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Abstract This paper presents the comparison of two hybrid methodologies for the two-
objective (cost and resilience) design of water distribution systems. The first method is a
low-level hybrid algorithm (LLHA), in which a main controller (the non-dominated sorting
genetic algorithm II, NSGA-II) coordinates various subordinate algorithms. The second
method is a high-level hybrid algorithm (HLHA), in which various sub-algorithms collaborate
in parallel. Applications to four case studies of increasing complexity enable the performances
of the hybrid algorithms to be compared with each other and with the performance of the
NSGA-II. In the case study featuring low/intermediate complexity, the hybrid algorithms
(especially the HLHA) successfully capture a more diversified Pareto front, although the
NSGA-II shows the best convergence. When network complexity increases, instead, the
hybrid algorithms (especially the LLHA) turn out to be superior in terms of both convergence
and diversity. With respect to both the HLHA and the NSGA-II, the LLHA is capable of
detecting the final front in a single run with a lower computation burden. In contrast, the
HLHA and the NSGA-II, which are more affected by the initial random seed, require
numerous runs with an attempt to reach the definitive Pareto front. On the other hand, a
drawback of the LLHA lies in its reduced ability to deal with general problem formulations,
i.e., those not relating to water distribution optimal design.
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Water distribution system

1 Introduction

Water is one of most important resources and water distribution infrastructures are essential in
maintaining an adequate high quality, continuous drinking water supply to our homes. Rapid
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urbanisation generates considerable pressure on water engineers tasked with extending existing
and designing new water distribution infrastructures. Research into optimal design of water
distribution systems (WDSs) has a long history (Cisty 2010). Majority of optimisation
methods use the least-cost approach aimed at minimising one objective function (network
cost) while satisfying constraints concerning the range of variables (e.g., available pipe sizes),
the physical conditions (e.g., water mass and energy conservation) and the operation-related
criteria (e.g., minimum nodal pressure and maximum flow velocity).

However, such a problem formulation may lead to network solutions featuring poor
hydraulic performance since it is only based on economic concerns (Walski 2001).
Consequently, the multi-objective formulation has been gaining more attention and
various multi-objective evolutionary algorithms (MOEAs) have been applied to solve
small-to-medium sized benchmark problems and some large problems based on the
real-world networks (Cheung et al. 2003; Farmani et al. 2005; Fu et al. 2012; Raad
et al. 2009). These algorithms are capable of approximating the Pareto-optimal front
(PF) in a single run. The non-dominated sorting genetic algorithm II (NSGA-II) (Deb
et al. 2002) is one of the most popular MOEAs, which is frequently used to solve
optimisation problems of different kinds and involving complex WDS configurations.
For instance, it was adopted by most teams in The Battle of the Water Networks II
(Marchi et al. 2013).

Despite the features of flexibility and robustness, the MOEAs are often criticised (Kollat
and Reed 2006; Creaco and Franchini 2013) due to the issue of parameterisation and extensive
function evaluations to reach a near-optimal PF (Fu et al. 2012). In order to overcome their
limitations and achieve a better numerical performance, hybrid algorithms that combine
different components and strategies have been proposed in the scientific literature.
According to Talbi’s (2002) classification, these algorithms can be subdivided into two
categories: the low-level hybrid algorithms (LLHA), in which the component metaheuristics
are embedded in other metaheuristics as functional parts, and the high-level hybrid algorithms
(HLHA), in which the component metaheuristics work on their own without mutual
dependence.

