using Angstrom empirical equation (Allen
et al. 1998). Historical monthly solar radiation data for 7 years (1965 to 1975) were used to
calibrate the Angstrom equation. Due to limited records of sunshine hours, solar radiation
estimated were used in the derivation of solar radiation parameter for the SWATweather generator,
which was later used to generate missing solar radiation during SWAT model simulation.

Angstrom empirical equation relates solar radiation to extraterrestrial radiation as;

Rs ¼ aþ b� n

N

� �
Ra ð1Þ

where a is regression constant, expressing the fraction of extraterrestrialRa radiation reaching the
earth on overcast days (n=0), and a+b fraction of extraterrestrial radiation reaching the earth on clear
days (n=N). According to Allen et al. (1998), Angstrom empirical formula for radiation yields fairly
good results, as there is a strong link between sunshine hours and net radiation received compared to
other methods such as the one proposed by Hargreaves and Samani (1982).

To be able to obtain parameter values for a and b in Eq. 1 using simple linear regression, a
linear transformation of the equation was performed, with parameter a representing the y-
intercept and parameter b presenting the gradient (Eq. 2). The ration of the solar radiation (Rs)
to the extraterrestrial radiation (Ra) was correlated with the relative sunshine duration (nN ).

Rs

Ra
¼ aþ b

n

N

� �
ð2Þ

The extraterrestrial radiation Ra was estimated using the relationships;

Ra ¼ 24 60ð Þ
π

Gscdr ωssin ϕð Þsin δð Þ þ cos ϕð Þsin ωsð Þ½ � ð3Þ

where

Ra is extraterrestrial radiation (MJm-2 day-1)
Gsc is the solar constant =0.0820 MJm-2 min-1
dr is the inverse relative distance Earth-Sun (Eq. 4)
ωs is the sunset hour angle (Eq. 6) (rad)
ϕ is the latitude (rad)
δ is the solar decimation (Eq. 5)

dr ¼ 1þ 0:033cos
2π
365

J

� �
ð4Þ

δ ¼ 0:409sin
2π
365

J−1:39
� �

ð5Þ

J is the number of the day in the year between 1 (1 January) and 365 or 366 (31 December)

ωs ¼ arcos −tan ϕð Þtan δð Þ½ � ð6Þ
The parameters (a and b) in Eq. 2 were estimated by plottingRs

Ra
verses the relative sun shine

duration (n/N). From the plot, the values of the parameters were obtained as a=0.219 and b=
0.4297 (Fig. 2). The regression coefficient or coefficient of determination was 75 %. Allen
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et al. (1998) proposed the values of a=0.25 and b=0.5 for use where no actual solar radiation
are available and no calibration has been carried to improve a & b parameters. However, in the
current study, the coefficient of determination (75 %), is considered adequate and therefore the
estimated values of parameters a and b are considered appropriate and used in estimation of
missing solar radiation values.

2.2.2 Estimation of Saturated Soil Hydraulic Conductivity and Available Soil Water Content

The SEA soil database however does not contain all the soil parameter necessary for SWAT
model setup and simulation. Missing soil parameters were derived from the harmonised world
soil database (version 1.1 2009) http://www.fao.org/fileadmin/templates/nr/documents/
HWSD/HWSD_Documentation.pdf; and soils of Northern Province published by
Department of Agriculture Uganda.

Textural classes for the different soil unit were derived using the information provided by
SEA soil database, harmonized world soil database and the publication of soil of Northern
Province. The textural classes were used to identify the composition of percentage sand, clay
and silt using table extracted from Ahuja et al. (1993) (Table 1).

A known correlation between composition of sand, clay and silt in textural class, bulk
density and organic matter developed by Saxton and Rawls (2006) was used to estimate
available water capacity, and saturated hydraulic conductivity.

