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Abstract In this article, a rainfall forecasting model using monthly historical rainfall data and
climate indices is developed by incorporating wavelet analysis (WA) and second order volterra
nonlinear model. The monthly rainfall time series and large-scale climate index time series are
decomposed using wavelets into a certain number of component subseries at different temporal
scales. The lag relationship between the rainfall anomaly and each potential predictor is
identified by cross correlation analysis with a lag time of at least 1 month at different temporal
scales. The components of predictor variables with known lag times are then integrated using a
second order Volterra model. Further, orthogonal least squares method is used to reduce the
redundant variables and select the significant variables to be included into the final forecast
model. The proposed multivariate wavelet nonlinear rainfall forecasting method is examined
with over three places in India, and compared to the traditional ANN model based on the
original time series and linear wavelet regression model. The models are trained with data from
the 1916 to 1968 period and then tested in the 1968–1989 period. The results show that the
proposed wavelet nonlinear model provides considerably more accurate monthly rainfall
forecasts for the three selected places in India than the traditional regression model, neural
networks model and the wavelet based linear model. It was seen that for the proposed models
and other models also, both the past rainfall and the large-scale climate signals were useful in
forecasting the future.

Keywords Climate indices .Monthly rainfall forecasting .Wavelet transform . Second order
nonlinear model . India

1 Introduction

Forecast of rainfall is essential for planning and management of water resources especially in
an agriculture based country like India. About 65 % of the total cultivated land in India is
under the influence of rainfed agriculture system (Swaminathan and 1998). Especially,
monthly and seasonal rainfall forecasts provide useful information for water resource man-
agement, agricultural planning, and associated crop insurance application (Garbrecht et al.
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2010) in regions which are completely depend on rainfall for agriculture. Reliable forecast of
rainfall help the farmers in deciding the type of crops to be cultivated and manage the
resources. Therefore, forecasting the monsoon temporally is a major scientific issue in the
field of hydrology. Understanding the importance of the rainfall forecasting, there has been
intense research in this area which has resulted in numerous approaches for the same. In the
past decades, various approaches have been used to study and forecast monthly and seasonal
rainfall. These methods can be broadly classified into two categories: numerical and empirical.
The numerical models such as general circulation models (GCMs) are based on the laws of
physics, which have been used to forecast climate. On the other hand, the empirical models are
based on observational relationships of the predictand variable with various predictors. Using
the numerical models by Bustamante et al. (1999) and (Olsson et al. 2004) and physical
models by Georgakakos and Bras (1984), studies of rainfall quantitative prediction have been
carried out. However, they are not successful enough in forecasting rainfall (Olson et al. 1995)
due to inaccurate initial conditions, parameterization schemes of subscale phenomena, and
limited spatial resolution (Valverde Ram rez et al. 2005).

Owing to numerical models’ low forecasting skill and/or their complexity (Meinke et al.
2007), empirical methods are still the most widely used approaches for seasonal precipitation
forecasts when they are used in agricultural planning (Meinke et al. 2007). The empirical methods
include statistical models (Mutai and Ward 2000; Immerzeel et al. 2010; Prasad et al. 2010) and
artificial neural networks (French et al. 1992; Navone and Ceccatto 1994; Sivapragasam et al.
2001; Freiwan and Cigizoglu 2005; Marzano et al. 2006; Moustris et al. 2011; Abbot and
Marohasy 2012; Jeong et al. 2012). Most of these studies use only a set of climate-related
variables or historical rainfall data as input. Studies in the past (Ropelewski and Halpert,1986;
Kurtzman and Scanlon,2007; Ishak et al.,2013; Khedun et al.,2014) have shown that the presence
of tele-connections between rainfall and large scale climate signals such as Southern Oscillations
Index, Pacific Decadal Oscillation (PDO), Indian Ocean Dipole(IOD), SST(Sea Surface
Temperature). There have been relatively few investigations (Khedun et al.,(2014)) where the
rainfall forecast models have used a combination of historical rainfall data and other climatic
attributes (Abbot and Marohasy 2012). Even though many studies such as Murphy and Timbal
(2008),Shukla (Shukla and Paolino 1983), and (Chattopadhyay et al. 2010) have tried to establish
the relationship with climatemodes, but there has been few studies to use these climate indices for
rainfall prediction. Even though, the reasonable correlations between these large scale climate
indices and rainfall have motivated scientists for using them for rainfall forecasting, however, it is
not certain about their usefulness in rainfall forecasting. This may be attributed because the
signals are highly non-stationary and these processes related to rainfall operate across varying
range of temporal scales. In order to exhume the underlying relationships across different scales
scientists have been using the recent technique, wavelet analysis. Wavelet analysis is a useful
mathematical tool that provides a time–frequency representation of an analysed signal in the time
domain (Daubechies 1992; Percival and Walden 2000). Wavelet analysis is a multi resolution
decomposition in time and frequency domains. Anctil and Coulibaly (2004) proposed a wavelet-
based approach to describe local interannual variabilities in streamflow, and to identify plausible
climatic tele-connections that could explain these local variations. (Rivera et al. 2012) presented a
self-organizing map approach using sea surface temperature (SST) filtered byWT for forecasting
monthly precipitation in central Chile. More recently, (He et al. 2013) have used wavelet based
linear model for utilizing the different climate indices for forecasting 1 month ahead rainfall.
Basically, (He et al. 2013) have used linear regression model for forecasting rainfall. However, it
is a general notion that the physical processes which induce rainfall is usually nonlinear
(Sivakumar 2001; Dhanya and Nagesh Kumar 2011) and it is not possible for linear models to
capture the underlying nonlinear dynamics.
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Therefore, as an improvement over the linear approach, in this article, a more effective
rainfall forecast model from the past rainfall data and climate signals by incorporating the
wavelet analysis and multiple second order nonlinear model is proposed. Recent literature
review suggest that there has been no any work reported so far on wavelet based multivariate
nonlinear model using climate indices for rainfall forecasting. The main contributions of this
work are as follows.