Raad et al. (2009) addressed three benchmark problems as well as a real case in South
Africa using a HLHA for the first time. This HLHAwas based on the framework of a multi-
algorithm, genetically adaptive multi-objective method (AMALGAM) (Vrugt and Robinson
2007) and introduced two new sub-algorithms which differed from those within the original
AMALGAM. They also conducted a comparative study extensively by testing up to 23
alternative algorithms for the multi-objective design of 9 small-to-large sized WDS bench-
marks (Raad et al. 2011). Three novel variants based on the structure of AMALGAM and
NSGA-II turned out to be the four top-performing algorithms according to various metrics.
Creaco and Franchini (2012) proposed a LLHA as a fast tool dedicated for the multi-objective
design of large WDSs. This method embedded a Linear Programming in the NSGA-II. Unlike
the traditional definition of decision variables (the diameter option for each single pipe), only
three genes were considered for individuals of a population (independent from the number of
pipes), thus yielding significant computational efficiency especially on larger networks. When
compared with the traditional approach (i.e., NSGA-II), the hybrid approach demonstrated
convincing benefits in terms of quality of solutions and CPU time. In a more recent work,
Creaco and Franchini (2013) presented an upgraded version of LLHA (with number of
individual genes extended to five), being able to consider more complex objective functions
(network resilience) and constraints (maximum flow velocity) within the WDS design. Wang
et al. (2014) compared two HLHAs (including the original AMALGAM) with NSGA-II on a
wide range of benchmark problems and found that AMALGAM outperformed its competitors
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for small-to-medium sized cases. However, both HLHAs deteriorated for larger problems due
to the loss of their adaptive capabilities.

Most of the aforementioned studies only compared the performance of hybrid algorithms
with other popular MOEAs (like NSGA-II). Therefore, there is a lack of sound comparative
studies between LLHAs and HLHAs. This deficiency in comparative work makes it difficult to
assess the state of the art, particularly those aspects of hybrid development and application still
requiring research. Dissemination of best practice to practitioner and research communities is
also hampered. Thus, the major objectives of the current study are: (1) to develop a sound
framework (problem definition, performance evaluation and data sets) for the comparison of
multi-objective design algorithms for real-world WDSs; (2) to perform a direct comparison
between LLHA, HLHA and NSGA-II on real-world WDSs; (3) to investigate differences
between the LLHA and the HLHA considered from multiple perspectives, including concep-
tual and algorithmic performance in both objective and solution space; and (4) to provide
recommendations on the most efficient way in dealing with optimisation of complex WDS
design problems in real life. To achieve these objectives, the LLHA developed by Creaco and
Franchini (2013) and the original AMALGAM (Vrugt and Robinson 2007) were selected,
tested and compared together with the NSGA-II on four medium-to-large sized design
problems based on the real-world networks in Italy.

The remainder of this paper is arranged as follows. Section 2 provides the two-objective
formulation of a WDS and the concise introduction to the LLHA and the HLHA considered.
Section 3 briefly describes the cases used for the comparative study. The results and discussion
is given in Section 4. Section 5 concludes the whole paper.

2 Methodology

2.1 Two-Objective Design of a WDS

The optimal WDS design is aimed at determining the size and location of different components
(e.g., pipes, pumps and tanks) in order to convey the treated water in a safe and efficient
manner, with respect to a number of constraints, such as conservation of mass and energy as
well as other service standards (e.g., quantity and quality). More often, only the size of pipes is
considered under a single demand loading condition given the configuration of the network
system. This is also known as a pipe sizing problem. The task is to choose the best
combination of pipe diameters from within a number of discrete options, which are available
in the market or from the manufacturers. It is difficult to solve such a problem due to a
discontinuous, highly nonlinear, constrained and multi-modal search space (di Pierro et al.
2009), featuring non-deterministic polynomial-time hard (NP-hard) characteristics
(Papadimitriou and Steiglitz 1998).

Minimising the cost (mainly the capital cost) is one of the main concerns during the process
as the design and construction of a WDS usually require a great amount of expenditure. The
capital cost is, then, the first objective function (to minimise) in the WDS design. In the present
work, it takes on the following form:

minC ¼
X np

i¼1
ci Dið Þ � Li ð1Þ

Where C=total cost (monetary units problem dependant); ci=unit cost of pipe i depending
on the specific diameter; np=number of pipes; Di=diameter of pipe i; Li=length of pipe i.

