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Analysis of Rainfall Severity and Duration in Victoria,
Australia using Non-parametric Copulas and Marginal
Distributions

Ummul Fahri Abdul Rauf ·Panlop Zeephongsekul

Abstract The analysis of joint probability distributions of rainfall characteristics such as
severity and duration is important in water resources management. Deriving their distri-
butions using standard statistical techniques are often problematical due to its complexity.
Standard methods usually assume that the rainfall characteristics are independent or that
their marginal distributions belong to the same family of distributions. The use of copu-
las based methodologies can circumvent these restrictions and are therefore increasingly
popular. However, the copulas and marginal distributions that are commonly used belong
to specific parametric families and their adoption could lead to spurious inferences if
the underlying assumptions are violated. For this reason, we recommend a nonparamet-
ric or semiparametric approach to estimate the joint distribution of rainfall characteristics.
In this paper, we introduce and compare several copula–based approaches, each involv-
ing a combination of parametric or nonparametric marginal distributions conjoined by a
parametric or nonparametric copula. An empirical illustration of the different approaches
using rainfall data collected from six stations in the state of Victoria, Australia, demon-
strated that a nonparametric approach can often give better results than a purely parametric
approach.
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1 Introduction

Floods occur for a number of reasons, however the primary cause behind most floods is
heavy rainfall over a long period of time (McBride and Nicholls 1983; Nicholls and Wong
1990). During the past several years, the state of Victoria, Australia, has experienced severe
floods, especially at higher altitudes in the western and northeastern part of the state. Heavy
rainfall across north-eastern Australia contributed to this natural disaster by causing flood-
ing in the upper reaches of many of Victoria’s major rivers. These major floods caused
massive destruction to existing infrastructure and resulted in hundreds of evacuations in
affected areas. Regions that experienced these extreme climactic events also faced severe
damages to properties and farmlands, with severe losses in incomes and consequential eco-
nomic hardship. Due to the desire to understand, predict and control these recurring extreme
flood events, research into areas related to occurrences of rainfall and its severity have
increased significantly e.g. Pui et al. (2011), Mehrotra and Sharma (2011), Chappell et al.
(2013), and Zhao et al. (2013).

The practice of using parametric distributions such as Lognormal, Weibull, Gamma,
Pearson, Gumbel and other extreme value distributions to analyze rainfall and drought data
has become very common among researchers in climatology and environmental studies.
For example, Abdul Rauf and Zeephongsekul (2011, 2014) used parametric distributions
to investigate rainfall severity and duration patterns in the state of Victoria, Australia;
Shiau (2006) and Shiau and Modarres (2009) estimated the Standard Precipitation Index
by fitting rainfall intensity using the Gamma distribution. As would be expected, this para-
metric approach does not work well for every precipitation data and appears to fit poorly
near the tails of the distribution (Haghighat jou et al. 2013). To alleviate this problem, a
nonparametric kernel density approach has been applied to fit precipitation data. Exam-
ples of such works are Haghighat jou et al. (2013), where nonparametric kernel density is
used to estimate the annual precipitation series in Iran, and Sharma (2000), who presented
a nonparametric long-term probabilistic forecast model based on estimation of the con-
ditional probability distribution of rainfall using nonparametric kernel density estimation
techniques.

Since rainfall characteristics such as intensity, severity and duration are important vari-
ables in hydrological research, deriving their joint distribution in order to study their
statistical behavior is crucial. In the traditional approach, the joint distribution of these
characteristics are from the same parametric family of distributions. For example, Yue
(2000) model the annual maximum storm peaks and amounts by a normal distribution.
In Shiau (2003), a bivariate extreme value distribution with Gumbel marginal distribu-
tions is used to model extreme flood events characterized by flood volumes and flood
peaks. However, it is not realistic to postulate the same parametric marginal distribution
for all characteristics since this assumption is usually not justified in practice. Sklar in
1959 introduced the concept of a copula function joining different marginal distributions
into a multivariate distribution (Joe 1997; Nelsen 2006; Genest and Favre 2007). Since its
introduction, copulas have been widely applied in many disciplines, especially by
economists, climate scientists, hydrologists and actuarial scientists. Copulas was introduced
in rainfall studies (Serinaldi et al. 2009; Kao and Govindaraju 2007, 2008, 2010) as it pro-
vides a more flexible approach that allows different types of marginal distributions to coexist
and join together by a copula to form a multivariate distribution. Another advantage of using
copula is the relaxation of the independence assumption which is inappropriate in modeling
hydrological variables (De Michele and Salvadori 2003; Genest and Favre 2007; Zhang and
Singh 2007).
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The study of rainfall characteristics is one of the key research areas among researchers
working in the area of water resources management. Two pertinent rainfall characteristics
are the severity and duration of rainfall in a geographic region. Prior to embarking upon
developing any viable water plan, the determination of the joint distribution of these two
rainfall characteristics is very important and this will be an objective of this study. The
first application of a nonparametric approach to copulas analysis was by Deheuvels (1979)
who used empirical copula with empirical marginal distributions. Genest et al. (1995) used
a semiparametric method by postulating that the copula function belongs to a parametric
family whose parameter is estimated using maximum likelihood estimation. Scaillet and
Fermanian (2002) applied a similar method to estimate copulas where there is temporal
dependence, a situation prevalent in financial time series data. In another study, Chen and
Huang (2007) proposed a bivariate kernel copula which assists in alleviating the problem of
boundary bias.