1. Development of wavelet based multivariate nonlinear model for rainfall forecasting using
the climate indices.

2. Comparison of the proposed approach with other methods such as Artificial Neural
Networks model and the wavelet based multiple linear regression approach.

The rest of this article is organized as follows. In Section 2, we briefly describe the wavelet
analysis. Study area and the details on climate indices are provided in Section 3 .
Section 4 is focused on some necessary mathematical methods and the wavelet based
multivariate nonlinear model. In Section 5, the proposed method is applied to monthly
rainfall forecasting at 3 rainfall stations across India and compared with a linear
regression model based on data with and without WT. Some conclusions are made
in Section 6.

2 Wavelet Analysis

Wavelet analysis, initially formalized by Grossmann and Morlet (1984), is the most recent
solution to overcome the main shortcoming of the Fourier transforms that identifies
the frequencies present in a signal but not their moment. Wavelet analysis results in a
time frequency (or time-scale) representation of a signal. Wavelet analysis transforms
a signal into scaled and translated versions of an original (mother) wavelet, instead of
decomposing a signal into constituent harmonic functions as in Fourier analysis. The
wavelet transform as defined by Eq. (1) (Daubechies 1992) is called the continuous
wavelet transform (abbreviated CWT) because the scale and time parameters, a and τ
assume continuous values.

W a; τð Þ ¼ 1ffiffiffiffiffiffi
aj jp
Z
−∞

∞

f tð Þψ t−τ
a

� �
dt ð1Þ

It provides a redundant representation of a signal as the CWT of a function at scale ‘a’ and
location 'τ ' can be obtained from the continuous wavelet transform of the same function at
other scales and locations. Since the CWT behaves like an orthonormal basis decomposition, it
can be shown that it is also isometric as it preserves the overall energy content of the signal
and, thereby, allows for the recovery of the function f(t) from its transform by using the
following reconstruction formula as provided by (Daubechies 1992) in Eq. (2)

f tð Þ ¼ 1

Cψ

Z
−∞

∞Z
0

∞

a−2W a; τð Þψa;τ tð Þda dτ ð2Þ

where Cφis a constant and depends on the choice of the wavelet. Clearly, the above
equation suggests that the function f(t) may be seen as a superposition of signals at different
scales and obtained by varying the scale parameter ‘a’.
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Further, the energy of the signal f(t) can be represented scale wise as given by (Daubechies
1992) in Eq. (3) Z∞

−∞

f 2 tð Þdt ¼ 1

Cψ

Z∞

0

Z∞

−∞

W a; τð Þj j2dτ
2
4

3
5 da

a2
ð3Þ

The left-hand side of Eq. (3) is called the ‘energy’ in the signal f(t) (it is, however, not
energy in the physical sense unless f(t) has the proper units). We can thus interpret [W(α,τ)]2dτ
as being proportional to an energy density function that decomposes the energy in f(t) across
different scales and times. Again, if [W(α,τ)]2dτ is large (small), we can say that there is an
important (insignificant) contribution to the energy in f(t) at scale τ and time t.

Flandrin (1988) proposed calling the function |W(α,τ)|2 a scalogram and, in general, for two
different functions f(t) and g(t), the product Wf(α,τ) and Wg(α,τ) may be called a cross
scalogram. While, in general, a scalogram provides an unfolding of the characteristics of a
process in the scale-space plane, a cross scalogram, on the other hand, provides a similar
unfolding of possible interactions of two processes, and this measure can be quite revealing
about the structure of a particular process or about the interaction between different processes.

As can be seen, the CWT offers a promising platform for understanding a given dynamic
process and facilitates its objective characterization, in terms of the time series of observations
available on the process and, particularly in the area of hydrology, there are several applica-
tions wherein wavelet analysis has already been shown to be a credible analysis technique
designed to foster understanding of these natural processes.