Comparing Low and High-Level Hybrid Algorithms 3



Besides the economic considerations, hydraulic performance should also be well addressed to
ensure the reliability and service standard of a WDS. Compact reliability indicators, based on
nodal pressure (Cheung et al. 2003; Prasad and Park 2004; Farmani et al. 2005) can be used to
characterise network performance and formulate the second objective function. In this work, the
network resilience indicator In proposed by Prasad and Park (2004), which represents an upgrade
of the Todini (2000) resilience, is considered. This indicator expresses the ratio of the power excess
delivered to the users, corrected in order to consider the uniformity of the pipes connected to each
network demanding node, to the power excess leaving the source node(s). In has been advised as a
better indirect reliability index for both simple and complex networks (Creaco et al. 2013).

maxIn ¼
X nn

j¼1
C jQj H j−H j

req
� �

X nr

k¼1
QkHk−

X nn

j¼1
QjH j

req
ð2Þ

C j ¼
X np j

i¼1
Di

np j �max Dif g ð3Þ

Where In=network resilience; nn=number of demand nodes; Cj, Qj, Hj and Hj
req=unifor-

mity coefficient, demand, actual head (evaluate by means of a hydraulic simulator, e.g.
EPANET software, Rossman 2000) and minimum head of node j; nr=number of reservoirs;
Qk andHk=discharge and actual head of reservoir k; npj=number of pipes connected to node j;
Di=diameter of pipe i connected to demand node j.

For the HLHA and the NSGA-II, EPANET2 software (Rossman 2000), which is based on
the Global Gradient Algorithm (Todini and Pilati 1988), is taken to run the hydraulic
simulation from where the variables required for the evaluation of network resilience In are
obtained. The LLHA, instead, uses the Global Gradient Algorithm specifically implemented in
the Matlab2011b® environment.

2.2 Hybrid Optimisation Algorithms

Although the two algorithms, LLHA (Creaco and Franchini 2013) and HLHA (Vrugt and
Robinson 2007) have very different structures, both combine various sub-algorithms.

The LLHA selected is based on a cascade of sub-algorithms coordinated by a main
controller, which is the NSGA-II. Each solution of the NSGA-II contains the instructions (5
decision variables in all, as shown below) for the sub-algorithms, which are executed in series
by performing various hydraulic simulations. Being tailored to the pipe design problem, the
LLHA is not a general optimisation method. The fixed decision space for the LLHA (i.e., 5
decision variables) does not depend on the network topological complexity. This leads to a
highly efficient and robust numerical performance of the LLHA.

The HLHA selected is based on the collaboration of various multi-objective algorithms
arranged in parallel. The main controller of HLHA decides how the work in generating
offspring individuals has to be divided among the various sub-algorithms. A single hydraulic
simulation is performed for each HLHA solution to test its hydraulic performance. The
decision space is made up of the entire set of variables which have to be designed (i.e., the
pipe sizes) and thus depends on the topological complexity of the network. This makes the
HLHAmore flexible than the LLHA since other aspects than those considered in this work can
be easily incorporated in the optimisation. However, it renders the computational burden of
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HLHA higher than that of the LLHA, particularly in the case of complex networks.
Furthermore, for each HLHA optimisation, numerous runs have to be performed in order to
eliminate the influence of the initial random seed, since optimisation results may change
significantly from a run to another.

A summary of key features of the LLHA and HLHA selected is provided in Table 1. The
NSGA-II method is not compared in Table 1 because the main difference between the HLHA
and the NSGA-II lies in the fact that the former employs four different search operators, rather
than only one as the NSGA-II for reproduction.

2.2.1 Low-Level Hybrid Algorithm

The LLHA (Creaco and Franchini 2013) is made up of two blocks (see Fig. 1) and based on the
combination of various algorithms. The first preliminary block makes it possible to detect one or
more decompositions of the looped network each one generating a set of single source branched
networks. The second main block encompasses a cascade of four different algorithms for the
network multi-objective design. The first and main algorithm (A1) is the NSGA-II. The individ-
uals of the population of this algorithm are made up of only five genes: the first makes it possible
to detect time by time which of the decompositions detected in the preliminary block has to be
applied to the looped network; the second and third genes are parameters that have to be supplied
to the second algorithm, i.e. to the linear programming (A2) for the branched network design, and
relate to the minimum pressure head and resilience constraints respectively; the fourth and fifth
genes are parameters that have to be supplied to the third algorithm (heuristic algorithm A3),
which re-closes network loops with the smallest diameter considered in the design phase and then
improves the uniformity of the diameters of the pipes connected to each network node; the fourth
algorithm (heuristic algorithm A4) modifies some pipe diameters in order that maximum flow
velocity constraints are respected all over the network. The final network configuration is
assessed in terms of Cost and In, which are the objective functions of A1.

