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Abstract The impact of climate change on water availability in two river basins located in
central Canada is investigated. Several statistical downscaling methods are used to generate
temperature and precipitation scenarios from the third-generation Canadian Coupled General
Circulation Model, forced with different emission scenarios. The hydrological model SLURP
is used to simulate runoff. All downscaling methods agree that temperature will increase with
time and that precipitation will also increase, although there is considerably more uncertainty in the
magnitude of precipitation change. The study concludes that the change in total annual precipitation
does not necessarily translate into similar changes in runoff. The seasonal distribution of
precipitation changes is important for runoff, as is the increase in evapotranspiration. The choice
of downscaling method appears to have a greater impact on runoff projections than the choice
of emission scenario. Therefore, it is important to consider several downscaling methods when
evaluating the impact of climate change on runoff.

Keywords Climate change . Statistical downscaling . Runoff . Uncertainty . Canada

1 Introduction

The impact of climate change on water resources is an important issue in Canada, including in
the province of Manitoba which has a considerable amount of surface water and an important
hydropower industry. However, relatively few studies have addressed climate change impacts
on the hydrology of Manitoba. Choi et al. (2009) found that mean runoff in 2 basins in central
Manitoba is projected to increase as a result of climate change. Shrestha and Dibike (2011)
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studied climate-induced hydrological changes in the Lake Winnipeg basin, with focus on 2
river basins in southeastern Saskatchewan and southern Manitoba, and also found that total
runoff is likely to increase and the spring freshet likely to occur earlier in the future. Other
studies (e.g. Burn et al. 2008; St. George S 2007; Sushama et al. 2006; Yulianti and Burn
1998) have examined the hydrology or hydrological impacts of climate change for the
Canadian Prairie region in general. Except for the global-scale study by Hamududu and
Killingtveit (2012) and continental-scale study by Sushama et al. (2006), there is limited
research relevant to mid-sized basins contributing to Lake Winnipeg.

The present study focuses on the impact of climate change on the runoff regime of two mid-
sized watersheds within the Winnipeg River basin. The Winnipeg River, located primarily in
southeastern Manitoba and northwestern Ontario, is a major source of inflow to Lake
Winnipeg. The general methodology employed here involves running a hydrological model
with future climate scenarios simulated by a global climate model (GCM). Due to their global
nature, GCMs have coarse spatial resolutions, typically in the order of several hundred
kilometers, and most GCMs have significant biases, especially in precipitation output. It is
therefore necessary to perform some post-processing of simulated precipitation and tempera-
ture in order to use these variables as input to hydrologic models (Mareuil et al. 2007).
Methods for downscaling GCM output are commonly classified as dynamic or statistical.
Dynamic downscaling methods involve the use of high-resolution regional climate models set
up for the domain of interest, with the GCM providing the necessary boundary conditions.
Statistical downscaling methods use relatively simple statistical models to relate large-scale
atmospheric variables, presumably well simulated by the GCM, to temperature and precipita-
tion at the location of interest. Statistical downscaling is computationally cheaper and easier to
implement than dynamic downscaling, and can often be designed to produce unbiased
simulations for specific locations which is not always possible with dynamic downscaling
models. A general review of downscaling methods, including their relative advantages and
disadvantages, is provided by Fowler et al. (2007). Statistical downscaling methods are
commonly divided into three classes (Wilby and Wigley 1997): transfer function models,
weather generators, and weather-typing models. Some downscaling methods are hybrids
of these classes. In the present study, three statistical downscaling methods representing
different classes were employed. More specifically, we used the Statistical DownScaling
Model (SDSM, Wilby et al. 2002), which falls into the category of transfer function
models, the Long Ashton Research Station Weather Generator (LARS-WG, Semenov and
Barrow 1997) which is a weather generator, and nearest neighbor resampling (NNR,
Gangopadhyay et al. 2005), a non-parametric method that can be viewed as a special case of
weather typing.

The construction of hydrological change scenarios involves a number of steps, and each
of these steps introduces uncertainty (Wilby and Harris 2006). To be of credible value,
projected changes must be accompanied by at least some crude estimate of associated
uncertainties or range of possibilities. The selection of GCM and emission scenario is an
important source of uncertainty (Wilby and Harris 2006; Prudhomme et al. 2003), but
recent studies suggest that downscaling methods also introduce significant uncertainties
(e.g. Chen et al. 2013; Hanel et al. 2013; Samadi et al. 2013; Ghosh and Katkar 2012;
Chen et al. 2011; Zhang et al. 2011, and Quintana Seguí et al. 2010).