2.2.3 Estimation of Universal Soil Lost Equation USLE Erodibility (K) Factor

The USLE erodibility (K) factor was calculated using Williams (1995) equation and the
textural classes derived previously as input. That is;

KUSLE ¼ f csand � f cl−si � f hisand ð7Þ
where, fcsand is the factor that gives low soil erodibility for soils with high coarse-sand

contents and high values for soil with little sand, given by the Eq. (8)

f csand ¼ 0:2þ 0:3� exp −0:256� ms � 1−
msilt

100

�h i� �
ð8Þ

ms is the percent sand content (0.05–2.00 mm) and msilt is the percent silt content (0.002-
0.05 mm),

f cl−si ¼
msilt

mc−msilt

� �0:3

ð9Þ

Fig. 2 Calibration of angstrom
formula
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mc is percent clay content (<0.002 mm),

f org ¼ 1−
0:25� orgC

orgC þ exp 3:72−2:95� orgC½ �
� �

ð10Þ

orgC is the percent organic carbon content for the soil layer (%)
and

f hisand ¼ 1−
0:7� 1−

ms

100

� �

1−
ms

100

� �
þ exp −5:51þ 22:9� 1−

ms

100

� �h i
0
B@

1
CA ð11Þ

2.2.4 Estimation of Moist Soil Albedo (r)

The moist soil albedo r was estimated from Landsat 5TM image, using the reflectance
corrected values for atmospheric effect (ρλ) and weighting coefficient ωλ according to D’Urso
(2001), using the equation;

r ¼
X
λ

ωλρλ ð12Þ

3 Modelling Methodology

3.1 SWAT Model Setup

The SWAT project was setup using ArcSWAT GIS interface. Watershed delineation and
parameterization of stream reaches and sub-basin geomorphology was automatically done

Table 1 Descriptive statistics for percentage sand and clay content

Soil type Sand Clay

x
s CV n

x
s CV n

Clay 14.9 10.7 71.6 1177 55.2 10.9 19.7 1177

Clay loam 29.8 5.9 19.7 1317 32.6 3.7 11.4 1317

Loam 40.0 6.5 16.3 1991 19.7 5.2 26.3 1991

Loamy sand 80.9 3.8 4.6 881 6.4 3.2 50.1 881

Silt 5.8 4.5 77.2 115 9.5 2.7 28.9 115

Silt loam 16.6 11.7 70.8 3050 18.5 5.9 31.6 3050

Silty clay 6.1 4.5 73.5 1002 46.3 4.9 10.7 1002

Silty clay loam 7.6 5.3 70.7 1882 33.2 3.7 11.1 1882

Sand 92.7 3.7 4.0 803 2.9 2.0 67.1 803

Sandy caly 47.5 3.9 8.2 74 41.0 4.5 10.9 74

Sandy clay loam 54.3 7.3 13.5 610 27.4 4.0 14.6 610

Sandy loam 63.4 7.9 12.5 2835 11.1 4.8 43.2 2835

Here, x is the mean, s, the standard deviation; CV, coefficient of variation (percent); and n, the sample size
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using the interface. DEM based stream definition was used to derive flow direction and
accumulation. With a minimum drainage set at 16000 ha or 160Km2 and watershed outlet at
ASWA86202 (Fig. 1), 40 sub-basins were delineated.

When formulating and applying distributed models, the concepts of nonlinearity of hydro-
logic response must be taken into account (Beven 2001). In nonlinear systems, extremes of any
distribution of responses may be important in controlling the observed response. This means
that hydrologic model should be described at much smaller scale in order to capture all the
local heterogeneities such as infiltration rates, preferential flows, areas of first saturation and
others local extremes responses (Beven 1995).

In SWAT model, natural homogenous areas referred to as hydrologic response unit (HRU),
that assumes non-variability of the data and parameters within its delineation was introduced as
necessary notion in hydrologic modeling (Arnold et al. 1998). The objective of HRU definition
was to reduce the heterogeneities due to climate, soil types, topography and geology that
influence hydrologic response.