In this context, it is worth highlighting that, naturally, the rationale behind the procedure
herein presented (based on the design of the branched networks concealed inside the looped
network, loop re-closure and diameter modification) comes from a significant simplification of
the design problem, which entails that the design of a looped network comes from the design
of a system of branched networks concealed inside the network itself and from the correction
of the generic network solution by the application of two heuristic algorithms. This significant
simplification may then result in a reduction in the research space. However, this weakness is
balanced by its simplicity, which leads to the procedure easily converging and finding good

Table 1 Key features of the LLHA and HLHA selected

Features LLHA HLHA

type of hybridisation low-level relay hybrid high-level teamwork hybrid

number of decision variables fixed (5) problem-dependent

hydraulic simulation multiple run per solution single run per solution

flexibility low high

computational burden low high

robustness to random seed high low

The type of hybridisation is termed according to the taxonomy of hybrid algorithm in (Talbi 2002). Flexibility in
the above table refers to how much effort has to be made to adapt the algorithm to other cases or problem
formulations
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solutions, as will be shown in the next sections. More details about this low-level hybrid
algorithm can be found in Creaco and Franchini (2013).

2.2.2 High-Level Hybrid Algorithm: AMALGAM

AMALGAM (Vrugt and Robinson 2007) is a high-level hybrid optimisation framework
which employs simultaneously four sub-algorithms within its structure, including NSGA-
II, adaptive metropolis search (Haario et al. 2001), particle swarm optimisation (Kennedy
and Eberhart 2001) and differential evolution (Storn and Price 1997). It is designed to
overcome the drawbacks of using an individual algorithm and to be suitable for a wide
range of problems. The strategies of global information sharing and genetically adaptive
offspring creation are implemented in the process of population evolution. Each sub-
algorithm is allowed to produce a specific number of offspring individuals based on the
survival history of its solutions in the previous generation. The pool of current best
solutions is shared among sub-algorithms for reproduction. The operation of
AMALGAM can be summarised as follows (see also Figure 2). Firstly, an initial
population P0 of individuals, with a number N of genes equal to the number of pipes
to be designed, is generated using Latin hypercube sampling (LHS). Then, P0 is ranked
via the fast non-dominated sorting (FNS) procedure (Deb et al. 2002). The offspring Q0

of size N is yielded from P0 using four sub-algorithms simultaneously, with each
algorithm contributing the same number of individuals (i.e., N/4). Next, a combination
of the parents (P0) and the offspring (Q0), namely R0 (size 2N), is produced and ranked
via the FNS. A number N of members from R0 are selected based on their rank and
crowding distance (CR), forming the population in the next generation. The latest
population is then taken to create the offspring using the adaptive multi-method search
technique, which is detailed in the subsequent paragraph. The aforementioned procedure
is repeated until the stopping criteria are met (e.g., number of function evaluations and/or
prescribed precision).

The basic idea of adaptive multi-method search is to take full advantage of the most
efficient sub-algorithm and to keep a balance in using diverse methods. That is, each algorithm
is allowed to produce a number of children according to the reproductive rate (ratio of the
children alive to the children created) in the previous generation. However, if one fails to
contribute even a single individual in the latest population, a minimum number of individuals
(5 here as the bottom line) are consistently maintained for it to generate the offspring.