The studies mentioned above provide a useful context for the research presented here. The
main objective of the present study is to quantify climate change impacts and uncertainties on
runoff in two watersheds within the Winnipeg River basin. We are particularly interested in
determining the relative contribution of downscaling method and greenhouse gases emission
scenarios to the total uncertainty. This does not cover the entire range of uncertainties, as the
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present study does not consider the uncertainties associated with the choice of GCM and
choice of hydrologic model. Nevertheless, it is a useful exercise to isolate and study specific
sources of uncertainty.

2 Methods

2.1 Study Basins

The study focuses on two river basins, Sturgeon and Troutlake, located in northwestern Ontario
(Fig. 1). The watersheds are part of the Winnipeg River basin, which in turn is part of the
greater Nelson River basin. The region is sparsely populated and the landscape is typical for
the Canadian Shield, characterized by coniferous forest and numerous lakes. The drainage
areas upstream of the hydrometric stations are 4,450 km2 for the Sturgeon River and
2,370 km2 for the Troutlake River.

There are two weather stations in the vicinity of the sub-basins (Red Lake and Sioux
Lookout) (Fig. 1). The average annual precipitation is 640 mm, and the annual mean
temperature is 0.9 °C at Red Lake Airport over the period 1971–2000. Sioux Lookout
Airport has a similar climate, albeit slightly wetter and warmer. The average discharge at
Troutlake, measured over the period 1970–2008, is 17.0 m3s−1, with spring peak flow usually
occurring in late May. The Sturgeon River has a similar seasonal pattern with an average

Fig. 1 Aggregated simulations areas (ASA) of the Sturgeon and Troutlake River basins for hydrological
modeling. Point symbols are the location where climatic and hydrometric data are available. The inset map
shows the two basins and the Nelson River basin where the two basins are nested
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discharge of 39.3 m3s−1 during the period 1961–2008. There are several control structures in
the Winnipeg River basin, but the 2 basins selected for this study have natural flow regimes.

2.2 Hydrological Modeling

The SLURP model (Semi-distributed Land Use-based Runoff Processes) Version 11.2,
developed by Kite (1998), was selected for streamflow simulation. SLURP is a conceptual
hydrologic model with a relatively small number of parameters. The model treats a
watershed as a union of aggregated simulation areas (ASA). ASAs are delineated based
on elevation using a geographic information system (GIS), and the flow contributions
from upstream ASAs are routed to downstream ASAs by a user-selected routing scheme.
The vertical water balance is calculated for each land cover type in each ASA. The input
data for SLURP are daily time series of mean temperature, total precipitation, relative
humidity, and bright sunshine hours (or shortwave radiation). More details on the SLURP model
can be found in Kite (1998).

The land cover data for the study basins were obtained from the Advance Very High
Resolution Radiometer via GeoGratis with a scale of 1:2 M. The digital elevation model with
a resolution of 3 arc sec was obtained from the National Aeronautics and Space Administration
Shuttle Radar Topography Mission via the U.S. Geological Survey. Based on the GIS analysis,
the Sturgeon River basin was divided into seven ASAs and the Troutlake basin into four
(Fig. 1).

Daily time series of temperature, precipitation, and relative humidity were obtained from
Environment Canada for the two weather stations shown in Fig. 1. Both weather stations are
reasonably close to their respective watersheds and provide the most representative informa-
tion available. Solar radiation data, extracted from the North American Regional Reanalysis
(NARR; Mesinger et al. 2006), were used in place of bright sunshine hours that are not
available at the weather stations in the region.

The SLURP model was set up for each river basin and calibrated using measured
streamflow data for the years 1995–1997 (Sturgeon) and 1994–1996 (Troutlake). The auto-
matic optimization tool embedded in SLURP was used first and later some parameters were
adjusted manually to improve the model performance in terms of relative errors and goodness-
of-fit. Three performance statistics were considered in the calibration: deviation of volume
(Dv), Nash-Sutcliffe efficiency (E), and mean absolute error (MAE). These measures were
chosen based on the recommendation by Legates and McCabe (1999). Daily scale E values
were 0.71 (Sturgeon) and 0.66 (Troutlake), Dv was within +/− 10 %, and MAE values were
9.7 m3s−1 (Sturgeon) and 3.1 m3s−1 (Troutlake). The calibration periods were selected based on
the availability of weather data. The E values are reasonable and typical for this type of
watersheds where weather stations are limited in numbers and the watersheds are characterized
by many lakes. MAE values are around 25 % of the mean observed streamflow.