For practical applications, the hydrologist has access only to a discrete time signal, rather
than to a continuous time signal. A discretization of the Continuous Wavelet Transform (CWT)
produces N2 coefficients from a data set of length N; hence redundant information is locked up
within the coefficients, which may or may not be a desirable property (Addison 2002). To
overcome this redundancy, logarithmic uniform spacing can be used for the a scale
discretization with a correspondingly coarser resolution of the b locations, which allows for
N transform coefficients to completely describe a signal of length N. Such a discrete wavelet
has the form: [Mallat, 1989]

f m;n tð Þ ¼ 1ffiffiffi
a

p m
0

f
t−nboamo

amo

� �
ð4Þ

where m and n=integers that control the wavelet dilation and translation, respectively; b0=
location parameter andmust be greater than zero; a0=a specified fined dilation step greater than
1. The most common and simplest choice for parameters are a0=2 and b0=1. This power of two
logarithmic scaling of the translation and dilation is known as the dyadic grid arrangement
(Szilagyi et al. 1996). The dyadic wavelet can be written in a more compact notation as:

f m;n tð Þ ¼ 2−m=2 f 2−mt−nð Þ ð5Þ
Discrete dyadic wavelets of this form are usually chosen to be orthonormal. This allows for the

complete regeneration of the original signal as an expansion of a linear combination of translating
and dilating orthonormal wavelets. For a discrete time series xi, the dyadic wavelet transform
becomes:

Tm;n ¼ 2−m=2
XN−1

i¼0

f 2−mi−nð Þxi ð6Þ

where Tm,n=wavelet coefficient for the discrete wavelet of scale a=2
m and location. Eq. (7)

considers a finite time series, xi, i=0, 1, 2,…, N−1, where N is an integer power of 2: N =2M.
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This gives the ranges ofm and n as b0 and 1<m<M, respectively. At the largest wavelet scale (i.e.,
2m where m=M), just one wavelet is needed to cover the time interval and only one coefficient is
created. At the next scale (2m−1), two wavelets cover the time interval, therefore two coefficients
are created, and so on down to m=1. At m=1, the a scale is 21, i.e., 2M−1 or N/2 coefficients are
needed to describe the signal at this scale. The total number of wavelet coefficients for a discrete
time series of length N =2M is then 1+2+4+8+…+2M−1=N−1. A signal smoothed component,
T tð Þ , is left, which is the signal mean. Therefore, a time series of length N is broken into N
components, i.e., with zero redundancy. The inverse discrete transform is given by:

f tð Þ ¼ T tð Þ þ
X
m¼1

M

Wm tð Þ ð7Þ

where T tð Þ is called the approximation subsignal at level M; and Wm(t)=detailed sub
signals at levelsm=1,2…,M. The wavelet coefficients,Wm (t),m=1,2,…,M, provide the detail
signals, which can capture small features of interpretational value in the data; the residual term,
T tð Þ , represents the data background information.

In this study, wavelet decomposition is performed using the db2 orthogonal discrete
wavelet function, as suggested by Maheswaran and Khosa (2012b) taking care of the boundary
distortion. Four levels of decomposition is implemented. For a sampling period of 1 month, the
time scales of the wavelet decomposition are 2−, 4−, 8−, 16- and 32-months, respectively, for
the resolution levels j = 1, 2, 3, 4 and 5. These decomposition levels allow examining
usefulness of a range of time-scale signals in rainfall forecasting.

3 Study Area and Data

To test the proposed method, monthly rainfall data from two different sub basins of Cauvery Basin,
India and one from Gurgoan district in Delhi NCT(National Capital Territory),India were
considered.

Cauvery basin receives an annual average rainfall of 1,129 mm and of which, about 50 % is
received during the south-west monsoon (June-September), 33 % in the northeast monsoon
(October – January) and the rest in the summer months (February – March). The mean daily
maximum temperature ranges from 19.5 to 33.7 ° C, whereas themean dailyminimum varies from
9.1 to 25.2 ° C.

The climate of the Gurgoan district can be classified as tropical steppe, semi-arid and hot
which is mainly characterized by the extreme dryness of the air exceptduring monsoon
months, intensely hot summers and cold winters. During 3 months of south west monsoon
from last week of June to September, the moist air of oceanic origin penetrates into the district
a nd causes high humidity, cloudiness and monsoon rainfall. The normal annual rainfall in
Gurgaon district is about 596 mm spread over 28 days. The south west monsoon sets in the last
week of June and withdraws towards the end of September and contributes about 85 % of the
annual rainfall.

3.1 Rainfall Data

Long-term monthly rainfall data were obtained from the IMD monthly rainfall dataset. The
data is then interpolated to obtained the basin wise average rainfall. The resulted basin wise
average rainfall data was available for the period between 1916 and 1989. The 70 % of the data
set was used for calibration and the remaining data was used for validating purposes.
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3.2 Climate Data

To forecast monthly rainfall, in this study we choose different large-scale climate signals,
which have been identified to be influencing Indian rainfall by different researches (Polaski
et al., (2013) and (He et al. 2013)). Following are the selected large-scale climate indices which
have been found to have significant influence on rainfall over Indiansubcontinent,

a) Southern Oscillation Index (SOI), which is used as a common index for ENSO, was
chosen as apotential predictor of rainfall because it has the longest period of record (1876
to present), and it was successfully used in previous rainfall forecasting studies (Meinke
and Stone 2005; Abbot and Marohasy 2012). Monthly SOI values were obtained from the
Australian Bureau of Meteorology athttp://www.bom.gov.au/climate/glossary/soi.shtml.