A2

linear programming for 

branched network design

A1

NSGAII

instructions to 

A2 and A3 

and fitness 

assessment

Loop opening

preliminary

block

main block

A3

heuristic algorithm for loop 

closure and diameter 

uniformity

A4

heuristic algorithm to 

impose maximum velocity 

constraints

Fig. 1 Flowchart of the LLHA
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Therefore, the most successful algorithm (with highest reproductive rate) is favored by giving
more slots in the process of reproduction, but no one is completely discarded even though it
exhibits the worst performance. In addition, AMALGAM provides a general template which is
flexible and extensible, and can easily accommodate any other population-based algorithm
(Raad et al. 2009, 2011).

3 Applications

3.1 Case Studies

Four WDS design problems were used to assess the performance of the aforementioned hybrid
optimisation algorithms and the NSGA-II. These problems are based on different real-world
WDSs in Italy with varied complexity in terms of search space size. The first three cases were
originally introduced by Bragalli et al. (2008), while the last case is a WDS of a city in
Northern Italy. For confidentiality reasons, it is named ‘Town X’ in this paper. A brief
summary of four design problems is provided in Table 2.

initialise population P0 of size N using LHS; set t=0

assign a rank for each individual in Pt using FNS procedure

generate offspring Qt of size N using four sub-algorithms

form Rt=Pt U Qt and rank Rt using FNS procedure

select N members of Pt+1 from Rt based on their rank and CR

stopping criteria met?
No

output the best solutions found so far

set t=t+1

Yes

Fig. 2 Flowchart of AMALGAM

Table 2 Characteristics of benchmark design problems considered for the comparative study

Problem
(Network)

No. of C-Value Size of Search Space Design Criteria

Reservoir Node Pipe Size Pmin (m) Pmax (m) Vmax (m/s)

Fossolo 1 36 58 22 150 7.25x1077 40 varied 1

Pescara 3 68 99 13 130 1.91x10110 20 varied 2

Modena 4 268 317 13 130 1.32x10353 20 varied 2

Town X 2 536 825 13 130 1.01x10919 25 30 2

C-Value: Hazen-Williams roughness coefficient (unitless). The size of search space is estimated by computing the
number of diameter sizes to the power of the number of pipes. For example, the search space size of the Fossolo
problem is 2258 ≈7.25x1077
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3.2 Benchmarking Setup

The LLHA, HLHA and the NSGA-II were run on a 2.70 GHz CPU. In the exper-
iments, no parallel computing was used and thus each optimisation run was executed
on a single core.

In order to investigate the performance of the hybrid algorithms and compare them
with that of the NSGA-II under low and high computational burdens, short and long
runs on each benchmark problem were applied concurrently. Since the algorithmic
frameworks of the LLHA and the HLHA are different, the computational budgets are
set to keep the execution time of a single run as close as possible for the LLHA and
the HLHA. The NSGA-II adopts the same budget as the HLHA because they take
very similar CPU time to finish a single run. The details of the computational budgets
in terms of CPU time for each design problem in a single run are given in Table 3.
Table 4 and Table 5 show, instead, the general parameter settings, i.e., population size
and number of function evaluations (NFE), of the LLHA and the HLHA, respectively
for the low and high computational burdens.

The analysis of Table 4 shows that in the LLHA the population size is always the
same (equal to 50 individuals) and number of function evaluations (NFE) does not
vary significantly as the network complexity increases (from case study 1 to case
study 4). This is a direct consequence of the fact that the number of individual genes
used in the LLHA (equal to 5 – see Section 2.2) does not depend on the network
size. Furthermore, the simple genetic structure results in the best PF in each optimi-
sation run of the LLHA.

In the HLHA, instead, the influence of the initial random seed is much stronger. In order to
obtain a ‘best PF’, each problem was solved independently 30 times using three varied
population sizes (see Table 5) (10 times for each population size). The idea of such a plan
for the HLHA is to capture a PF as widespread as possible in the objective space of Cost
against In. In this context, it is worth stressing that the results indicated in Table 3 for the
HLHA and the NSGA-II refers to an average run time.