The novelty of this paper is to introduce a nonparametric and a semiparametric approach
to the analysis of a bivariate rainfall data model for two rainfall characteristics, namely
severity and duration. This will involve using both a parametric and nonparametric copula
as well as marginal distributions. To the best of our knowledge, the nonparametric and
semiparametric approaches have not been exploited to any great extent and certainly not
in the context of analyzing Australian rainfall data. Three approaches will be used here.
The first approach combines nonparametric marginal distributions with a parametric copula.
The role is reversed in the second approach where the marginal distributions are assumed
parametric and the copula nonparametric. The third approach utilizes both nonparametric
marginal distribution and nonparametric copula. These approaches supplement our earlier
work (Abdul Rauf and Zeephongsekul 2014) where a parametric approach was used to
estimate both the marginal distributions and the copula.

This paper is organized as follows. After this Introduction, Section 2 briefly describes the
study area of the selected rainfall stations. Section 3 consists of the theoretical framework
for the proposed models. Section 4 concludes the paper with some suggestions for future
work.

2 Study Area and Data

The focus of this study is the state of Victoria, Australia. Victoria is located in the south-
eastern part of Australia. Geographically, it is the smallest mainland state (refer to Fig. 1).
Melbourne, the capital of Victoria, is Australia’s second largest city. Melbourne has four
seasons although the climate is highly variable between seasons. Summer occurs from
December to February, autumn during March to May, winter from June to August and spring
from September to November. Annual maximum temperatures for Melbourne occur in the
summer months of January and February. During this time, the climate is hot with dry spells.
Although winter has the coldest temperature October tends to be the wettest month. Rain-
fall varies across the state, for example in 2010, maximum rainfall (single point estimate)
in Victoria ranged from 425 millimetres to 1,250 millimetres.

Given that a large amount of time series observations are required in order to construct
reliable bivariate statistical models of joint distributions of rainfall duration and severity, a
61-year record of data during the years 1950 –2010 is obtained from the Bureau of Mete-
orology (BOM) Australia, for analysis. Table 1 gives the geographical coordinates, annual
mean rainfall and percentages of missing observations of the six selected rainfall stations
used to collect rainfall data.
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Fig. 1 Map of Victoria Australia and the coordinates of the six rainfall stations

3 Models and Data Analysis

3.1 Kernel Density Estimation

Kernel density estimation is one of the most popular non-parametric method used to esti-
mate the probability density function (pdf) of a random variable. It is easy to apply and
can often uncover structural features in the data set which a parametric approach might
not reveal. Recently, nonparametric methods have been extensively applied to rainfall stud-
ies Sharma and Lall (1999), Sharma (2000), Haghighat jou et al. (2013), and Kim et al.
(2006) used kernel density estimation to estimate the rainfall probability density function.
In this paper, we will estimate the marginal distribution functions using both parametric and
non-parametric approach. For the parametric approach, we will fit the Gamma, Weibull,

Table 1 Geographic locations of the six (6) selected stations in Victoria

Station No Station Name Latitude Longitude Annual Mean % Missing

Rainfall (mm) Observations

83000 Archerton 36.91◦S 146.24◦E 1368.1 0.04

83033 Woods Point 37.57◦S 146.25◦E 1472.5 0.10

83073 Mount Buffalo Chalet 36.72◦S 146.82◦E 1882.6 0.05

90076 Tanybryn 38.68◦S 143.68◦E 1621.9 0.19

90083 Weeaproinah 36.84◦S 143.51◦E 1936.1 0.00

90087 Wyelangta 38.66◦S 143.45◦E 1949.8 0.00
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Log-normal and Exponential to the data and, for the nonparametric approach, kernel den-
sity estimation is used to estimate the marginal distribution of both rainfall characteristics,
i.e. its severity and its duration.