b) The IOD has widespread effects on rainfall in East Africa, India, Indonesia, and the western a
southern Australia (Webster et al. 1999; Ummenhofer et al., 2009). Variability in the Indian
Ocean is associated with rainfall variability in the Indian subcontinent, and Indian Ocean
variability is reported to be the key driver climate in India. The IOD index is represented by
anomalous SSTgradient between the western equatorial Indian Ocean (50°E–70°E and 10°S–
10°N) and the southeasternequatorial Indian Ocean (90°E–110°E and 10°S–0°N).

c) The PDO is a pattern of climate variability with a similar expression to El Ni˜no, but
acting on a longer timescale, and with a pattern most clearly expressed in the North Pacific
(Mantua et al. 1997; Mantua and Hare 2002). The PDO index is based on a projection of
SST anomalies onto a pattern defined by the leading principal component of monthly SST
anomalies in the North Pacific poleward of 20°N. PDO index is available from http://jisao.
washington.edu/pdo/PDO.latest

Therefore, in our study these three climate indices were taken as the input variables for
the nonlinear regression model.

3.3 Identification of Significant Components

It is assumed that the rainfall responds to large scale signals with a time lag (He et al. 2013).
Cross correlation function (CCF) is a common method generally used for evaluation the lag
relationship between two variables. In this study, all monthly time series are decomposed into a
certain number of subseries components under different temporal scalesusing a specific mother
wavelet. The mother wavelet and the depth of decomposition are chosen based on the previous
studies by (Maheswaran and Khosa 2012b). The cross correlation function is implemented to
identify lag relationships between rainfall subseries versus each potential predictor subseries.
The lag correlation coefficient between the two sets of subseries is used for this purpose.

4 Methods Used

4.1 Multiple Input Wavelet Volterra Coupled (MWVC) Nonlinear Model

The decomposed time series of the various climate indices and the past rainfall data form the input
variables for the model. From these input variables, those which have a significant lagged cross
correlation with the rainfall time series were identified and were then integrated using
the second order Multiple Input Single Output (MISO) Volterra model to provide the
forecast at next step. The Fig. 1 shows the model scheme for the propose scheme.
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Here, Di
X i=1,2,..J denotes the detail component of the wavelet decomposition of a certain

input variable X and AJX denotes the approximation component of the wavelet decomposition
of the same input variable X.

From the wavelet coefficients of the different input time series, the significant wavelet coefficients
are selected based on the lag correlation with the observed rainfall time series. Let for example, some
of these may be denoted by Drainfall

i (t),DIOD
i (t)............,DPDO

i (t) and similarly the significant scaling
coefficients at the decomposition level J of the different input series be denoted by ARainfall

J (t),
AIOD
J (t)............,APDO

J (t), where i denotes the depth of decomposition which varies from 1 to J.
Now, the significant wavelet coefficients and scaling coefficients of the different input

series are nonlinearly convolved using the second order Volterra representation within a
multiple inputs-single output frame work. For simplicity of notation, let these different series
be denoted by u1, u2 … uLwhere L is total number of inputs.

If y(t) denotes the rainfall time series, L denotes the number of input variables, N is
the length of the time series, mdenotes the memory of each input variable up to which
there is a significant lag relationship with the rainfall time series and ξt represents the
model noise including modelling errors and the unobservable disturbances, the multiscale
nonlinear relationship may be written as

y tð Þ ¼
X
n¼1

L X
τ¼1

m

h nð Þ
1 τð Þun t−τð Þ þ

X
n¼1

L X
τ1¼1

m X
τ2¼1

m

h nð Þ
2s τ1; τ2ð Þun t−τ1ð Þun t−τ2ð Þ þ

X
n1¼1

L Xn1−1
n2¼1

X
τ1¼1

m X
τ2¼1

m

h n1;n2ð Þ
2x τ1; τ2ð Þun1 t−τ1ð Þun2 t−τ2ð Þ þ ξt

9>>>>>>>>>>>=
>>>>>>>>>>>;

ð8Þ
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Fig. 1 Wavelet Nonlinear Model –Scheme I
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First order kernels h1
(n) describe the linear relationship between the nth input un and y, the

second order self-kernels h2s
(n) describe the 2nd order nonlinear relation between the nth input

un and y respectively and the second order cross-kernels h2x
n1;n2ð Þ describe the 2nd order

nonlinear interactions between each unique pair of inputs (un1 and un2) as they affect y.
Eq. (8) can be simplified by combining the last two terms to yield Eq. (8) and it now

remains to estimate kernels h1 and h2.