A comparison between Tables 4 and 5 proves that the population size and NFE
required by the LLHA are smaller than those featured by the HLHA for pre-fixed
computation time (of a single run). This is due to the fact that in the LLHA each
objective function evaluation requires linear programming and various hydraulic sim-
ulations to be performed (see algorithms A2, A3 and A4 in Section 2.2); in the
HLHA, instead, each objective function evaluation simply requires a single hydraulic
simulation to be performed.

Table 3 Computational times Used in Analyses

Case Study Computational Budget (minutes)

Short Run Long Run

LLHA HLHA NSGA-II LLHA HLHA NSGA-II

Fossolo 0.7 0.8 0.8 3 3 3

Pescara 0.7 0.7 0.7 5 7 7

Modena 9 9 9 55 58 58

Town X 17 18 18 100 90 90
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4 Results & Discussion

The results of the optimisations carried out by means of the hybrid algorithms and the NSGA-
II are reported in Figs. 3 and 4. The first analysis was made for pre-fixed computational
burden. In Fig. 3, graphs on the left and right correspond to the small and large computational
burdens respectively.

For the Fossolo problem (lowest complexity case study) the positions of the PFs obtained
by the LLHA and the HLHA, considering both the small and large computational burden, are
close. The PFs are slightly dominated by those obtained by the NSGA-II, which shows a
higher convergence performance on a reduced front length. The only remarkable difference
between the hybrids lies in the fact that the LLHA lends itself better to detecting the solutions
featuring both low cost and resilience (left side of the front). The fact that the LLHA procedure
performs better for low cost solutions and worse for high cost solutions than the HLHA can be
ascribed to its basic assumptions: the design based on the looped network decomposition
(basic assumption of the LLHA) is more effective to yield solutions featuring low cost and
resilience. In the case of high cost and resilience solutions, the simplifications contained in the
LLHA structure can, instead, endanger its performance. Results in graph (a) on the left of
Fig. 3, obtained considering a small computational burden, indicate a slight predominance of
the HLHA in detecting solutions featuring high cost and resilience.

The applications to the Pescara and Modena problems of intermediate complexity yield
similar results regarding both the comparison of the hybrid procedures and against the NSGA-
II. Under both computational burdens, the superiority of the HLHA in detecting the high cost
and high resilience solutions on the PF is highlighted. The comparison with the PF of the
NSGA-II shows that the latter yields very close results to the LLHA, with a slightly better
convergence performance for the high computation burden. The inability of the LLHA to
detect high cost and high resilience solutions in these two cases is due to the fact that, in the
high cost solutions generated by the LLHA for such networks with multiple sources, the

Table 4 Parameter settings of LLHA

Case study Population Size Computational Budget in Terms of NFE

Low Burden High Burden

Fossolo 50 500 2000

Pescara 50 500 3000

Modena 50 800 3000

Town X 50 500 3000

Table 5 Parameter settings of HLHA and NSGA-II

Case Study Population Size Computational Budget in Terms of NFE

Size 1 Size 2 Size 3 Low Burden High Burden

Fossolo 100 200 400 50,000 80,000

Pescara 100 200 400 40,000 150,000

Modena 200 400 800 200,000 800,000

Town X 400 800 1600 113,600 454,400
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installation of large and uniform diameter pipes encourages the formation of water exchanges
between the reservoirs. This results in the increase in network head losses and then the
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(a) Fossolo problem under low computational burden (left) and high computational burden (right)
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(b) Pescara problem under low computational burden (left) and high computational burden (right)
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(c) Modena problem under low computational burden (left) and high computational burden (right)
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Fig. 3 Comparison of LLHA, HLHA and NSGA-II using low and high computational burdens (Cost axis in
logarithmic scale)
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(b) Pescara problem by LLHA (left) and HLHA (right) using low and high computational burden
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(c) Modena problem by LLHA (left) and HLHA (right) using low and high computational burden
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(d) Town X problem by LLHA (left) and HLHA (right) using low and high computational burden

Fig. 4 Comparison of low burden with high burden for LLHA and HLHA (Cost axis in logarithmic scale
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decrease in nodal pressure heads. As a consequence, a decrease in the network resilience
(Eq. 2) takes place. High cost solutions, i.e., large size pipes in the network selected by the
LLHA, are then discarded as being dominated in terms of resilience by the low cost solutions
on the PF. On the other hand, the HLHA avoids this situation by allowing small size pipes to
be selected in suitable sites. The incapacity of the NSGA-II to detect high cost and resilience
solutions, instead, has to be ascribed to its ability to yield high convergence performance in a
reduced front length (see also case study 1).