2.3 Downscaling Methods

Three statistical downscaling methods were implemented in this study, using the daily output
from the third-generation Canadian Coupled General Circulation Model (CGCM3.1). The
CGCM3.1 output was obtained for three different greenhouse gas emission scenarios from the
Special Report on Emissions Scenarios (SRES; Nakicenovic and Swart 2000), B1, A1B, and
A2. The scenarios represent ‘low’, ‘medium’ and ‘high’ emissions, respectively (Meehl et al.
2007). It should be emphasized that there are also considerable uncertainties associated with
the choice of GCM model. These uncertainties are well documented, for example in the IPCC
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(2007) report. The primary focus of the present research is to assess the uncertainty arising
from the application of different statistical downscaling methods and different emission
scenarios, and therefore only one GCM was used. The CGCM was chosen because it is a
Canadian model that has been extensively validated over Canada and has been used in other
Canadian studies (e.g. Sultana and Coulibaly 2011; Dibike and Coulibaly 2005).

SDSM is a statistical downscaling technique based on multiple regression models between
large-scale atmospheric variables (predictors) and local-scale variables (predictands). Three
predictands, daily maximum temperature, minimum temperature and precipitation, were
modeled by SDSM for the baseline and future periods for this study. The general procedure
to set up SDSM is described in Wilby and Dawson (2004). SDSM was calibrated for Sioux
Lookout using the National Centers for Environmental Prediction-National Center for
Atmospheric Research global reanalysis data (Kistler et al. 2001). Twenty-five predictor
variables were initially considered (details in Koenig 2008). The model was calibrated for
the period 1961–1990 and validated for the 1991–2000 period. CGCM3.1 was used to obtain
predictors for the baseline and future periods. Due to the lack of observed climate data, SDSM
could not be implemented for the Red Lake station. Instead, the mean monthly differences in
observed temperature and precipitation were calculated between the Sioux Lookout and Red
Lake stations, and the differences were superposed on the SDSM parameters for Sioux
Lookout to generate SDSM data for Red Lake.

LARS-WG is a stochastic weather generator that can produce synthetic series of daily
precipitation, maximum temperature (Tmax), minimum temperature (Tmin), and solar radia-
tion. In LARS-WG, the occurrence of daily precipitation is modeled as alternating sequences
of dry and wet spells. The daily weather variables – Tmax, Tmin, solar radiation and
precipitation amount – are then simulated conditional on whether precipitation occurs or not.
To generate future scenarios, LARS-WG uses changes in daily weather variables determined
from the GCM baseline and future periods to revise parameters to represent the future climate.
LARS-WG requires observed Tmax, Tmin, and precipitation data as input. LARS-WG was
implemented for the location of the Sioux Lookout weather station to generate precipitation,
Tmax, Tmin, and solar radiation. As in the case of the SDSM model, the results were
transferred to Red Lake. Data from 1961–1990 were used for the calibration while the period
of 1991–2000 was used for validation (Koenig 2008).

NNR is a non-parametric method that produces local weather data by resampling from
the record of observed weather variables, based on the similarity of the daily large-scale
atmospheric patterns of a GCM and the corresponding observed patterns. The basic idea
is that by comparing large-scale atmospheric variables from a GCM for a given simula-
tion day with the same variables in the historical record, days with similar large-scale
variables (nearest neighbors) can be identified in the historical record. The comparison
between the simulation day and the historical record is done using a vector of variables
referred to as the feature vector. The number of variables included in the vector may vary,
and Buishand and Brandsma (2001) obtained the best results with 2 and 5 after trying 2,
5, 20, and 50. Using a pre-defined metric, the distance between the feature vector for a
given simulation day and feature vectors in the historical record can be determined, and
the group of the k most similar days can be identified. One of these is selected at random
to provide the local weather data for the simulation day. A higher selection probability is
given to the closer days by using a decreasing kernel density function. The NNR method
requires large-scale atmospheric variables for the feature vector and corresponding historical
weather data. The large-scale variables considered here are surface temperature, 500 hPa
temperature, 850 hPa temperature, 500 hPa geopotential height, and 850 hPa geopotential
height covering a significant area over west-central Canada.