y tð Þ ¼
X
n¼1

L X
τ¼1

m

h nð Þ
1 τð Þun t−τð Þ

þ
X
n1¼1

L X
n2¼1

L X
τ1¼1

m X
τ2¼1

m

h n1;n2ð Þ
2 τ1; τ2ð Þun1 t−τ1ð Þun2 t−τ2ð Þ þ ξt ð9Þ

The representation of Eq. (9) can be further simplified by considering each of the lagged
variables u1(t-1), u1(t-τ)...., u2(t- 1), u2(t- τ).... as separate variables d1(t), d2(t), d3(t)........ dNl (t)
then, Eq. (8) can be written as

y tð Þ ¼
X
l¼1

Nl

h1 lð Þdl tð Þ þ
X
l1¼1

NlX
l2¼1

Nl

h2 l1; l2ð Þdl1 tð Þdl2 tð Þ ð10Þ

More clearly,

dl tð Þ ¼ xk tð Þ 1≤k≤Lf ; 1≤ l≤L
dl tð Þ ¼ xk t−τð Þ 1≤k≤L ; L < l≤Nl ; τ ¼ 1; 2; 3::::mf
τ ¼ τ th lagged value:
L ¼ total predictor time series :
Nl ¼ total number of lagged variables

Using the Orthogonnal Least Squares- Error Reduction Ratio (OLS-ERR) method of Chen and
Billings (1989), the significant regressor terms were selected and correspondingly kernels were
estimated. The complete mathematical derivation of the Wavelet Volterra coupled model can be
found in (Maheswaran and Khosa 2012a). The programs were coded and executed in theMATLAB
7.6.0.

4.2 Multivariate Wavelet Linear Regression Model

The Multivariate wavelet-based Linear Regression (MWLR) is constructed by incorporating two
methods: Linear Regression andWavelet Transform (Kisi 2009 and He et al. 2013). The details and
approximations of the different input variables are combined using the linear regression to predict the
future rainfall. For theMWLRmodel inputs, each of the original rainfall and climate index time series
is decomposedinto a certain number of subseries componentsAJ andD’s using thewavelet transform.

Then the forecasted value y(t), the rainfall at time t can be obtained using the multiple linear
regression formulation as given below,

y tð Þ ¼
X
n¼1

L X
τ¼1

m

an τð Þun t−τð Þ ð11Þ

Where, un(t) denotes the wavelet decompositions of the different input predictor variables
and an denotes the regression parameter which can be obtained from the calibration period data
and τ denotes the lag time between the rainfall time series and the predictor time series. The
programs were coded and executed in the MATLAB 7.6.0.
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4.3 Single Scale Neural Network Model

In the past, neural networks have been extensively applied for forecasting purposes and the
results have been very encouraging. In this study, the neural networks model has been used for
the basic comparison with the proposed wavelet based approach. The basics of neural
networks are available extensively in literatures ((Thirumalaiah and Deo 1998), (Adamowski
and Chan 2011)). The choice of the ‘most appropriate’ network training algorithm is usually
resolved by means of a trial and error based judgement and, it is understandable that there
would be diverse opinions on the use of a specific network algorithm. In the present study,
ANN models have been implemented with various training algorithms and their performance
assessed through a comparative evaluation and the corresponding ‘best’ results are presented
for clarity. The input variables for the ANN model are selected based on the cross correlation
between the predictor variables and prectictand. The programs were run using the Neural
Network Toolbox and executed in the MATLAB 7.6.0.

4.4 Model Performance Measures

To evaluate the performance of predictions, the following statistical measures of error are
considered

1. Mean absolute error (MAE)

MAE ¼
X

Observed ið Þ−Forecast ið Þj j
N

ð12Þ

2. Root Mean Square Error (RMSE).

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i¼1

N

Observed ið Þ−Forecast ið Þð Þ2

N−1

vuuut
ð13Þ

3. Nash Sutcliffe Criteria (NSC)

NSC ¼ E ¼ 1−

X
t¼1

N

Actual ið Þ−Forecast ið Þð Þ2

X
t¼1

N

Actual ið Þ−Actual
� �2

ð14Þ

To compare the performances of the different models, the present study has used measures
such as Root Mean Squared Error (RMSE), Mean Absolute Error (MAE). Karunanithi et al.
(1994) suggested that RMSE is a good measure for indicating goodness of fit. In general,
RMSE≥MAE, and the degree to which RMSE exceeds MAE is an indicator of the extent to
which large outliers (Variance between the observed and the forecasted values) exist in the
evaluation set. Lower the value of RMSE better is the model performance.

Equations (12), (13) and (14) as given above have been used to estimate these performance
measures.
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5 Model Application

5.1 Selection of input components

As a first step, the wavelet decompositions of the input predictand variables were performed.
Figure 2 shows an example of wavelet decomposition using the ‘db2’ wavelet with four
resolution levels corresponding to the monthly rainfall series for MH Halli. Similarly Fig. 3
shows wavelet decomposition for the SOI indices. These figures clearly show how the wavelet
transform decomposes original series into its detail (D’s) and approximation A4 subseries.