Given a random sample X1,..., Xn from a population with a continuous, univariate proba-
bility density function (pdf) f (·) and cumulative distribution function (cdf) F(·), the kernel
density estimator of f (·) is defined as

f̂ (x, h) = 1

nh

n∑

i=1

K

(
x −Xi

h

)
(1)

where K(·) is the kernel function and h the bandwidth. Under some mild conditions (c.f.
Wand and Jones 1995), the kernel density estimator is a consistent estimator of the true pdf
f (·). Kernel functions are symmetric unimodal functions about the origin and they satisfy
the conditions lim|x|→∞ |x|K(x) = 0 and

∫ ∞
−∞ x2K(x)dx < ∞. The standard kernel

functions are the Gaussian, Triangular, Biweight and the Epanechnikov functions c.f. (Wand
and Jones 1995). The nonparametric kernel estimator of F(x) is obtained by integrating (1)
giving

F̂ (x, h) = 1

nh

n∑

i=1

∫ x

−∞
K(

u− xi

h
)du (2)

= 1

n

n∑

i=1

K(
x − xi

h
) (3)

where K(x) = ∫ x

−∞ K(u)du.
It is well known that the choice of a kernel function does not significantly affect the

quality of the approximation and in this paper we use the Gaussian kernel which is defined
by

K(u) = 1√
2π

exp(−1

2
u2). (4)

The choice of the bandwidth h, on the other hand, does affect the quality of the approx-
imation. For the bandwidth, we adopt the value suggested by Silverman (1986) which
is

h = 0.9An−1/5 (5)

where

A = min{standarddeviation, interquartilerange}
1.34

.

It was shown in Silverman (1986) that this bandwidth adapts well to the Gaussian kernel
and is a robust measure of the spread of the underlying distribution of which it is estimat-
ing. Using simulated data, it was also shown that this bandwidth gives a reasonable Mean
Integrated Square Error (MISE) values where

MISE(f̂ ) = E

(∫
[f̂ (x)− f (x)]2dx

)
(6)

as well as revealing the bimodality and skewness of the underlying distribution.

3.2 Standard Precipitation Index

Standard Precipitation Index (SPI) was introduced by McKee et al. (1993) for monitoring
drought and was used to identify extreme drought events and evaluate their severity. SPI
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measures the precipitation deviations based on the long-term precipitation data for a given
period. One of the most significant aspect of this index arises from the fact that it is easy
to calculate and interpretable using standard probabilistic analysis (Guttman 1998). SPI is
calculated as the precipitation value y such that,

�(SP I) = F(y) (7)

or, equivalently
SP I = �−1(F (y)) (8)

where F(·) is the cdf of the precipitation variable and �(.) is the cumulative standard nor-
mal distribution function. The standard procedure used to compute SPI is to first fit the
precipitation data to the Gamma distribution using Maximum Likelihood Estimation (MLE)
method (Yusof et al. 2013), and then apply Eq. 8 to obtain the SPI values. The details SPI
categories and how to monitor the rainfall characteristics (severity and duration) can be
found in Yusof et al. (2013) and Abdul Rauf and Zeephongsekul (2014).

One key disadvantage in using the above approach is that for many precipitation time
series data, the Gamma distribution does not provide a good fit to rainfall data. This then
called upon an alternative approach and, when uncertain as to which parametric distribution
to use, it is best to adopt a nonparametric approach since it imposes less restriction on
the underlying distributions. A nonparametric approach has been introduced by Cancelliere
et al. (2007) in drought forecasting where they proposed two methodologies for forecasting
seasonal SPI. Kim et al. (2006) used a nonparametric local polynomial estimator which
called upon a kernel smoother to build an explicit model for the equiprobable transformation
of the cumulative distribution functions of rainfall. In this study, instead of using gamma
distribution, we used kernel density estimation in fitting the precipitation data.

The input data for this study consists of monthly SPI values computed in a 3–month time
scale for the period from June 1950 to June 2010. For example, the monthly SPI calculated
in a 3–month time scale at the end of November deploys the precipitation total for Septem-
ber, October and November in that particular year. Similarly, the 3-month SPI calculated for
November 1950 would have used the precipitation total of September 1950 to November
1950 in order to calculate the index. The indices used in this study were prepared by adopt-
ing the procedure employed by Kim et al. (2006). Figure 2 presents the nonparametric SPI
for Acherton Station, Victoria.

3.3 Copulas and Semiparametric Models

The traditional approach in building multivariate distributions in the field of hydrology has
several limitations due to the fact that hydrological variables such as rainfall severity and
duration, are highly dependent and their distributions can differ significantly from each
others. These restrictions can be accommodated with the introduction of copulas into the

Fig. 2 Nonparametric SPI
Indices for Archerton Station,
Victoria (1950-2010)
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modeling process. Copulas, introduced in 1959 by A. Sklar, facilitate the modeling of the
dependency between variables and allow the flexibility of choosing the marginal distribu-
tions of the individual variables. This attribute is akin to a multivariate normal distribution
where the mean vector and covariance matrix jointly determines the multivariate distribu-
tion, although in this case, the marginal distributions are also normal. In the case of copulas,
the marginal distributions and copula function will determine the joint distribution and
does it uniquely if these marginal distributions are continuous functions. The name copula
is derived from the Latin word copulare which means to couple or join. This term lends
emphasis to a copula’s role in linking the univariate marginal distribution functions to form
a joint distribution function. For two variables, Sklar’s theorem (Nelsen 2006) states that
if FX,Y (x, y) is a joint distribution function of a bivariate random variables (X, Y ) with
marginal distributions FX(x) and FY (y) respectively, then there exists a copula function
C(·) such that