In this study, the HRU definition was done using a combination of 1 % land use area over
sub-basin, 1 % soil class over land use area and 1 % slope class over soil area, after the land
use and soil were imported, reclassified and overlaid with slope class. With these combina-
tions, a total of 630 HRUs were defined.

The crop database and management file were edited to match the land use type in the
watershed, and the management techniques in place. The development of the LAI (Maximum
value and the pattern), was used to guide the modification of the crop growth database.
Management techniques were scheduled based on the heat unit theory (Boswell 1926; Magoon
and Culpepper 1932). The heat unit scheduling was in particular useful in this case study because
land use in the basin are generic in nature and there exist dissimilar climate across the watershed.

SWAT weather generator developed by Sharpley and Williams (1990), to simulate missing
climatic records during simulations was adopted. The default weather generator parameters were
replaced with custom weather parameters. The custom weather parameters generated for three
weather stations (Gulu, Lira and Kitgum) using the historical weather records are mean daily
maximum and minimum temperature for the month (12 months), standard deviation for daily
maximum and minimum air temperature in the month, average or mean total monthly precipi-
tation, standard deviation for daily precipitation in month, skew coefficient for daily precipitation
in the months, probability of a wet day following a dry day in the month, probability of wet day
following wet day in the month, average numbers of day of precipitation in the month, maximum
0.5 h rainfall in the entire period of record for month, average daily solar radiation for the month,
average daily dew point temperature in the month and average daily wind speed in month.

3.2 Sensitivity Analysis of SWAT Parameters

Identifying parameters that do or do not have any significant influence on the model simulation
is crucial not only in reducing parameter uncertainty but also in reducing over parameterization
of the model, which can destroy its physical representation. In this paper, sensitivity analysis
was performed to determine SWAT model parameters that are very sensitive to streamflow
prediction. The in-built sensitivity analysis tool in the model interface ArcWAT developed by
van Griensven (2005) was used. The method uses dimensionless index to express the
sensitivity of a parameter. The equation calculate the ratio between the relative changes of
model output to relative change of a parameter.

I ¼ x

y

y2−y1
x2−x1

� �
ð13Þ

Hydrologic Modelling of Data Scarce Basin 87



where x is the parameter and y is the predicted output, x2, and, y2, correspond to ±10 % of
the initial parameter and corresponding output values, respectively (James and Burges 1982).
The greater the value of I, the more sensitive a model output variable is to that particular
parameter.

3.3 SWAT Model Calibration

3.3.1 Parameter Selection

Although sensitivity analysis is always performed, no commonly accepted guideline has been
established on the sensitivity bound. It is therefore important that sensitivity analysis result be
aided by knowledge on key hydrologic process within the watershed in identifying model
parameters for calibration. This is important in avoiding uncertainty due to unrepresented
hydrologic processes in the watershed. According to Yang et al. (2012), it is important to
identify key physical processes and parameter interactions, and examine how different model
setups affect model simulation in order to ensure the validity of calibration. In this paper, the
following parameters were therefore considered in the model calibration after considering both
sensitivity analysis result and knowledge of the hydrologic processes (Table 2): Groundwater

Table 2 Sensitivity output using ArcSWAT sensitivity tool including Parameters definition

Rank Index Parameter Definition Process

1 1.04 Esco Soil evaporation compensation factor Evaporation

2 0.98 Cn2 SCS curve number for moisture condition II Runoff

3 0.74 Gwqmn Threshold depth in shallow aquifer required for return flow Groundwater

4 0.28 Alpha_bf Base-flow alpha factors Groundwater

5 0.225 Sol_Awc Available soil water capacity Soil

6 0.17 Sol_Z Soil depth Soil

7 0.09 GW_Revap Groundwater ‘revap’ coefficient Groundwater

8 0.065 Canmx Maximum canopy index Runoff

9 0.0588 Revapmn Threshold depth of water in shallow aquifer for revap to occur Groundwater