The selection of the input wavelet components was done by estimating the cross lag
correlation coefficients. For each potential predictor subseries, a monthly lag which lies within
the interval [1, 30] is identified and the corresponding maximum lag correlation coefficient
(MLCC) is found for this subseries and the rainfall time series. Some of the sample cross
correlation plots are shown in Fig. 4. Table 2 reports the summary of the MLCC for the various
subseries and the rainfall time series for all the three station under investigation. It can be seen
that the components D1, D2, D3, D5 and A5 of the IOD are having significant correlation with
the rainfall anomalies. Apart from this, the D4 and A4 component of the SOI time series and
the IOD time series are having significant cross lag correlation with the original rainfall time
series. Also, it is seen that the D4 and A4 of PDO is having good correlation with the rainfall
time series.

5.2 MWVC Model

In line with the assumption that a given time series constituting observations on a natural
process is a result of an amalgamation of various sub-processes or phenomena that individually
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Fig. 2 Wavelet decomposition of the observed rainfall time series at M H Halli using db2 wavelet

5420 R. Maheswaran, R. Khosa



operate at various scales and accordingly each of these sub-process has the attribute of memory
albeit of different spans. For the rainfall time series of MH Halli, Table 1 indicates that the
optimal components that contribute significantly to variability in the observed rainfall process,
X(t) are D1IOD, (D4,A4)SOI, (D1,D3,A4)PDO, (D1,D2,D4,A4)rainf. The lags at which these
variables are having significant correlation at 95 % confidence limits were also estimated.
From this group of variables a total of 24 significant input variables were selected based on the
higher lagged cross correlation analysis. These input variables were regressed using the 2nd
order volterra model. This resulted in anestimation of a total of 356 volterra kernels. However,
using the OLS-ERR algorithm, it was seen that the 40 kernels were seen to be significant.
Figure 5 shows the plot of the NSC vs. No. of significant kernels selected and it is observed
that there is no significant change in the NSC values beyond 40terms leading to the logical
inference that the MWVC model would comprise of just these 40 terms. Significantly, it was
seen that the model has only 5 linear terms while the remaining 35 happen to be nonlinear
terms. Figure 6 shows the second order kernel values of the derived MWVC model for MH
Halli station and the model validation results are compared with the test data on observed
rainfall time series and the comparison is presented in Fig. 7. Several input combinations were
tried and the results were tabulated in Table 2.

Similar approach was followed for the remaining two stations and the results are presented
in the later section.
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Fig. 3 Wavelet decomposition of the SOI time series using db2 wavelet
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5.3 Wavelet Multivariate linear Regression Model

Selection of input variables was based on the strength of cross correlation between individual
wavelet decompositions of rainfall and different climate indices. The significant input variables
were numbering to 26. Figure 8 shows the plot of the NSC vs. No. of significant terms selected
and it is observed that there is no significant change in the NSC values beyond 7 terms leading
to the logical inference that the MWVC model would comprise of just these 7 terms. It was
seen that out of these 26 inputs only 7 were significantly contributing to the rainfall. The
scatter plot of the results for the MHHalli is shown in Fig. 9. The results of the WMLR for all
other stations are summarised in the later part of the section. The explicit forecasting equation
for the WMLR is given by Eq. (15)

Rtþ1 ¼ 0:21D3Rt þ 1:06D4Rt þ 0:29D2SOIt þ 0:43D3SOIt−6 þ
5:57A4Rt −5:10A4

R
t−1 þ 0:52A4Rt−12

ð15Þ

5.4 Neural networks Model

Recently, Meknaik et al., (2013) have used neural network for forecasting rainfall using the
climate indices such as SST and IOD. They have used the ENSO, IOD, SOI and Nino 3.4 as
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Fig. 5 NSC vs. No. of significant terms used – MH Halli

Table 1 Summary of the Cross Correlation analysis between the wavelet decomposition of the input variables
and the observed rainfall time series

Input
time
series

Kudige MHHalli Gurgoan

Maximum
correlation
coefficient

Maximum
memory in
months

Maximum
correlation
coefficient

Maximum
memory in
months

Maximum
correlation
coefficient

Maximum
memory in
months

IOD
D1 0.08 2 0.067 2 −0.13 3
D2 0.15 3 0.16 3 0.12 6
D3 0.002 0 0.001 0 0.04 0
D4 0.002 0 0.002 0 0.13 4
A4 0.08 3 0.09 3 0.15 6
SOI
D1 0.09 9 0.09 9 0.17 3
D2 0.03 0 0.045 0 0.12 3
D3 0.02 0 0.01 0 0.11 4
D4 0.2 1 0.20 1 0.19 6
A4 0.28 6 0.24 6 0.25 6
PDO
D1 0.15 20 0.14 20 0.07 1
D2 0.10 12 0.14 12 0.16 8
D3 0.15 10 0.15 10 0.14 10
D4 0.1 6 0.12 6 0.05 0
A4 0.15 6 0.17 6 0.21 12
Historical Rainfall
D1 0.5 3 0.54 3 0.56 12
D2 0.28 2 0.34 2 0.67 14
D3 0.07 0 0.06 0 0.51 10
D4 0.15 3 0.14 3 −0.1 1
A4 0.3 5 0.33 5 0.36 20
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input for the ANN models for forecasting the future rainfall. In this work, a similar approach
has been taken for forecasting the rainfall based on the past rainfall values and the past climate
indices. Table 3 summarises the prediction skills of the different models that were tested in the
study. The scatter plot of the results from the best model for the MHHalli is shown in Fig. 10.