FX,Y (x, y) = C(FX(x),FY (y)). (9)

If both FX(x) and FY (y) are continuous distributions, then this copula is unique for the
particular joint distribution. Differentiating (9) with respect to x and y yields the joint
probability density function given by

fX,Y (x, y) = c(FX(x),FY (y)) · fX(x) · fY (y) (10)

where c is the copula density function defined by

c(u, v) = ∂2C(u, v)

∂u∂v
. (11)

Two–dimensional copulas have been applied to model hydrological and drought phenomena
by a number of researchers including Shiau (2006), Zhang and Singh (2007), Serinaldi et al.
(2009), and Mirabbasi et al. (2012).

This paper will focus on three specific approaches to the analysis of bivariate rainfall
variables, namely severity and duration. These approaches, summarized in Table 2, are
both nonparametric and semiparametric. In the table P will refer to Parametric and N to
Nonparametric. The parametric distributions that will be used to fit the marginal distribu-
tions are the Gamma, Log-Normal, Weibull and Exponential distributions as these were
seen in an earlier paper (Abdul Rauf and Zeephongsekul 2014) to fit the data well. In the
nonparametric case, the kernel density functions discussed in Section 3.1 is used to esti-
mate the marginal distributions. In a related paper, Reddy and Ganguli (2012) applied both
parametric and nonparametric approaches for fitting marginal distributions.

3.3.1 PN Model

In this model, the marginal distributions are parametric and the copula nonparametric.
The copula is based on the Beta kernel function developed by Brown and Chen (1999),

Table 2 Proposed Semiparametric Approaches

Model acronym Marginal Copula

distributions

PN Parametric Nonparametric

NP Nonparametric Parametric

NN Nonparametric Nonparametric
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Harrell and Davis (1982) and Chen (1999, 2000). One of the attractive features of this kernel
which warranted its use here is its ability to alleviate the severe boundary bias common in
many standard kernel estimators. Univariate Beta-kernel density function based on sample
of uniform variables U1, U2, . . . , Un with support in [0,1] is defined by

b(u) = 1

n

n∑

i=1

K

(
Ui,

u

h
+ 1,

1 − u

h
+ 1

)
(12)

where K(·, α, β) denotes the Beta density function with parameters α and β given by

K(x, α, β) = �(α)�(β)

�(α + β)
xα−1(1 − x)β (13)

and h is the bandwidth.
For this model, we adopt the Beta kernel copula, introduced by Charpentier et al. (2006),
which has the copula density function obtained from the product of Beta densities, defined
by

ĉh(u, v) = 1

nh2

n∑

i=1

K

(
Ui,

u

h
+ 1,

1 − u

h
+ 1

)

×K

(
Vi,

v

h
+ 1,

1 − v

h
+ 1

)
. (14)

3.3.2 NP Model

In this approach, we combine nonparametric marginal distributions which utilize the kernel
density function (1) with a parametric copula. The three parametric copulas belonging to
the family of Archimedean copulas are given below:

1. Clayton

Cθ(u, v) = (u−θ + v−θ − 1)−1/θ ,

0 ≤ θ < ∞. (15)

2. Frank

Cθ (u, v) = −θ−1 log

(
1 + (e−θu − 1)(e−θv − 1)

e−θ − 1

)
,

−∞ ≤ θ < ∞. (16)

3. Gumbel-Hougaard

Cθ(u, v) = exp
[
−((−logu)θ + (− log v)θ )1/θ

]
,

1 ≤ θ < ∞. (17)

Note that θ , the copulas parameter, is usually estimated using Maximum Likelihood
Estimation (MLE) method.

3.3.3 NN Model

In the third approach, we have a combination of both nonparametric marginal distributions
and nonparametric copula. We use a nonparametric kernel density to estimate the marginal
distributions of rainfall severity and rainfall duration. The Beta kernel copula introduced in
Eq. 14 is employed to obtain the joint cdf of the rainfall characteristics.
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3.4 Application of Models to Data

In this section, we build a comprehensive copula-based model to estimate the joint distri-
bution of our two rainfall characteristics. To recapitulate, data from six rainfall stations that
are generally considered as flood prone areas in the state of Victoria, Australia are used
in this study. Archerton, Woods Point and Mount Buffalo Chalet are located in the North-
eastern region of Victoria and Tanybryn, Weaaproinah and Wyelangtathree are located in
the South-western region.

Figure 2 shows the monthly SPI for Acherton from year 1950 to 2010. From this graph,
it is apparent that Archerton regularly faces very wet event once every four years between
1950 to 1981. But, from 1981 to 1997, the region had a relatively dry period with SPI not
exceeding 2.0. After this period, this area regularly faces very wet event once every 5 to 6
years with SPI exceeding 2.0 on two occasions during these years.