10 0.057 Ch_K2 Channel effective hydraulic conductivity Channel

11 0.04 Blai Leave area index for crops Crops

12 0.024 GW_Delay Groundwater delay Groundwater

13 0.021 Sol_K Soil conductivity Soil

14 0.018 Ch_N2 Manning’s n value for main channel Channel

15 0.063 Slope Average slope steepness Geomophology

16 0.0059 Epco Plant evaporation compensation factor Evaporation

17 0.0023 Slsubbsn Average slope lenght Geomophology

18 0.002 Surlag Surface runoff lag coefficient Runoff

19 0.0016 Sol_Alb Soil albedo Evaporation

20 0 Biomix Biological mixing effeciency Soil

21 0 Smtmp Snow melt base temperature Snow

22 0 Smfmn Minimum melt rate for snow during the year Snow

23 0 Smfmx Maximum melt rate for snow Snow

24 0 Timp Snow pack temperature lag factor Snow

25 0 Tlaps Temperature laps rate Geomorphology
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‘Revap’ coefficient (Gw_Revap) and Maximum canopy index (Canmx), which scored poorly
in sensitivity analyses were considered together with five other parameters that scored highly
in sensitivity analyses in model calibration. Gw_Revap is known to control movement of
water from shallow aquifer into unsaturated layer and this affects evapotranspiration losses,
which is an important processes. In addition, in the event that rainfall is under estimated, which
can be possible scenario, this parameter compensate for the unavailable water to be evaporated.
In highly vegetated watershed, which is the case for the watershed under investigation, canopy
storage can be significant hydrologic process, affecting infiltration, surface runoff and evapo-
transpiration, which was the bases for choosing maximum canopy index (Canmx). A total of
seven model parameters, five parameters with high sensitivity index and two parameters with
low sensitivity were calibrated.

SWAT model was manually calibrated. Automatic calibration was considered cumbersome
as it require significant runtime. In any case, with the knowledge of the hydrologic processes in
the watershed and the ability to make decision on which parameter to introduce in the
calibration, manual calibration is handy. Visual analysis of the simulated and measured
streamflow hydrograph was used during the manual calibration, the “sensitive parameters” to
inform modification of parameter bounds and introduction of new parameter in the calibration.

Streamflow recorded in the period of 1970 and 1974 was used as observed model output in
the calibration. The performance of the model in predicting the output during manual
calibration was evaluated using both statistical and graphical methods. In particularly, the
graphical techniques (streamflow hydrograph), was used to provides a visual comparison of
the simulated and measured data, identify model bias, identify the differences in timing and the
magnitude of peak flows and shapes of recess curves (Moriasi et al. 2007). It was possible to
identify the next parameter to optimize to improve on the predicted streamflow using visual
analysis of streamflow hydrograph.

The standard regression with slope and y-intercept of the best fit regression line was used to
provide the statistical measure of the fit of the calibration process. In this approach, the slope is
used to indicate the relative relationship between simulated and measured values, and the y-
intercept to indicate the presence of lag or lead between model prediction and measured data.
As the slope approaches 1 and y-intercept approaches 0 the calibration process may be
considered to have converged to an optimal parameter set. The statistical coefficient of
determination (R2) was also used. The value of R2 ranges from 0 to 1, with higher values
indicating less error variance, and typical values greater than 0.5 considered acceptable (Santhi
et al. 2001 and Van Liew et al. 2003).

Nash-Sutcliffe (Nash and Sutcliffe 1970) efficiency (NSE), was also used to determine the
relative magnitude of the residual variance (“noise”) to the measured data variance (“infor-
mation”) and how well the plot of the observed data versus the simulated data fits the 1:1 line.
One observation was considered and the NSE is computed as;

g ¼ 1−

X
i¼1

n

Qm−Qsð Þ2

X
i¼1

n

Qm−Qm

� �2
ð14Þ

where, = Qm measured discharge, Qs =simulated discharge
The calibration was then considered successful after no significant improvement could be

realised in any of the above indicators measured by the two statistical methods. Also, the
subjectivity in the judgment of the goodness-of-fit of the model simulation is reduced.
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3.4 SWAT Model Validation

Calibrated model may fail the verification test on some occasions. Reasons may be due to: 1)
errors in the data used in calibration, both the data used as input to the model and the data used
to check model output should be checked very carefully (data with large errors should not be
used for calibration), 2) use of a period of record that does not contain enough events of the
physical processes needed to calibrate key parameters, 3) inadequate and or miss-
representation by the model of hydrological processes found in the watershed, model results
should be compared visually with the recorded data series to look for consistent variations.