Hydrological Impacts in Central Canada 5323



3 Results

3.1 Comparison of Statistical Downscaling Methods for the Baseline Period

The three downscaling methods produced temperature and precipitation series for the baseline
period (1971–2000) both for Sioux Lookout and Red Lake. The results were evaluated by
comparing downscaled temperature and precipitation statistics with those observed at the
Sioux Lookout station. The results for the Red Lake station show a similar pattern between
downscaling methods. As seen in Table 1, all downscaling methods result in mean annual
temperatures that are higher than the observed (Station), but only SDSM annual temperature is
significantly different from the station at the 5 % significance level. This difference is largely
due to the fact that SDSM annual temperatures were higher than Station annual temperatures in
most of the 1990s, the validation period for SDSM. LARS-WG is closest to the station
data in terms of mean annual temperature. The interannual variability of temperature is
somewhat underestimated in the statistical downscaling results, which is common in
observation-model comparisons. The 95th and 5th percentile of daily temperature values
are fairly similar among the data sets. The difference between the three downscaling
methods is more pronounced in the case of precipitation statistics, although none of the
downscaled annual total precipitations are significantly different from Station. All down-
scaling methods underestimate the observed interannual variability, and the underestimation is
particularly severe in SDSM. Maximum daily precipitation is different by as much as 14.7 mm
(between SDSM and LARS-WG), but the 95th percentile of daily precipitation is very similar
among the data sets.

The distribution of monthly total precipitation values is portrayed in Fig. 2 for all months as
well as for the period of May to October, which generally are the wettest months of the year.
Except for outliers, the three downscaling methods have quite similar distributions, although
the NNR method has a slight bias towards lower values. SDSM produced higher July
precipitation than other downscaling methods, resulting in some particularly large outliers in
the boxplot. The box plots for the May-October period show that the precipitation distributions
are similar, which suggest that the low annual precipitation from NNR shown in Table 1 is
largely due to low precipitation during dry months. LARS-WG was better than others for
interannual variability at the annual scale, but not at the monthly scale. Dibike and Coulibaly

Table 1 Temperature and precipitation variables from observation (Station) and each statistical downscaling
method for Sioux Lookout A, 1971-2000

Station SDSM WG NNR

Mean annual temperature (°C) 1.6 2.2 1.8 2.0

SDa of annual mean temperature 1.1 1.1 0.6 0.8

Maximum daily temperature (°C) 30.3 26.9 30.3 27.9

95th percentile of daily temperature (°C) 20.9 20.6 20.8 20.8

5th percentile of daily temperature (°C) −24.0 −21.0 −22.5 −22.7
Minimum daily temperature (°C) −38.4 −34.1 −41.6 −37.8
Mean of annual total precipitation (mm) 717 746 744 689

SD of annual precipitation 127 75 101 88

Maximum daily precipitation (mm) 71.0 89.6 64.9 80.0

95th percentile of daily precipitation (mm) 10.8 9.8 10.7 10.1

a SD stands for standard deviation
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(2005) report that both SDSM and LARS-WG simulated precipitation reasonably well for a
basin in Quebec, but do not comment on variability.

The SLURP model was run with input data generated by each downscaling method for the
period 1970–2000, and the result for the year 1970 was dropped from the analysis to eliminate
the impact of initial conditions. The distribution of simulated annual mean discharge is shown
in Fig. 3. The median annual runoff simulated with input data from NNR is consistently lower
than runoff simulated with SDSM or LARS-WG data. The largest variability among the
downscaling methods, in terms of the range of the whiskers, is observed with LARS-WG,
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while the median streamflow with NNR are significantly lower than the other 2 methods.
The result generally reflects the precipitation statistics in Table 1. All the simulations with
the downscaled GCM data resulted in smaller interannual variability than the observed
streamflow.

Overall, all the methods produce similar results for temperature, whereas LARS-WG
produce better results for precipitation than SDSM and NNR. There are some studies that
report similar results to the present one. Dibike and Coulibaly (2005) report that LARS-WG is
better than SDSM for wet- and dry-spell length, which has important implications for runoff
generation. Khan et al. (2006) analyzed uncertainty from three statistical downscaling
methods, SDSM, LARS-WG and an artificial neural network (ANN) model, and conclude
that LARS-WG and SDSM are better than the ANN model in reproducing important statistics
such as daily precipitation, and maximum and minimum temperatures in a Quebec basin. They
also found that LARS-WGworked better for daily precipitation than SDSM. The characteristics
of weather generators that employ empirical distributions of precipitation variables are believed
to contribute to the better performance of LARS-WG relative to SDSM.