Similar approach was used to obtain the best model for the other two sub-basins viz. Kudige
and Gurgoan. The best results from each of the category of the model are reported in Table 4.

6 Results and Discussions

The performance statistics of the Wavelet nonlinear model, wavelet linear models and the
neural networks are shown in Table 4 for the test period 1970–1989 for all the three places.
NSC for the Wavelet nonlinear Model ranges from 0.74 to 0.78, while that from the WMLR
varies from 0.50 to 0.62. As a result, the Wavelet nonlinear model increases the forecast NSC
by almost 50 %. This clearly indicates that Wavelet nonlinear provides significantly improved
accuracy relative to WMLR for monthly rainfall forecasts.

Fig. 7 Observed and forecast rainfall values for MH Halli station using MWVC models
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Fig. 6 Second order kernel for the MWVCmodel – MH Halli
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Similarly, in terms of RMSE the multivariate Wavelet Volterra model performs better than
the other models (WMLR, ANN) by 16 % and 25 %. Therefore, from the RMSE and NSC
viewpoints, the proposed wavelet nonlinear model performs better than the WMLR model for
monthly rainfall forecasting. This may be because the proposed nonlinear wavelet model has
capability to capture the nonlinear relationships of the predictor variables on the rainfall at
different time scales, while WMLR doesn’t. Even though the number of parameters to be
estimated may be more for the wavelet based nonlinear model than the WMLR model
(Eq. 15), however, it is to be noted that the original number of input predictor variables is
same.
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Fig. 8 NSC vs. No. of significant terms used for the MWLR model – MH Halli

Table 2 Selection of Best MWVCmodel for one month ahead forecasting at MHalli

S.No Model Inputs WMLR Results

RMSE (m) MARE (%) MAE (m) NSC CC

(i). D1t-1, IOD_D2t-1,SOI_D4t-1, SOI_A4t-1, SOI_A4t-6,
PDO_D1t-1, PDO_A4t-1, R_D1t-1, R_D1t-2, R_D2t-1,
R_D2t-3, R_D4t-1, R_D4t-3, R_A4t-1............ R_A4t-5,

174.56 1.26 83.56 0.58 0.79

(ii) D1t-1, IOD_D2t-1,SOI_D4t-1, SOI_A4t-1, SOI_A4t-6,
PDO_D1t-1, PDO_A4t-1, R_D1t-1, R_D1t-2, R_D2t-1,
R_D2t-3,

R_D4t-1, R_D4t-3, R_A4t-1............ R_A4t-5,

156.25 1.050 70.67 0.65 0.83

(iii) D1t-1, IOD_D2t-1,SOI_D4t-1, SOI_A4t-1, SOI_A4t-6,
PDO_D1t-1, PDO_A4t-1, R_D1t-1, R_D1t-2, R_D2t-1,
R_D2t-3,

R_D4t-1, R_D4t-3, R_A4t-1............ R_A4t-5,

121.27 0.69 73.45 0.77 0.89

(iv) D1t-1, IOD_D2t-1,SOI_D4t-1, SOI_A4t-1, SOI_A4t-6,
PDO_D1t-1, PDO_A4t-1, R_D1t-1, R_D1t-2, R_D2t-1,
R_D2t-3,

R_D4t-1, R_D4t-3, R_A4t-1............ R_A4t-5,

130.76 0.74 79.29 0.69 0.84
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On the other hand, it has been seen that the WMLR performs better than the NN model
because of the wavelet decomposition has the capability to unravel the hidden relationships
between the predictor variables and the rainfall time series. To inspect how the forecast models
perform for dry and wet months, the forecasted results are plotted for MHHalli in Fig. 11, for
the test period from January 1985 to Dec 1987. At MHHalli both MWVC andMWLR perform
similarly for months with normal rainfall, but for some extreme months, MWVC model
provides much better prediction than MWLR. It can be observed that for 1985 and 1986,
the MWVC models produced very close forecasts, whereas the MWLR model and ANN
model underestimates the rainfall. However, for 1987 both MWVC and MWLR model
overestimates the wet months rainfall whereas there is an underestimation by ANN model.
For one extreme wet month at the MWVC forecasts 960.23 mm in comparison to the observed
1020.2 mm, with an underestimation of 5.88 %, whereas the MWLR forecasts 521.26 mm,
with an underestimation of 48.91 %.

In the case of the summer rainfall also, the MWVC yields better results whereas the other
two models either over estimate or underestimates the rainfall. For example, in the year 1987
for June, the MWVC gives a value of 108.34 mm in comparison with the observed rainfall of
123.56 mm. For the same month the MWLR and ANN model provide forecasts of 97.67 mm
and 88.56 mm respectively.