Validation procedures are similar to calibration procedures in that predicted and measured
values are compared to determine if the objective function is met. However, a dataset of
measured watershed response selected for validation preferably should be different from the
one used for model calibration, and the model parameters are not adjusted during validation.
Validation provides a test of whether the model was calibrated to a particular dataset or the
system it is to represent. If the objective function is not achieved for the validation dataset,
calibration and/or model assumptions may be revisited. The study uses independent
streamflow dataset recorded in the period between 1975 and 1978 in the validation of
calibrated SWAT model.

4 Results and Discussion

4.1 Sensitivity Analysis

Twenty five hydrologic parameters that influence streamflow were used in the sensitivity
analysis. Table 2 shows the model parameters and the sensitivity analysis result, ranked with
most sensitive parameter in the first row. The most sensitive parameters (Index>0.1) using the
objective function according to van Griensven (2005) were; soil evaporation compensation
factor (Esco), initial SCS curve number II (Cn2), threshold depth of water in shallow aquifer
for return flow to occur (Gwqmn), base-flow factors (Alpha_bf), available soil water capacity
(Sol_Awc), and soil depth (Sol_Z).

4.2 Calibration

Three groundwater parameters (Alpha_bf, Gwqmn, Gw-Revap), one soil parameter,
(Sol_Awc), one evaporation parameter (Esco) and two runoff parameters (Cn2, Canmx) were
considered in model calibration (Table 3). Simulated monthly streamflow verses the observed
streamflow together with corresponding monthly rainfall is plotted in Fig. 3. Visual analysis of
the monthly hydrographs indicates that the calibrated model slightly overestimate the peak
runoff. The hydrograph also showed that the model failed to simulate peak flow between May
1974 and November 1974. This can be due to rainfall data not being representative, localized
storm having no response or there is malfunctioning of the gauges (rainfall and flow).

Standard regression plot (Fig. 4) evaluates the calibrated model performance with slope of
0.9 indicating a good relative relationship between simulated and measured streamflow and y-
intercept of the best fit regression line of +13.616 indicating the presence of lag between model
prediction and measured streamflow. This lag can be attributed to; over estimation of surface
roughness, or less than actual slope for over land flow.

The coefficient of determination (R2) describing the proportion of the variance in the
measured data explained by the model was obtained as 0.618. The value of R2 ranges from
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0 to 1, with higher values indicating less error variance. The reported performance rating for R2

(Santhi et al. 2001 and Van Liew et al. 2003), indicate that typical values of R2 greater than 0.5
is acceptable. The Nash-Sutcliffe efficiency (NSE) of 0.47 was obtained for monthly calibra-
tion. The performance rating of NSE for SWAT model calibration in the ranges of 0.54 to 0.65
was reported as adequate. However, considering that the measured data, (streamflow and
climatic data) are highly uncertain, the performance of the calibrated model can be considered
good if the rating of NSE is relaxed (Moriasi et al. 2007).

The challenges faced in calibration of SWAT model was in particular the quality of input
data, especially precipitation and streamflow. Precipitation data had considerably missing
values. The hydrograph of observed and simulated monthly streamflow after model calibration
shows inconsistence prediction of streamflow peaks between May and November 1974. The
inconsistency in prediction could partly be due to unrepresentativeness of the input precipita-
tion data between these periods. In addition, land use dataset used in calibration was dataset for
much later year (1986) compared to the streamflow observation, which was earlier in 1970’s.
A considerable land use change could have therefore occurred in the 10 year time lag. Land
use dataset in the period of 1970’s could not be prepared due to lack of data necessary for the
preparation. In addition, no streamflow records exist in 1980’s to be used in calibration. The
best was to use streamflow of 1970’s and land use dataset of 1986.