The underestimation of annual precipitation amount and variability by NNR is not entirely
unexpected. One of the drawbacks of NNR is that it merely resamples values from the
observed data (Sharif and Burn 2006). What is somewhat surprising however is the result
from the hydrological modeling with NNR-downscaled scenarios. NNR underestimates mean
annual precipitation by about 4 % of the station data and about 8 % relative to SDSM- or
LARS-WG-downscaled scenarios, but the runoff totals produced using the NRR method is
21 % and 9 % lower than the runoff produced by SDSM in Sturgeon and Troutlake,
respectively. Cunderlik and Simonovic (2005, 2007) used NNR-downscaled scenarios to run
a hydrological model but did not elaborate on the bias of NNR and its effect on hydrological
simulations, making it impossible to compare with the present study.

3.2 Projected Changes in Annual and Monthly Temperature, Precipitation, and Runoff

The three downscaling methods were applied to the future period of 2046–2065 (2050s) using
output from the CGCM3.1 model, and the downscaled climate data were used for SLURP
simulations. Table 2 shows the changes in annual temperature, precipitation, and runoff for all
basins, emission scenarios, and downscaling methods. The changes in temperature and
precipitation from the raw CGCM3.1 data are also shown, and are the same for the two
basins. The differences between projected temperature changes are small at the annual level,
but the differences in precipitation changes are quite large, especially between downscaling
methods. Changes in annual mean temperatures are all statistically significant (p<0.01).
LARS-WG results in large precipitation increases which are all statistically significant
(p<0.01), whereas SDSM and NNR result in inconsistent directions of change with much
smaller magnitudes. Generally, LARS-WG results in larger precipitation increases and smaller
temperature increases than CGCM3.1, both of which favor runoff increases. On the other
hand, SDSM- and NNR-downscaled scenarios have precipitation changes with smaller mag-
nitudes than CGCM3.1. Therefore, SDSM and NNR generally show changes in the same
direction – decrease – whereas LARS-WG results in increases.

Figure 4 shows the changes in mean monthly temperature and precipitation from the
baseline climate by the 2050s at Sioux Lookout, for each downscaling method and emission
scenario. There is a noticeable discrepancy among downscaling methods and emission
scenarios both in temperature and precipitation changes. The temperature changes for summer
months from SDSM is roughly twice or more than those from LARS-WG and NNR in each
emission scenario, whereas LARS-WG- and NNR-downscaled scenarios show higher
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temperatures than SDSM for January, February, and March. Warming is projected year round,
which could lead to earlier snowmelt, higher evaporation, and reduced snowpack storage. For
March, April, and May, wetter climate is generally projected with LARS-WG and NNR and
drier with SDSM. The results for Red Lake are fairly similar and thus not shown here.

Figure 5 shows changes of mean monthly runoff between the baseline and 2050s periods,
simulated with downscaled input data for each emission scenario. Under the A1B scenario,
LARS-WG results in runoff increases throughout the year, with the highest increase in April
due to increased precipitation and earlier snowmelt, and moderate increases in other months,
largely due to increased evaporation offsetting the effects of precipitation increases. On the
other hand, SDSM results mostly in decreases, and NNR shows more mixed results. Mean
monthly runoff changes to some extent resemble the pattern of mean monthly precipitation
changes due to the relatively small size of the catchments (Fig. 4), but with amplified decreases
in runoff with SDSM and NNR. For months with small precipitation increases in SDSM- and
NNR-downscaled scenarios, runoff is projected to decrease, and for months with large
increases (e.g. SDSM for August), runoff increases moderately. Even though the precipitation

Fig. 4 Mean monthly temperature (left panel) and precipitation (right panel) changes for Sioux Lookout A from
the baseline period by the 2050s
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changes in NNR- and SDSM-downscaled scenarios are similar at the annual scale, the NNR-
downscaled scenarios show large increases in springtime precipitation whereas the SDSM-
downscaled scenarios show smaller increases or decreases (Fig. 4). As a result, NNR results in
smaller annual runoff decreases than SDSM because spring runoff increases partially offset
decreases in other seasons. With the A2 and B1 scenarios, the overall pattern of changes is
similar but of smaller magnitude.