Fig. 9 Observed and forecast rainfall values for MH Halli station using MWLR models

Table 3 Selection of Best ANN model for one month ahead forecasting at MHalli. (After normalizing)

S.No Model Inputs ANN Results

RMSE
(mm)

MARE
(%)

MAE
(mm)

NSC

(i). Lagged Rainfall anamolies(t-1......t-15), IOD(t-3),
IOD(t-7), SOI(t-1), SOI(t-6), PDO(t-1),PDO(t-3)

2.95 6.8 1.568 −0.99

(ii) Lagged Rainfall anamolies(t-1......t-15), IOD(t-3),
IOD(t-7), SOI(t-1), SOI(t-6), SOI(t-12),
PDO(t-1),PDO(t-3)

1.93 7.6 1.28 −0.35

(iii) Lagged Rainfall anamolies(t-1......t-15) 1.52 0.80 1.17 0.55

(iv) Lagged Rainfall anamolies(t-1......t-15), IOD(t-3),
IOD(t-7), SOI(t-1), SOI(t-6), SOI(t-12), PDO(t-1),PDO(t-
3), PDO(t-12)

1.59 0.81 1.23 0.51
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The models were compared for their overall capability for forecasting the rainfall. Figure 12
shows the comparison of the forecasts values with the observed rainfall during the months of
June, July, Aug and September for the period of 5 years. The analysis of the results indicate
that the MWVC performs well in picking up the extreme rainfall events on a monthly time
scale.
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Fig. 10 Observed and forecast rainfall values for MH Halli station using ANN models

Table 4 Result Statistics for one month ahead forecasting of one month ahead total rainfall at MHalli and
Gurgoan using different models

Performance Measures Wavelet 2nd order
Nonlinear Model

WMLR ANN (3 hidden
layers)

Wavelet Nonlinear
Model without climate
indices

MHalli

RMSE (mm) 121.27 149.43 170.52 136.90

MAE (mm) 73.45 87.57 95.78 84.84

Correlation Coefficient 0.89 0.78 0.65 0.82

NSC 0.78 0.62 0.51 0.69

Gurgoan

RMSE (mm) 72.56 82.47 97.56 77.58

MAE (mm) 36.45 40.89 55.75 38.21

Correlation Coefficient 0.87 0.77 0.60 0.81

NSC 0.79 0.63 0.45 0.69

Kudige

RMSE (mm) 126.78 146.67 165.88 138.23

MAE (mm) 75.98 90.09 94.35 83.55

Correlation Coefficient 0.91 0.76 0.67 0.81

NSC 0.77 0.60 0.53 0.67
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Figure 13 shows error percent for each of the model with reference to the observed values
for the monsoon periods. The analysis of the plot show that for these periods indicates that the
MWVC had a better performance during the extreme months. Similar results were obtained for
Gurgoan also.

6.1 Analysis of the Influence of the Climate Indices in Driving the Rainfall

In order to evaluate the influence of the climate indices on the rainfall, a WVC model was
developed without climate indices and compared with the MWVC model. The comparison of
the results of the WVC model without climate indices is tabulated in Table 4. It was seen that
in all the three cases, including the climate indices as the model input variables drastically
improved the model performance. In the case of Kudige, including the climate indices
increased the NSC from 0.71 to 0.77. These figures imply that about 15 % of the total variance
is explained by the climate indices.

From the results obtained from the orthogonal least squares analysis, it was observed
that the SOI index and IOD index are the major regressors when compared with the PDO
indices. More research has to be pursued to bring out the reason for this kind of
behaviour.

Fig. 11 Model Results for the three year period (1985–1987)

Fig. 12 Average forecast performance for MHHalli
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7 Conclusions

Awavelet based nonlinear method is presented, tested and discussed for forecasting monthly
rainfall. The proposed wavelet based multivariate nonlinear model combines the wavelet
decompositions of the candidate predictor variables (historical rainfall and climate indices
using the MISO 2nd order Volterra model. The proposed method is compared with two other
competent models such as MWLR and ANN models. The analysis of the results reveal that the
MWVC models have better performance than the other contesting models. In fact, the linear
nature of MWLR model estimators makes it inadequate to provide good prognostics for a
variable characterized by a highly nonlinear physics. On the other hand the ANN model even
though equipped with the ability of picking up the nonlinear features, but it performed poorly
because of their inability to pick up the nonlinearity in the rainfall dynamics.

The proposed model was trained with the 53-year data, and tested with the remaining 20-
year data, and compared to the traditional ANN model based on original time series. The
WMVC forecast skill appears to be significantly better than the ANN and MWLR model. The
WMVC model reduced mean absolute error by 16 % and increased the NSC by 26 %,
respectively, in comparison to the WMLR model. The improvement is more significant for
the extreme wet months, and for the dry months there is no significant improvement over the

Fig. 13 Percentage of error in the different models during the monsoon seasons for a MHHalli and b Gurgoan
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MWLR and ANN models. These results indicate that the WMVC can capture the nonlinear
impacts of predictor variables on rainfall series under different time scales. Also, the analysis
clearly shows that there is a significant improvement in the model performance (15 % increase
in model performance) by the inclusion of the climate variables in the forecasting model.
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