For the problem of highest complexity, Town X, the LLHAyields better results than HLHA
in the case of both low and high computational burdens and for either side of the PF (low cost
and low resilience solutions on the left and high cost and high resilience solutions on the right).
This better performance is achieved due to the reduced search space in LLHA. Unlike case
studies 2 and 3, in case study 4 high cost and high resilience solutions are also present in the
PF yielded by the LLHA; this happens because the elevation of the two sources and their
mutual distance spontaneously hinder the formation of inter-source water transfer and thus the
single-source branched-networks do not produce negative effects as in the case of Pescara and
Modena networks. The comparison between the hybrid algorithms and the NSGA-II in case
study 4 highlights that, for high network complexity, the hybrid procedures turn out to have a
much better performance in terms of both convergence and front diversification.

In Fig. 4, another viewpoint of the optimisation results is reported. In particular, graphs on
the left report the PFs obtained by the LLHA considering small and large computational
burdens; those on the right report, instead, the results obtained by the HLHA considering small
and large computational burdens. The comparison of the results obtained by the LLHA in each
case study showed that the fronts obtained with the small computational burden are almost
coincident with those obtained with the longer runs. This means that only a small computa-
tional effort is needed to obtain the best results achievable. In the case of the HLHA, instead,
the increase in computational burden improves the effectiveness of the results significantly
since the fronts obtained by running the procedure long enough dominate those obtained in
short runs. The latter effect becomes more and more evident when network complexity
increases, i.e., moving from graph (a) to graph (d) in Fig. 4.

Whereas the previous analyses are concerned with the comparison of the algorithms in the
objective space, the following remarks are made for the solution space. Several methods have
recently been proposed on how to choose solutions from the PF to facilitate a posteriori
analysis, such as weighted stress function method (Ferreira et al. 2007) and cluster analysis
(Dumedah et al. 2010). In this study a solution from the ‘knee’ point on the PF was chosen as
the most interesting region for decision makers. After fixing a cost value around the knee point
in each case study (see vertical lines in Fig. 3) the solution featuring the closest cost value is
taken for each algorithm considered in this work. For each case study, the comparison of the
three solutions featuring similar cost values made it possible to analyse to which extent
diameter distribution in the network changes when the algorithm used for the optimisation
changes. To this end, 4 diameter classes were constructed for each case study, and the network
pipe length associated with its class was calculated. The graphs in Fig. 5 report the length of
pipes as a function of the diameter class for the three solutions selected in each of the four case
studies (obtained by LLHA, HLHA and NSGA-II, respectively).

Overall the graphs show that the LLHA, HLHA and NSGA-II led to similar diameter
distributions. In the Fossolo network, no one of the algorithms yielded pipes for the class
featuring diameters lower than or equal to 51.0 mm. In the three remaining classes, HLHA
yielded larger network pipe length for 61.4–90 mm and 163.6–229.2 mm classes, whereas the
NSGA-II in 102.2–147.2 mm class. The LLHA yielded intermediate pipe length values in
61.4–90 mm and 102.2–147.2 mm classes and a length equal to 0 in 163.6–229.2 mm class. In
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the Pescara network, unlike the LLHA and the NSGA-II, the HLHA tends to prefer 100–
150 mm class with respect to 200–300 mm class. In the Modena network, the LLHA tends to
prefer 200–300 mm class with respect to 100–150 mm class and yields a pipe length close to 0
in the last class with pipe size ranging from 500 to 800 mm. Finally, in the Town X network,
the hybrid algorithms, especially the LLHA, tend to prefer 100–150 mm class to 200–300 mm
class.