Projected annual runoff changes between the baseline period and the 2050s for the Sturgeon
basin are presented as cumulative distribution functions (CDF) in Fig. 6(a), grouped into
emissions scenarios. The results are similar for Troutlake, thus not shown. For a given
emission scenario, there are considerable differences between downscaling methods, suggest-
ing that a substantial uncertainty is associated with the choice of downscaling method. In all
cases, increases are predominant with LARS-WG, indicated by the curves located mostly on
the right-hand side of zero on the abscissae. This is not surprising given that precipitation is
projected to increase by about 20 % with LARS-WG in all scenarios (Table 2). With the A1B
scenario, SDSM mostly shows decreases, and NNR is a mix between increases and decreases,
reflecting the small average changes shown in Table 2. With the A2 scenario, LARS-WG
shows very large increases in some years, easily exceeding 100 %. Even though annual mean
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changes are similar between A1B and A2 with LARS-WG, interannual variability is much
larger with A2. Decreases are of similar magnitudes between downscaling methods, but
increases vary widely. The changes are more modest with the B1 scenario. Fig. 6(b) shows,
for given downscaling methods, the differences in runoff projections resulting from different
emission scenarios. There appears to be much less variability in runoff projections, suggesting
that there is more uncertainty associated with the choice of downscaling method than with the
choice of emission scenario. Of course, this conclusion is specific to the methods used here.

Mean monthly runoff from all future simulations (three downscaling methods and three
emission scenarios) are presented in Fig. 7 along with the baseline simulations with the observed

Fig. 6 Cumulative distribution functions (CDFs) of annual runoff changes (dQ) for the Sturgeon basin between the
2050s and the baseline periods reflecting uncertainty in the downscaling methods (a) and emissions scenarios (b)
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Fig. 7 Mean monthly runoff from the simulations with the baseline climate data (thick grey line) and with future
climate data (thin blue lines) from all downscaling methods and emission scenarios
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climate data. The future mean monthly runoff shows a great degree of uncertainty between the
simulations, and for every calendar month, the range of changes covers both negative and positive
values. April is the only month where increases are predominant in both basins and this is due to
the earlier snowmelt. In September, October and November, decreases are predominant due to
warmer temperatures and small precipitation changes resulting in increased evaporation.
Summertime runoff shows a great deal of variability and has fairly equal probabilities for
increases and decreases.

The present study found larger uncertainty from the statistical downscaling methods than from
emission scenarios in terms of climate change impacts on mean runoff. This finding is in line with
Wilby and Harris (2006, p. 7) who suggest the following order of significance as a source of
uncertainty for low flow modeling in a UK basin: GCM > downscaling method > hydrological
model structure > hydrological model parameters > emission scenario. They adopted a probabi-
listic approach for each source of uncertainty and considered a limited number of cases for each
source, which is a different approach than used here. However, the way they measured the
magnitude of uncertainty from each source is similar to this study in the sense that relative changes
of hydrological variables are compared among the cases of each uncertainty source. Their finding
is also in line with those of Boé et al. (2009) who found larger uncertainty associated with climate
models than with downscaling methods and Menzel et al. (2006) who found much larger
uncertainty with GCM-downscaling combinations than hydrological modeling. Therefore, the
importance of considering GCM-related uncertainty is emphasized.

4 Conclusions

This study used three different statistical downscaling methods for the CGCM3.1 output under
three different greenhouse gas emission scenarios to create climate scenarios for central
Canadian basins, and simulated hydrological processes with the scenarios using the SLURP
hydrological model. Major findings from the study includes: (1) the climate is projected to be
generally warmer (from 2.1 to 3.6 ° C increases in annual mean temperature) and wetter or
slightly drier (from −6.8 to +22.1 % in annual total precipitation) in the studied basins in the
2050s; (2) runoff is projected to change with a wide range across downscaling methods and
emission scenarios, but LARS-WG produced most consistent results across emission
scenarios—increases in mean annual runoff by 13–27 %; and (3) statistical downscaling
methods have greater uncertainty than emission scenarios in projecting future water availability.
To the extent that the GCM used in the study provides a reasonable projection of climate
change, our results suggest that there a good likelihood that the region will see more runoff in
the future although changes in seasonal runoff remain rather uncertain.
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