For the first approach (PN model), four parametric distributions, namely Gamma,
Weibull, Lognormal and Exponential distributions, were fitted to rainfall severity and rain-
fall duration for the six stations. All parameters for the each marginal distributions are
estimated from the data using the MLE method. Table 3 present the values of the estimated
parameters. We note here that since a nonparametric approach has been used to compute SPI
values, the results shown in the table are different from the results produced by a paramet-
ric approach in Abdul Rauf and Zeephongsekul (2014). The goodness of fit statistics used
were the Schwartz Information Criterion (SIC), also known as the Bayesian Information
Criterion (BIC), and Akaike Information Criterion (AIC) defined below:

BIC = −2 ln(Lmax)+ k ln(n) (18)

AIC = −2 ln(Lmax)+ (
2nk

n− k − 1
). (19)

Here n be number of observations, k the number of parameters to be estimated and Lmax

is the maximum value of the log-likelihood function for the estimated model. For each
station, the best fitted distribution for each rainfall characteristic is subsequently selected
using the AIC and BIC values and these are displayed in Table 4. The parametric models

Table 3 Parameter estimate for marginal distributions

Rainfall Stations Gamma Lognormal Weibull Exponential

Characteristics No.
α̂ 1/β̂ μ̂ σ̂ â b̂

λ̂

Severity 83000 2.52 1.02 0.69 0.61 1.47 2.76 0.41

83033 2.51 0.95 0.76 0.62 1.49 2.96 0.38

83073 2.92 1.29 0.64 0.56 1.57 2.56 0.44

90076 2.60 1.02 0.73 0.60 1.51 2.85 0.39

90083 4.10 1.84 0.68 0.49 2.02 2.53 0.45

90087 4.45 1.98 0.69 0.47 2.10 2.55 0.43

Duration 83000 3.26 1.90 0.38 0.53 1.67 1.94 0.58

83033 3.42 1.88 0.44 0.52 1.68 2.05 0.55

83073 3.77 2.38 0.32 0.49 1.78 1.80 0.63

90076 3.46 2.05 0.37 0.51 1.74 1.91 0.59

90083 5.78 3.94 0.29 0.40 2.28 1.66 0.68

90087 6.23 4.17 0.32 0.39 2.41 1.69 0.70
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Table 4 Goodness of Fit Test for Marginal Distributions- AIC and BIC Information Criterion

Stations Rainfall Distibutions AIC BIC

Characteristics

Archerton Severity Gamma 244.18 248.68

83000 Lognormal 228.84 233.33

Weibull 253.76 258.27

Exponential 268.57 270.83

Duration Gamma 179.96 184.46

Lognormal 165.46 169.96

Weibull 191.82 196.31

Exponential 217.46 219.71

Woods Point Severity Gamma 217.94 222.13

83033 Lognormal 207.59 211.78

Weibull 225.09 229.28

Exponential 238.49 240.59

Duration Gamma 159.54 163.73

Lognormal 148.36 152.55

Weibull 170.83 175.02

Exponential 193.64 195.74

Mount Buffalo Chalet Severity Gamma 247.27 251.96

83073 Lognormal 231.71 236.40

Weibull 259.78 264.47

Exponential 282.50 284.85

Duration Gamma 176.68 181.37

Lognormal 160.79 165.48

Weibull 191.55 196.23

Exponential 226.87 229.22

Tanybryn Severity Gamma 194.43 198.45

90076 Lognormal 183.87 187.89

Weibull 201.81 205.82

Exponential 214.40 216.40

Duration Gamma 136.16 142.17

Lognormal 128.03 132.05

Weibull 147.28 151.30

Exponential 169.78 171.79

Weeaproinah Severity Gamma 238.31 243.12

90083 Lognormal 230.97 235.78

Weibull 247.65 252.47

Exponential 297.54 299.94

Duration Gamma 145.47 150.28

Lognormal 134.99 139.81

Weibull 161.31 166.13

Exponential 228.45 230.85
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Table 4 (continued)

Stations Rainfall Distibutions AIC BIC

Characteristics

Wyelangta Severity Gamma 225.70 230.44

90087 Log Normal 219.81 224.55

Weibull 235.18 239.92

Exponential 287.99 290.36

Duration Gamma 138.26 143.00

Lognormal 130.80 135.55

Weibull 151.65 156.39

Exponential 223.39 225.77

that best fitted the data would give the lowest values using these criteria. The table shows
that the Lognormal distribution best fitted both rainfall severity and duration. Consider
Wyelangta’s station as an example, we estimated its best fitted cumulative distributions for
rainfall severity and rainfall duration to be

FS(s) = 1

0.47
√

2πt

∫ s

0
e−

(ln t−0.69)2
0.44 dt, s > 0 (20)

and

FD(d) = 1

0.39
√

2πt

∫ s

0
e−

(ln t−0.32)2
0.30 dt, d > 0 (21)

respectively. The Beta kernel copula density was computed using Eq. 14 with the uniform
variables Ui and Vi generated using the Lognormal distributions (20) and (21) respectively.