It is worth stressing that we did not use any quantitative indicator to compare the
performance of the hybrid algorithm and that of the NSGA-II. Such a decision is related to
the following observations:

(1) Most of quantitative indicators existing in the literature require a reference set (i.e., often
a known optima) to measure certain aspect (convergence or diversity) of an approxima-
tion set, such as the general distance (convergence), the gamma (convergence) and delta
indicators (diversity) (Deb et al. 2002). However, due to the NP-hard nature of the
optimal design of Water Distribution Systems, it is very difficult to obtain such a
reference set beforehand, especially for large and complex networks.

(2) Using some quantitative indicators in the context of multi-objective design of Water
Distribution Systems can be misleading, because these indicators are mainly developed
for continuous problems. However, as shown above, the PF is discrete and unevenly
distributed in the objective space. In such a situation, a wrong interpretation may be
easily derived from a numerical indicator. In addition, there is no single indicator which
can measure both aspects (convergence and diversity) of multi-objective optimisation in
a clear and definitive way. In other words, in the context of multi-objective optimisation,
the comparison itself should be multi-objective.

(3) It is relatively easy and computationally cheap to compare the non-dominated solutions
produced by the different algorithms visually by plotting their approximation sets in the
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Fig. 5 Comparison of solutions obtained by three algorithms in solution space
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objective space. This approach has enabled a direct comparison and facilitated drawing
of reasonable conclusions.

5 Conclusions

This paper developed a sound comparative framework for multi-objective WDS design
algorithms. The two objectives used are the minimisation of cost and maximisation of network
resilience. The performance comparison of two different types of hybrid search procedures and
the baseline NSGA-II was presented in detail. The first type of hybrid procedure considered
was a low-level hybrid algorithm, where various inner algorithms are embedded within the
NSGA-II. The second type of hybrid procedure was a high-level hybrid algorithm, where
various search operators co-operate in parallel.

Applications to case studies of increasing complexity showed that performances of the
LLHA and HLHA are complementary. Due to the fact that optimisation with LLHA is not
significantly affected by the initial random seed and that the size of the search space of LLHA
does not increase with the growth in network complexity, selection of the LLHA is recom-
mended for networks from low to high complexity, particularly in the latter case where the
pursuit of solutions with high accuracy using the other algorithms, would inevitably lead to
exceedingly high computational overhead in terms of both the number of function evaluations
and the running time. On the other hand, when computation efficiency is not a concern (i.e., it
is possible to consider a large number of individuals as well as to repeat optimisation several
times in order to eliminate the influence of the initial random seed), selection of the HLHA is
expected to improve the accuracy of the results as much as required under the various
circumstances. Unfortunately, this approach may fail when the network size is really too large.
Alternatively, a combination usage of the LLHA and the HLHA may overcome this limitation
and yield better results in shorter time. That is, the LLHA could be employed first to quickly
approximate the Pareto-optimal front, and then this approximation could be further improved
by the HLHA. This approach will be investigated thoroughly in a future work.

Overall, the comparison between the hybrid algorithms and the NSGA-II demonstrates the
advantage of using the hybrid algorithms in order to obtain a more diversified PF. Their
superiority in terms of convergence also emerges when network complexity increases. In the
future, more objectives should be taken into account for the optimal design of a WDS, for
example minimising leakage and water age (an indicator of water quality), or minimising
carbon emissions in the pipe manufacturing process and carbon emissions during pipe
installation and operation, transforming the task from two-objective to many-objective (four
or more) optimisation. As indicated by Fu et al. (2013), the optimal solutions obtained in a
lower dimensional formulation often tend to have a worse performance in other objectives
considered in a higher dimensional formulation. Although it supports more informed and
transparent decision making in the design stage, the many-objective formulation will greatly
challenge the capabilities of the current algorithms, including both LLHAs and HLHAs, in
approximating the PF in higher (thus more complex) dimensional space. Furthermore, more
complex benchmark problems, not only based on large networks with/without multiple
loading conditions, but also the ones associated with operational cost (typically requiring
extended period simulation), should also be considered for the comparison.
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