Table 3 Adjustment of parameter values

Parameter Definition Unit Default values Changed values

Esco Soil evaporation compensation factor 0 1 (replacement)

Cn2 SCS curve number for moisture
condition II

– Relative to soil hydrologic
group and land cover

−15 (add)

Gwqmn Threshold depth in shallow aquifer
required for return flow

mm 0 0.95 (replacement)

Alpha_bf Base-flow alpha factors – 0.048 0.65 (replacement)

Sol_AWC Soil available water capacity mm Relative to soil type X 1.2 (relative)

Canmx Maximum canopy index mm 0 10 (replacement)

GW_REVAP Groundwater ‘revap’ coefficient – 0.02 0.2 (replacement)

Fig. 3 Hydrograph of observed and simulated monthly streamflow after model calibration
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It also seems that not all processes were being modeled in the basin, especially the
processes regulating runoff and evaporation losses. The model seems to be underestimating
evapotranspiration losses and over estimating runoff. The underestimation of the evapotrans-
piration could also be attributed to the inadequate water available to meet the evapotranspira-
tion demand. The real cause is probably underestimation of precipitation. To increase the water
available for evapotranspiration, the Gw_Revap coefficient, which controls the water move-
ment from the shallow aquifer into unsaturated layer, was adjusted to allow more water from
shallow aquifer to flow to unsaturated zone.

4.3 Model Validation Results

The model validation was conducted using climatic data set for the period of 1975 to 1978.
Evaluations of model performance during validation are presented in Figs. 5 and 6. The
hydrograph (Fig. 6) indicates that the model consistently predicts the measured streamflow, but

Fig. 4 Regression correlation of observed and simulated monthly streamflow

Fig. 5 Regression correlation of observed and simulated monthly streamflow during validation
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with some lags. The visual evaluation of the hydrograph plot showed fairly good model match
in validation period and peak flow is still over estimated.

Statistical evaluation of model performance during validation using standard regression plot
(Fig. 5) indicates a good relationship between simulated and measured streamflow with the
slope of 0.99 and the y-intercept of the best fit regression line of +14.4, which indicate lag
between model prediction and measured streamflow. The values of 0.56 for R2 obtained
indicate a good model fit during validation. Above all, the objective function, the Nash-
Sutcliffe efficiency (NSE) of 0.64 indicates that the model performance during validation is
satisfactory.

The better model performance during validation with NSE =0.64 could partly be due to the
representativeness of the dataset including the land use and the complete initialization (warm
up) of the model, which was limited during the calibration period. The warm-up period allows
the model to “stabilize” or calculate values that become initial values for the period of interest.
Therefore, after the warm-up period, the model is considered to represent conditions in the
watershed. A warm period that is too short could significantly alter flow regime. No agreed
warm up period however has been established, but always it is advisable to complete more
than one simulation cycle. In the current study only one simulation cycle, 1970 was considered
warm up period.

5 Conclusion

The study adopted different techniques in generating and estimating various missing model
parameters and input especially solar radiation, saturated soil hydraulic conductivity, available
soil water content, USLE erodibility factor and moist soil albedo. SWAT model was then
manually calibrated using monthly historical streamflow records. The calibration was success-
ful with coefficient of determination (R2) value of 0.618 and the Nash and Sutcliffe efficiency
value of 0.47. Validation of the calibrated model using independent dataset shows even better
model performance with Nash and Sutcliffe efficiency value of 0.64 and coefficient of
determination (R2) value of 0.56. Successful calibration of hydrologic model SWAT under
the data scarcity still proves the potential of the application of the model even in data limited

Fig. 6 Hydrograph of observed and simulated monthly streamflow during model validation
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basin, but more especially to water resources managers who needs understanding of existing
condition and modelling possible future.
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