U=Fx(X): Rainfall Severity
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Fig. 3 Bivariate beta copula density function of rainfall severity and rainfall duration: PN Wyelangta
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The resultant copula density is plotted in Fig. 3. Note that there is a bias correction at the
extreme corners, i.e. with higher rainfall severity, the rainfall duration has longer duration
with a higher probability and likewise at region with low rainfall intensity and duration.

We proceed with the second approach (NP model) that utilized a parametric copula
model with nonparametric marginal distributions. For this purpose, the marginal distribu-
tions were estimated using kernel density functions and the three parametric Archimedean
copulas given by Eqs. 15, 16 and 17 were chosen. For each of the three copulas, we esti-
mates the parameter θ using MLE method and these are displayed in Table 5. Scatter
plots of the simulated marginal distribution data were generated using the three estimated
archimedean copula functions for all six stations. Due to space and page limitations, we
have only displayed the plots for the first three stations (Fig. 4). The graphs show that there
is a correlation between these marginal distribution data for all stations: the Frank cop-
ula demonstrates a symmetric dependence structure across all stations, while the Clayton
and Gumbel-Hougaard copula were found to have a higher dependency in the tails. These
dependencies were found to be higher in the left tail for the asymmetric Clayton copula, and
in the right tail for the Gumbel-Hougaard copula. From the plot, we can conclude that the
two rainfall characteristics show a high degree of dependence on each other and they are
certainly captured by these scatterplots.

The comparison between the three copulas to determine which copula is best suited for
representing the joint distributions is done with the Goodness of fit test using a variation of
the Cramér-von Mises statistic, Sn introduced in Genest et al. (2009) for family of copula.
Sn is here defined by:

Sn =
n∑

i=1

(CNi − Cθi)
2 (22)

Table 5 Parameter estimate for fitted Copulas

Stations Type of Parameter Estimates Standard z-value Pr(> |z|) Maximum

Copulas θ̂ Error loglikelihood

Archerton Clayton 2.940 0.4250 6.9120 0.0000 26.48

Frank 9.308 1.109 8.397 0.0000 32.45

Gumbel-Hougaard 2.562 0.2633 9.729 0.0000 27.45

Woods Point Clayton 2.550 0.4338 5.889 0.0000 17.80

Frank 7.860 1.107 7.104 0.0000 19.96

Gumbel-Hougaard 2.160 0.2543 8.508 0.0000 14.69

Mount Buffalo Clayton 2.700 0.3868 6.982 0.0000 26.64

Chalet Frank 9.160 1.053 8.7000 0.0000 35.27

Gumbel-Hougaard 2.60 0.2556 10.19 0.0000 31.52

Tanybryn Clayton 2.870 0.4721 6.077 0.0000 20.00

Frank 8.960 1.222 7.33 0.0000 23.73

Gumbel-Hougaard 2.438 0.287 8.492 0.0000 18.72

Weeaproinah Clayton 3.011 0.4004 7.520 0.0000 32.64

Frank 9.839 1.084 9.075 0.0000 40.30

Gumbel-Hougaard 2.870 0.2597 10.35 0.0000 33.06

Wyelangta Clayton 2.950 0.4136 7.129 0.0000 30.55

Frank 10.170 1.146 8.882 0.0000 39.56

Gumbel-Hougaard 2.620 0.263 9.985 0.0000 29.70
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Fig. 4 Parametric copula based joint distribution for 3 stations (Archerton, Woods Point and Mount Buffalo
Chalet)

where CN is the empirical copulas (Genest et al. 2009), Cθ the estimated parametric copulas
and the subscript i represents the sample number. The copula with the smallest value of
Sn (hence giving the largest p–value) is chosen to represent the joint distribution of rainfall
severity and duration. The values of Sn and p–values for all three copulas are presented
in Table 6. For all the six stations, it is evident that the Clayton copula provides the best
fit with largest p-value. The bivariate copula density function using the Clayton copula for
Wyelangta station is displayed in Fig. 5, where the plot shows that Clayton copula has more
probability concentrated in the left tail.

As was shown by Charpentier et al. (2006), a parametric copula would tend to underesti-
mate the true joint distribution. In the third approach (NN), the choice of the Beta kernel is
essential in order to improve the bias at the boundaries. In Fig. 6, the plot shows two peaks
near the lower tails and a higher peak on the right tails of the distributions. There are some
obvious disparities between this figure and Fig. 3 (PN model) and Fig. 5 (NP model) of the
same station. Figure 5 shows low probability density near the tails of the surface which may
not reflect the true nature of the joint distribution.
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Table 6 Goodness-of-fit test for fitted Copulas using Sn

Stations Type of Sn p-value

Copulas

Archerton Clayton 0.0127 0.6409

Frank 0.3903 0.0005

Gumbel-Hougaard 1.0152 0.0004

Woods Point Clayton 0.0080 0.9715

Frank 0.3338 0.0005

Gumbel-Hougaard 0.9087 0.0005

Mount Buffalo Clayton 0.0124 0.6369

Chalet Frank 0.3807 0.0005

Gumbel-Hougaard 0.9829 0.0005

Tanybryn Clayton 0.0226 0.1304

Frank 0.4320 0.0004

Gumbel-Hougaard 1.127 0.0005

Weeaproinah Clayton 0.0116 0.7038

Frank 0.3392 0.0005

Gumbel-Hougaard 0.9613 0.0004

Wyelangta Clayton 0.0195 0.3162

Frank 0.0959 0.0010

Gumbel-Hougaard 0.1664 0.0005

To check the goodness of fit, we employ the Mean Absolute Error (MAE) between the
fitted values based on each of the three approaches and the values obtained by calculating
the corresponding empirical copula to the data. The MAE is defined in a similar way to Sn
but using absolute instead of mean–squared deviation:

MAE = 1

n

n∑

i=1

|CPi − CNi | (23)

where CPi is the fitted copula values which were calculated based on the three approaches,
and CNi are the empirical copula values (Deheuvels 1979). From Table 7, it is found that
the PN and NN approaches generally give the smallest MAE values with NN dominating
for most of the selected stations. This again indicates that the nonparametric approach has
great merit over the parametric approach when it comes to fitting joint distribution based on
large historical hydrological data. Whether it is true in general remains to be seen with new
field work and additional data collection.

3.5 Return Periods

A return period is the interval of time between consecutive recurrence of an event such as
severe draught, flood or extreme rainfall. Estimation of return periods of these events, char-
acterized by various levels of severity, is an essential part of any hydrological and water
planning projects. Most hydrological characteristics such as rainfall severity and its duration
are highly dependent and separate analysis of each characteristic is therefore not sufficient
in assessing overflow water risks or in performing flood analysis. A multivariate approach
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Table 7 Comparison of three approaches using MAE

Stations Approach MAE

Archerton PN 0.0185

NP 0.2270

NN 0.0256

Woods Point PN 0.2830

NP 0.2450

NN 0.1650

Mount Buffalo PN 1.3560

Chalet NP 2.0650

NN 0.7890

Tanybryn PN 0.3690

NP 2.6780

NN 1.5900

Weeaproinah PN 2.0890

NP 3.0250

NN 1.2980

Wyelangta PN 2.3870

NP 2.9520

NN 0.1460

is therefore an essential and a far superior method used in analyzing these events. For exam-
ple, Kim (2003) obtained the joint distributions of drought duration and drought intensity
using bivariate kernel estimator for estimating the joint return periods for the arid regions
in Conchos River Basin, Mexico. However, the traditional approach of considering the joint
distribution of rainfall characteristics using standard bivariate modeling presents some lim-
itations as mentioned, and these can be circumvented by using Copulas. In this section, the
expected return periods, using a single or joint rainfall characteristics, introduced by Shiau
and Shen (2001) formulated for drought events with certain severity and duration will be
applied to the rainfall data from Victoria. This will incorporate copulas and the proposed
semiparametric approaches outlined in Table 2.

Let L be the extreme rainfall interarrival time, then the expected return period (Shiau and
Shen 2001) for floods with severity S greater than or equal to a certain value s is given by:

Ts = E(L)

1 − FS(s)
(24)

where FS(s) is the cumulative distribution function of S. Similarly, the expected return
period for floods with rainfall duration D greater than or equal to d is given by

Td = E(L)

1 − FD(d)
(25)

where FD(d) is the cumulative distribution of the rainfall duration.
In this study, we used two approaches to estimate the cumulative distribution functions

for rainfall severity and durations. In the first (parametric) approach, we used the Lognormal
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Fig. 7 Return Period for rainfall severity using Lognormal

distribution for both FS(s) and FD(d), since this distribution best fit both rainfall charac-
teristics as can be seen from Table 4. In the second (nonparametric) approach, we used a
kernel density estimator to estimate the distributions of the two rainfall characteristics.

The expected interarrival time for extreme rainfall events, E(L), for the six (6) selected
stations in Table 1 were estimated to be 10.0, 10.8, 9.0, 10.6, 8.9 and 9.2 months respec-
tively. The expected return periods for severity and duration exceeding certain values were
then calculated using Eqs. 24 and 25 respectively.The return periods up to 100 years against
a set of abscissae of severity for both Lognormal and kernel density estimate are displayed
in Figs. 7 and 8 respectively. For example, if severity exceeds 8.60 and duration exceeds
5.2, then a return period of 100 years is expected using the Lognormal distribution. Simi-
larly, if severity exceeds 10.7 and duration exceeds 5.9, then a return period of 100 years is
expected using the kernel density estimator. As expected, the graphs of the return periods

Fig. 8 Return Period for rainfall severity using kernel density estimate
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Fig. 9 Conditional return period of rainfall duration when rainfall severity exceed certain value - PN (top
right), NP (top left) and NN (bottom)

rise sharply with increasing severity and duration but much more smoothly in the paramet-
ric than the nonparametric case. The results also suggest the areas with higher mean annual
rainfall and lower interarrival times are more exposed to the extreme rainfall events that can
cause floods.

Next, we consider the joint return and conditional return period which specifically
involve the dependency between the two rainfall characteristics. The joint probability can
be calculated in terms of copulas which provides the freedom for the marginal distribu-
tions to assume any appropriate parametric or nonparametric form. The following four
expected return periods were introduced by Shiau (2003) and are readily interpretable using
conditional probabilities:

TDS = E(L)

P (D ≥ d and S ≥ s)

= E(L)

1 − FD(d)− FS(s) + FDS(d, s)

= E(L)

1 − FD(d)− FS(s) + C(FD(d), FS(s))
. (26)

T ′
DS = E(L)

P (D ≥ d or S ≥ s)
= E(L)

1 − FDS(d, s)

= E(L)

1 − C(FD(d),FS(s))
(27)
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Fig. 10 Conditional return period of rainfall severity when rainfall duration exceed certain value - PN (top
right), NP (top left) and NN (bottom)

TDS (T ′
DS) is the conditional return period given that the duration D ≥ d and (or) severity

S ≥ s. The following conditional return periods are based on further conditioning (26) on
S ≥ s and D ≥ d respectively:

TD|S≥s = TDS

1 − FS(s)

= Ts

1 − FD(d)− FS(s)+ C(FD(d),FS(s))

(28)

and

TS|D≥d = TDS

1 − FD(d)

= Td

1 − FD(d)− FS(s)+ C(FD(d),FS(s))
.

(29)

Using all three approaches, Figs. 9 and 10 provide graphical representations of TD|S≥s and
TS|D≥d for Archerton station given that rainfall severity and rainfall duration exceed certain
values listed in the abscissae respectively. From the figures, we conclude that the results
show similar trend for all cases. However, both PN and NP cases tend to show higher return
periods for high severity at the same duration, while PN and NN cases tend to show a higher
return periods for higher duration at the same severity.
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4 Conclusions

Severe floods are worldwide phenomena which are becoming more frequent due to erratic
weather conditions and climate changes. Since rainfall is the major cause of flood events,
and its duration and severity influence their protraction, these two rainfall characteristics
are considered important variables in hydrological studies.

In this paper, we used rainfall data from 6 selected stations from North-eastern and
South-western Victoria, Australia, to analyze rainfall severity and duration prevalent in that
state. A copula methodology is used to derive the joint distributions of these variables. A
novelty of the paper is to employ both a nonparametric and a semiparametric approach,
whereby in the first approach, we have allowed both the copula and the marginal distri-
butions to assume nonparametric forms, while in the second approach, the copula and the
marginal distributions take their turn assuming a parametric and nonparametric form respec-
tively. This contrasts sharply with the standard approach adopted in many papers which
assumes that both the marginal distributions and copulas assume parametric forms. Esti-
mating parameters of these purely parametric models using standard techniques is often
time consuming. Furthermore, legitimate concern can be raised with respect to their accu-
racies in case the assumptions underlying these models are violated or small data sets
are involved. On the other hand, the nonparametric approach ameliorate these problems
and can give better results without assuming a particular form for the marginal or copula
distributions.

We began this paper by first quantifying severity through the Standard Precipitation
Index (SPI). For SPI estimation, we presented an alternative approach using nonparamet-
ric kernel density by employing the Gaussian kernel to estimate the probability density
function of rainfall intensity. We then apply several copulas–based approaches, each involv-
ing a combination of parametric or nonparametric marginal distributions conjoined by
a parametric or nonparametric copula, to model the two rainfall characteristics. Using
goodness of fit tests, we found that the Lognormal distribution provides the best fit
among four parametric marginal distributions and the Clayton copula the best fit cop-
ula among the three Archimedean copulas chosen. Further, Table 7 indicates that the
purely nonparametric approach (NN) generally provides a better fit to the data than the
two mixed approaches. Finally, we used the three approaches to derive several return
periods of severe rainfall events for the stations selected. Estimation of return period
is of course crucial in water management planning and the results obtained are not
unexpected. Both parametric and nonparametric approaches gave similar trend, with
the parametric approach providing slightly higher return periods than the nonparametric
approach.

There is much scope for applying the nonparametric approaches adopted in this paper
to flood or even drought events in other regions of the world. It would also be interesting
to see whether the results obtained in this paper can be replicated elsewhere. Finally, the
methods can be extended without much difficulty to more than two rainfall characteristics
thus making them more applicable under a wider range of flood conditions.
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